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ABSTRACT 26 

Aim. Species distribution models based on breeding occurrence data allow identifying 27 

both environmental drivers and geographic areas potentially relevant for breeding. 28 

However, the interpretation of model predictions in terms of reproductive performance 29 

should be further investigated, as this information is crucial for conservation planning. 30 

We evaluated the strengths and weaknesses of a correlative modelling approach based 31 

on breeding occurrence data (presence-absence) against another approach based on vital 32 

rates’ data (breeding success) for gaining insights on species persistence in the case of 33 

Great Bustards (Otis tarda). 34 

Location. Spain. 35 

Methods. Breeding occurrence and breeding success were independently modelled 36 

using generalized linear models and multi-model inference analyses. Sensitivities to the 37 

way in which the population parameter (breeding success) was defined were explored 38 

by building five versions of the dependent variable. We evaluated differences in model 39 

performance and identified areas of congruence for breeding occurrence and breeding 40 

success.  41 

Results. The agreement between the spatial predictions achieved by breeding 42 

occurrence and breeding success models differed substantially across databases, with 43 

the largest differences in occupied breeding areas. The deviance explained by the 44 

breeding occurrence model was 64.98% and ranged from 7.83% to 62.27% for the 45 

breeding success models. Model performance was higher for models calibrated within 46 

potential than within occupied breeding areas. 47 

Main conclusions. The combination of data on both breeding occurrence and breeding 48 

success into a species distribution modelling framework showed the limitations of 49 

breeding occurrence models for inferring reproductive parameters. The definition of the 50 
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population parameter as dependent variable was a key factor that strongly affected the 51 

inference of vital rates’ models. The approach allowed for discriminating between areas 52 

and landscape attributes necessary for the long-term species persistence from others that 53 

may be relevant, but not so much for reproductive performance.  54 

Key words: Breeding success, species distribution modelling, Great Bustard, Otis 55 

tarda, population persistence.  56 
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(A) INTRODUCTION 57 

 58 

Species Distribution Models (SDM; Guisan & Zimmerman, 2000) are useful tools for 59 

exploring the factors driving species distribution. These techniques are increasingly 60 

seen as crucial tools in species conservation and management (Suárez-Seoane et al., 61 

2002; Franklin, 2010; Austin & Van Niel 2011; Guisan et al., 2014). However, the 62 

reliability of SDM predictions and, therefore, their applicability in prioritizing 63 

conservation efforts strongly depends on the data used for model calibration (Guisan et 64 

al., 2013). 65 

In bird studies, SDM have been typically calibrated with species occurrence data 66 

(presence-absence, presence-only and, less frequently, abundance) collected during the 67 

breeding season, which allows producing breeding habitat suitability maps. Major 68 

sources of occurrence data are, besides one's own field work, breeding bird atlases and 69 

long-term monitoring programs, which are widely available at regional, national and 70 

continental scales. Typical data from atlases allow discriminating, in a general grid 71 

framework, between sites where species are likely (or even confirmed) to breed and 72 

sites where breeding is unlikely. In the most recent approaches, this basic information is 73 

complemented with data on species abundance at more detailed spatial resolution. 74 

Numerous examples can be found across the literature where SDM are calibrated with 75 

breeding bird atlas data; see, for example, Araújo et al. (2005), Virkkala et al. (2014), 76 

Moudrý et al. (2017) or Howard et al. (2014). On the other hand, long-term monitoring 77 

programs are primarily designed to provide data for evaluating population trends in 78 

abundance, but can be also integrated in SDM to explore factors determining species 79 

presence-absence and abundance (Brotons et al., 2007). 80 
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However, despite the widespread use of SDM calibrated with breeding 81 

occurrence data in conservation applications, this approach may have limitations. A 82 

constraint arises from the fact that species occurrence data might be collected outside of 83 

the species’ reproductive