Can climate data from METEOSAT improve wildlife distribution models?
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Abstract

Global climate change generated by human activities is likely to affect agroecosystems in
several ways: reinforcing intensification in northern and western Europe, and extensification
in the Mediterranean countries. If we are to predict the consequences of global warming for
wildlife, distribution models have to include climate data. The METEOSAT temporal series
from EWBMS offers an attractive alternative to using climatic surfaces derived from ground
stations. The aim of this paper is to test whether this climatic satellite data can improve the
distribution models obtained previously by Sudrez-Seoane %La_l/(—la%% using habitat
variables for three agro-steppe bird species: great bustard, little bustard and calandra lark in
Spain. Rainfall, radiation balance, evapotranspiration and soil moisture images were
incorporated together with the other variables used as predictors in the published stepwise
GAM models. Changes in the predicted distributions from the habitat only and climate-
habitats models were assessed by reference to the CORINE land cover categories. Inclusion
of climatic variables from METEOSAT led to statistically superior models for all three
species. There were large differences in the climatic variables selected and the original
variables dropped among the species. Evapotranspiration variables were the most frequently
selected. Maps of the differences between the habitat and climate-habitat models showed
very different patterns for the three species. Inclusion of climate variables led to a wider
range of land cover types being deemed suitable. Despite the statistical superiority of models,
care is needed in deciding whether to use climatic variables because they may emphasize the
fundamental rather than the realized niche. Used together, however, habitat and climate

models can provide new insights into factors limiting species distributions and how they may

respond to climate change.




Introduction

Global climate change generated by the increased emissions of greenhouse gases is occurring
and is unique and new (Gall et al. 1992). It is expected to affect agroecosystems in several
ways (Peters 1990, Fuhrer 2003) in different parts of the world (Parry et al. 1999). Intensive
agriculture may have the potential to adapt to changing conditions; in contrast, extensive
agricultural systems or low-input systems may be affected more seriously (Fuhrer 2003). In
Europe, climate change is likely to reinforce the current trends of intensification in northern
and western Europe and extensification in the southeastern countries (Olesen and Brindi
2002). In the Mediterranean countries, characterised by a drier and warmer climate,
disadvantages will predominate. The possible decreases in availability of the water resource
may cause lower harvestable yields, higher yield variability and a reduction in suitable areas
for traditional crops. The synergy between climate change and habitat destruction will
probably threaten many more species than either factor alone (Peters 1990), thus causing
great concerns for the future of biodiversity on agroecosystems.

International commitment to monitoring and measuring biodiversity has spawned
much recent work on appropriate techniques to model species distributions over large
geographic areas (Guisan and Zimmermann 2000, Corsi et al. 2000). Such models require
consistent environmental data on a scale that cannot easily be gathered in the field, leading to

the use of satellite imagery as a source of predictor variables (Palmeirim 1988, Rogers and

Williams 1994, Mat_jfl ek 2003). The favoured product to date has often been Advanced
Very High Resolufion Radiometer (AVHRR) imagery, usually processed using the
Normalised Difference Vegetation Index (NDVI) (Birky 2001, Osborne et al. 2001). For
example, Sudrez-Seoane et al. (2002) used a 12-month time-series of NDVI images as one set

of predictors in models of steppe-bird distributions in Spain. NDVI is attractive for wildlife

modelling because it acts as a proxy for vegetation cover and, in some cases, climate.



Although these models have been highly successful, we wondered whether they could be
improved through the use of other, readily available remote sensing products, especially in
relation to climate. The explosion of interest in global climate change makes the latter point
important: if we are to predict the consequences of global warming for wildlife, distribution
models are needed that make use of climatic data (Dyer 1994, Bridgewater and Woodin
1990). The traditional approach to incorporating climate in wildlife models has been to
calculate climate surfaces from meteorological stations, using sophisticated trend surface
models such as ANUSPLIM (Hutchinson 2000, Price et al. 2000). The alternative that has not
been tried to our knowledge is to use satellite-derived climatic measures. The European
Energy and Water Balance Monitoring System EWBMS (Rosema et al. 2001) has made
available a series of 10-daily products based on METEOSAT data. Images accessible consist
of rainfall, net radiation, actual evapotranspiration and a soil moisture indicator (SMI).

The main aim of this paper is therefore to test whether METEOSAT data can improve
the previous models of Suarez-Seoane et al. (2002) for three bird species: great bustard Otis
tarda 1} little bustard Tetrax tetrax Wand calandra lark Melanocorhypha calandraqL/y,
living in the extensive agricultural steppes of Spain, an agrosystem which is expected to be
negatively affected by climate change. Looking for an improvement in the models is a
rigorous but realistic test: given the success of models built using NDVI, it is unlikely that
ecologists will abandon the use of AVHRR data. The relevant question is therefore whether
the EWBMS products can improve the best models based on NDVI. We aslo explore how
models based on habitat alone and those based on climate and habitat differed, and how those

differences should be interpreted.

Methods

A detailed explanation of the data sets and statistical methods is given by Sudrez-Seoane et al



(2002) and only brief details will be given here except for the EWBMS products (Rosema
1993, Rosema et al. 2001). The supplied EWBMS data comprise measures of rainfall,
radiation balance, evapotranspiration and soil moisture for each 10-day period (dekad) from
1996 to 1999. These products are derived from the METEOSAT satellite on the basis of
hourly observations of the visible channel, which provides information on the earth’s
reflectivity or albedo, and the thermal infrared channel, which provides information on
temperature. Rainfall mapping was based on determining the frequency of clouds at several
levels, using the cloud top temperature. In addition, the WMO Global Telecommunications
System was used to retrieve actual precipitation point data in near real time. The relationship
between the observed rain gauge data and the cloud frequencies was determined by
regression. Regression coefficients and residuals for each station were then interpolated in
order to compute rainfall for each pixel. Radiation and actual evapotranspiration maps were
based on both visible and thermal infrared observations of cloud free pixels that, by
calibration and atmospheric corrections, were converted to surface temperature (To) and
surface albedo (A). Using regression between noon and midnight surface temperatures, we
also obtained the air temperature at the top of the atmospheric boundary layer (T,). From
observed albedo, temperatures and cloudiness, and according the time of the year and the
position, we calculated global radiation and net radiation (I,). Sensible heat flux (H) from the
surface to the atmosphere was calculated from surface-air temperature difference. Finally, the
subtraction of the sensible heat flux from the net radiation provided the actual
evapotranspiration (LE = I, - H). The Soil Moisture Indicator (SMI) is the ratio of actual over
potential evapotranspiration.

In handling the climatic data, we had to consider both its quality and volume. The
data for rainfall in particular were patchy. As we were interested only in an average picture

over time, we dropped any images showing defects and averaged the remainder for each



dekad to produce an annual time-series of 36 images. This time series was further
summarised using standardised principal components analysis (Eastman and Fulk 1993) and
only the first three components for the four climatic variables were used subsequently. This is
an efficient way to capture most of the information (72-82%; Table 1) in the time series
without overburdening the statistical analysis with variables.

Models were built using stepwise Generalised Additive Modelling (Hastie and
Tibshirani 1990) in S-plus (see Venables and Ripley 1999) and the GRASP interface
(LLehmann et al. 2001). We used the variables from the models in Suarez-Seoane et al. (2002)
(see Table 2) together with the 12 climatic variables described above as predictors, fitting
each as cubic splines with four degrees of freedom. Models were generated by backward
selection with p<0.01 for the variable to remain in the equation. After initial model
generation, all splined variables that were not significantly curvilinear were replaced by
linear terms to prevent over-fitting. Terms were dropped one by one from the final equation
to assess their contribution to the model through a likelihood ratio test (Venables and Ripley
1999). Predictive performance was assessed through 10-fold cross-validation (Verbyla and
Litvaitis 1989) and both fit and predictive performance were measured through Receiver
Operating Characteristics (ROC) plots (Beck and Schultz 1986, Osborne et al. 2001). The
original habitat models of Suarez-Seoane et al. (2002) were compared with the climate-
habitat models produced here using the likelihood ratio test.

To make a visual comparison between the habitat and climate-habitat models (both of
which produced maps of suitability ranging from 0 to 1), we generated a change surface by
subtracting one from the other. The change surface theoretically ranged from —1 to 1 but as
we were primarily interested in the largest changes, we discarded the middle third of the data,
leaving two categories of change (-0.33 to -1, and 0.33 to 1). To aid in their interpretation,

we overlaid these two change categories on the CORINE land cover map for Spain to extract



the underlying land-use categories.

Results

The climate-habitat models were significantly better (at p<0.001) than the original published
habitat models for all three species studied based on the likelihood ratio test (Table 3). Of the
12 climatic variables tested, only Soil-3 was not included in any model and the
evapotranspiration variables were the most frequently selected. There were large differences,
however, in the climatic variables selected and the original variables dropped between
species. For the great bustard, Evap-1 and Evap-2 became the most significant variables in
the model and two NDVI variables were dropped. Rad-3 and Evap-2 were the most
significant variables for the little bustard and three NDVI variables were dropped. Despite
occupying similar habitat, the most significant variables for the calandra lark were NDVI-3
and altitude while the evapotranspiration variables were the best of the climatic predictors
used. The AUC values of the climate-habitat models were all greater than 0.92 and after
cross-validation, these values reduced very little, suggesting a good predictive power (Table
3).

The analysis of changes between the climate-habitat and habitat models illustrated
very different patterns for the three species (Figure 1). The black areas, where the climate-
habitat model probabilities were greater than those of the habitat model by 0.33 or more,
indicate locations where the climate is presently suitable but habitat is lacking. Conversely,
grey areas are those where habitats appear suitable but where climatic conditions are outside
those predicted as suitable by the model (habitat model probability - climate-habitat model
probability > 0.33). The great bustard’s distribution shows evidence of fragmentation due to
loss of habitat in climatically suitable areas whereas the little bustard shows a east-west bias

in climatically-suitable areas with available habitat. A change in climate to favourable



conditions could potentially open-up the non-irrigated arable lands in the western half of
Spain to the species. Especially noteworthy is the potential expansion area predicted for
northern Spain, i.e. Asturias and Cantabria, where little bustards are not currently found. The
original habitat model for the calandra lark predicted widespread occurrence whereas the
climate-habitat model has trimmed areas particularly from the south-east of Spain. Possible
areas for expansion on the basis of presently suitable habitat are among the irrigated lands of
the Ebro Valley and some non-irrigated arable lands along the coast.

Comparison of the CORINE land cover classes lost or gained by using the climate-
habitat model as opposed to the habitat model showed some predictable and more subtle
trends (Table 4). For all species, the climate-habitat models predicted occupancy of a wider
range of habitats than the habitat models alone, e.g. all increased the representation of “other
categories” i.e. non agricultural areas (Table 4). For the little bustard, increased use of areas
with mixed cultivation patterns and patches of natural vegetation was predicted whereas
calandra larks were predicted to make far lower use of irrigated land under the climate-habitat

model than the habitat model showed.

Discussion

Our analysis has shown that climatic variables derived from METEOSAT data can produce
statistically superior distribution models to those built on habitat data alone. This is an
important finding and suggests that more use could be made of satellite-derived climatic data
for large-scale ecological models, especially in areas where meteorological stations are
sparse. As more sophisticated satellite platforms are launched, there is a temptation to regard
the use of fine resolution imagery as the Holy Grail. In fact, the use of the appropriate scale is
crucial when analysing landscape ecological data (e.g. O’Neill et al. 1988, Wiens and Milne

1989) and for large-scale distribution models this is often 1 km or greater. Models predicting



the effects of global climatic change are limited by the resolution of the models themselves
and often use a continental scale (Hulme and Carter 2000). Viewed in this context, the
EWBMS data at 6 km resolution offer an attractive alternative to ground station data. For
finer resolution studies, the AVHRR data at 1 km resolution may themselves be used to
derive climatic variables but these have not yet been incorporated into wildlife distribution
models to our knowledge.

The three test species occupy dry, agricultural steppe habitats in Spain and it is not
surprising that climatic variables should predict their occurrence, especially measures of
evapotranspiration. Our previous models used NDVI variables from AVHRR data as a direct
measure of habitat, but the fact that these were not uniformly dropped when climatic
variables entered the models suggests that climate may act in more ways than simply
determining habitat. The little bustard offers the simplest case where the main vegetation
variable NDVI-1 was dropped in favour of climatic measures. Thus the bird’s distribution is
better explained by weather than climatic effects on broad vegetation types (which is, in
effect, what NDVI-1 measures). By contrast, the model for the calandra lark retained the
main NDVI variables even when climate was considered.

By using climatic variables derived from standardised principal components, we have
captured much of the variation in climate but have not optimised the variables for the species.
For example, Morales et al. (2002) have shown that breeding productivity of Spanish great
bustard is positively correlated with winter precipitation and negatively correlated with the
number of rain days during hatching. It would be possible to extract from the EWBMS data
variables specifically to test whether these conditions influence overall distribution.

In answering the question posed in our title, it is important to clarify what is meant by
“improve”. Our climate-habitat models were superior in a statistical sense to those derived

from habitat variables alone. In other words, they predicted more closely the original data and



cross-validation tests suggest they would perform better on new data than habitat-only
models. Climatic envelope models are, however, blind to other limiting factors, a criticism
that is valid against current large scale projects attempting to model the consequences of
climate change on species (e.g. Pearson et al. 2002). Pure climate models indicate the
potential distribution (or fundamental niche) but not where species actually occur (the
realised niche), their absence being due to unmodelled factors such as vegetation type,
disturbance, hunting pressure, competitive interaction, lack of dispersal ability etc. (e.g.
Huntley 1991; Davis et al 1998; Hill et al. 1999). We believe that the original habitat based
models of Sudrez-Seoane et al. (2002) provide a closer approximation to the current
distributions than models incorporating climate. The decision to include climate data in
distribution models or not must depend on the purpose of the study. When viewed together,
the two models identified climatically-suitable areas where habitat has been lost (and so
presumably could be re-created) and areas with apparently suitable habitat but an
unfavourable climatic regime. These latter areas could be of great significance in modelling
climate change because they already offer suitable habitat and might be expected to be
colonised first as species’ distributions shift.

In the Mediterranean regions, the pattern of agriculture is diverse. A market-oriented
type of agriculture with crop cultivation predominates but considerable areas of traditional
small-scale agriculture still occur (Kostrowicki 1991). According to recent studies on climate
change in Europe (Hulme and Carter 2000), Spain will see increasing temperatures and
dryness, mainly in the south and east of the country, and an associated displacement of
cereals northwards (Olesen and Brindi 2002). These changes will become critical for the
future of steppe birds, all three species studied being at risk of extinction in the driest areas of
south-eastern Spain, e.g. Almeria. Tools to help model, predict and manage species

distribution changes in relation to climate and habitat are essential to underpin conservation



efforts to save steppe birds.

Acknowledgements

We sincerely wish to thank all the people who provided us with Spanish bird distribution
data, especially volunteers involved in the SACRE Program (co-ordinated by Ramén Martin
and Juan Carlos del Moral from SEO/BirdLife); Javier Bustamante and Javier Seoane
(Estacion Bioldgica de Dofiana, Spain); Eduardo de Juana (Universidad Complutense) and
Carmen Martinez (Museo de Ciencias Naturales); Joan Estrada, Anna Folch, Santiago
Mafiosa, Jaume Bonfil and Ferran Gonzilez (GCA, Museu de Zoologia de Barcelona);
Xabier Vazquez Pumarifio, Gustavo Martinez and Jorge Rubio; Carlos Astrain and Amaia
Etxeberria; Benedicto Campos and Manuel Lopez; and other people as Jests Serradilla. Juan
Carlos Alonso and his team provided additional data on great bustards that contributed to the
original habitat models. Estanislao de Luis Calabuig helped with his comments to improve
the manuscript. The AVHRR data were provided by NERC’s Satellite Receiving Station at
Dundee and were processed by the RSDAS, Plymouth. We especially wish to thank Neil
Lonie and Luke Tudor for their help. Thanks to Pilar Garcia for her help in building the DTM
in INDUROT (Universidad de Oviedo). Kate Howie of the Mathematics Department,
University of Stirling, is thanked for statistical discussions. Susana Suarez-Seoane was

funded through a Marie Curie postdoctoral fellowship, by the European Commission’s

11



References

Beck, J. B. and Shultz, E. K. 1986. The use of relative operating characteristic (ROC) curves
in test performance evaluation. - Archives of Pathology and Laboratory Medicine
110: 13-20.

Birky, A. K. 2001. NDVTI and a simple model of deciduous forest seasonal dynamics. -
Ecological Modelling 15: 43-58.

Bridgewater, P. and Woodin, S. J. 1990. Global warming and nature conservation. - Land use
policy 7: 165-168.

Corsi, F., De Leeuw, J. and Skidmore, A. 2000. Modelling species distribution with GIS. - In:
Boitani, L. and Fuller, T.K. (eds.), Research Techniques in animal ecology. Columbia
University Press, New Yorb f) 0) m - Um . é—

Davis, A. J., Jenkinson, L. S., Lawton, J. L., Sharrocks, B. and Wood, B. 1998. Making
mistakes when predicting shifts in species range in response to global warming. -
Nature 391: 783-786.

Dyer, J. M. 1994. Land use pattern, forest migration and global warming. - Landscape and
Urban Planning 29: 77-83.

Eastman, J. R. and Fulk, M. 1993. Long sequence time series evaluation using standardised
principal components. - Photogrammetric Engineering and Remote Sensing 59 M
991-996.

Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO,, ozone and global
climate change. - Agriculture, Ecosystems and Environment 97: 1-20.

Gall, G. A. E., Kreith, M., Staton, M. (1992). Global climate change. - Agriculture,
Ecosystems and Environment 42: 93-100.

Guisan, A. and Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. -

Ecological Modelling 135: 147-186.



Hastie, T. J. and Tibsharinani, R. 1990. Generalised Additive Models. - Chapman and Hall,
London.

Hill, J. K., Thomas, C. D. and Huntley, B. 1999. Climate and habitat availability determine
20th century changes in a butterfly's range margin. - Proceedings of the Royal Society
of London Series-B Biological Sciences 266: 1197-1206.

Hulme, M. and Carter, T. R. 2000. The changing climate of Europe. - In: Parry, M. L. (ed.),

Assessment of potential effects and adaptations for climate change in Europe: the

Anglia, Norwich, U.K, pp. 320.

Huntley, B. 1991. How plants respond to climate change: migration rates, indivtdtialism and

the consequences for plant communities. - Annals of Botany 76: 15-22.

Hutchinson, M. F. 2000. ANUSPLIN Version 4.1 User Guide. - Centre for Resource and
Environmental Studies, ANU, Canberra, pp. 5S1.

Kostrowicki, J. 1991. Trends in the transformation of European agriculture. - In: Brower, F.
M., Thomas, AJJ. and Chadwick, M. J. (eds.), Land use changes in Europe. Kluwer
Academic Publisher, Dordrecht, pp. 21-47.

Lehmann, A., Leathwick, J. R. and Overton, J. McC. 2001. GRASP v.2.0 User’s Manual. -
Landcare Research, Hamilton, New Zealand.

M4t j ek, L., Ben¢' gva, L. and Tonika, J. 2003. Ecological modelling of nitrate pollution in
small river basins by spreadsheets and GIS. - Ecological Modelling 170 ng/) 245-
263.

Morales, M. B., Alonso, J. C. and Alonso, J. 2002. Annual productivity and individual female
reproductive success in a Great Bustard Otis tarda population. - Ibis 144: 293-300.

O’Neill, R. V., Milne, B. T., Turner, M. G. and Gardner, R. H. 1988. Resource utilization

scales and landscape pattern. - Landscape Ecology 2: 63-69.



Olesen, J. E., and Brindi, M. 2002. Consequences of climate change for European agricultural
productivity, land use and policy. - European Journal of Agronomy 16: 239-262.

Osborne, P. E., Alonso, J. C. and Bryant, R. G. 2001. Modelling landscape-scale habitat use
using GIS and remote sensing: a case study with great bustards. - Journal of Applied
Ecology 38: 458-471.

Palmeirim, J. M. 1988. Automatic mapping of avian species habitat using satellite imagery:
Oikos 52: 59-68.

Parry, M. L., Rosenzweig, C., Iglesias, A., Fisher, G. and Livermore, M. 1999. Climate
change and world food security: a new assessment. - Global Environmental Change 9:
51-67.

Pearson, R. G., Dawson, T. P., Berry, P. M. and Harrison, P. A. 2002. SPECIES: A spatial
evaluation of climate impact on the envelope of species. - Ecological Modelling 154:
289-300.

Peters, R. L. 1990. Effects of global warming on forests. - Forest Ecology and Management
35:13-33.

Price, D. T., Mckenney, D. W., Nalder, 1. A., Hutchinson, M. F. and Kesteven, J. L. 2000. A
comparison of two statistical methods for spatial interpolation of Canadian monthly
mean climate data. - Agricultural and Forest Meteorology 101: 81-94.

Rogers, D. J. and Williams, B.G. 1994. Tsetse distribution in Africa: seeing the wood and the
trees. — In P. J. Edwards, R. M. May and N. R. Webb (eds), Large-scale ecology and
conservation biology, Blackwell Scientific Publications, Oxford, pp. 247-272.

Rosema, A. 1993. Using Meteosat for Operational Evapotranspiration and Biomass
Monitoring in the Sahel region. - Remote Sensing and Environment 45:1-25.

Rosema, A., L. —F- THGielen, T. Lack, J.Wood, A ~3- =T,

stre -Pimas, H. de Bruin, A. ijni 2001. European Energy

> ?) m,u/on @ t/m\v O&NA



and Water Balance Monitoring System, EU 4th Framework Program, Contract ENV4-
CT97-0478, Final report.

Suarez-Seoane, S., Osborne, P. E. and Alonso, J. C. 2002. Large-scale habitat selection by
agricultural steppe birds in Spain: identifying species-habitat responses using

Generalised Additive Models. - Journal of Applied Ecology 39 {5): 755-771.

Venables, W. N. and Ripley, B. D. 1999. Modern Applied Statistics with S-Plus. - Springer,
New York.

Verbyla, D. and Litvaitis, J. A. 1989. Resampling methods for evaluating classification
accuracy of wildlife habitat models. - Environmental Management 13 (6): 783-787.

Wiens, J. A. and Milne, B. T. 1989. Scaling of landscape in landscape ecology, or landscape

ecology from a beetle’s perspective. - Landscape Ecology 3: 87-96.



Component 1 Component2  Component 3  Total in model

Rainfall 41.0 233 7.6 71.9
Radiation balance 71.1 6.1 5.0 82.2
Soil moisture 64.5 10.9 3.6 79.0
Evapotranspiration 52.5 17.2 4.7. 74.4

Table 1. Percentage variance retained by the first three principal components for each

climatic measure used.

1A



Variable

Definition

PC components 1 to 12

Altitude (ALT)

Topographic variability 5
(TOPOVS)

Topographic variability 10
(TOPOV10)

Road density (ROADDEN)

Road distance
(ROADDIST)

Town density
(TOWNDEN)

Town distance
(TOWNDIST)

River density (RIVDEN)

River distance (RIVDIST)

Standardised principal components obtained from the
Normalised Difference Vegetation Index for each month based
on a Maximum Value Composite of AVHRR imagery at 1 km?
resolution.

Mean altitude within a 5x5 array of 200m pixels.

Variation in altitude in a 5x5 pixel array of 200 m pixels,
where altitude is measured to 5 m vertical resolution.
Calculated as TOPOVx = (n-1)/(p-1) where n = no. of different
altitude classes in the array, p = no. of pixels in the array (i.e.
25), and x is the vertical resolution.

As for TOPOVS but with 10 m vertical resolution.

Proportion of 200 m pixels in a 5x5 array containing roads.

Distance in km to the nearest 200 m pixel containing roads.
Calculated at 200 m resolution and averaged to 1 km_.

Proportion of 200 m pixels in 5x5 array containing buildings or
large built structures such as airfields.

Distance in km to the nearest 200 m pixel containing buildings
or large built structures such as airfields. Calculated at 200 m
resolution and averaged to 1 km_.

Proportion of 200 m pixels in a 5x5 array containing rivers.

Distance in km to the nearest 200 m pixel containing rivers.
Calculated at 200 m resolution and averaged to 1 km_.

Table 2. Predictor variables used for modelling the occurrence of agricultural steppe birds in

Spain in Suarez-Seoane et al. (2002).
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Predictor variables Great bustard Little bustard Calandra lark
NDVI-1 223L Dropped 443 L
NDVI-2 Dropped 2398 3258
NDVI-3 37.08 3478 924L
NDVI-4 26.4 S - -
NDVI-5 18.9 S - 21.18
NDVI-6 Dropped - Dropped
NDVI-7 - - Dropped
NDVI-9 - Dropped -
NDVI-10 21.08S Dropped 143L
NDVI-12 19.0S - -
Rivden 13.2S - 149L
Rivdist Dropped 17.58S -
Roadden - - 308 L
Roaddist 57.08 Dropped Dropped
Townden - - Dropped
Towndist 23.78S 31.1S 41.48S
Altitude 41.18S 3388 64.8 S
Topovs Dropped Not tested Not tested
Topov10 Not tested 26.6 S 18.4 L
Rain-1 - 2148 2758
Rain-2 - - 253 L
Rain-3 46.0 S 2958 15.4 S
Rad-1 - - 15.4S
Rad-2 29.3 S - 13.38S
Rad-3 21.18 71.2 8 -
Soil-1 5138 28.2 8 26.4 S
Soil-2 21.8L - -
Soil-3 - - -
Evap-1 9298 24.8 S 39.0S
Evap-2 60.9 S 499 S 48.7 S
Evap-3 - 22.6 S -
Published GAM AUC
cv AUC 0.96 0.90 0.90
0.95 0.88 0.89
Climate GAM AUC
cv AUC 0.97 0.93 0.92
0.96 0.91 0.91
Significance of difference F=21.69, DF=1 and F=8.38, DF=1 and F=16.04, DF=1

between models

15.0, P<0.001

20.9, P<0.001

and 20.5, P<0.001

" Table 3. The main body of the table shows the value of Chi-squared for change in the model
deviance when the predictor is dropped and is an index of its importance. S indicates the
variable was fitted as a spline, L as a linear term. Variables that appeared in the original
model but were not selected in the climate model are indicated by “dropped”. Variables that
were not selected for the species in either model are marked -. Topov5 and topov10 were
alternative measures of terrain variability and only one was included in each model.
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List of Figures

Fig(xﬁe I%ictures resulting from overlapping both the published and the climatic models.
Blac% colour shows areas of extreme habitat but suitable climate: a direct habitat change
could produce either the disappearing or the increasing of the species. Grey means areas of
climate tension, where habitat is suitable and climate is extreme: climate change will affect

directly species distribution (probably increasing in northwestern Spain and diminishing is

southeastern).
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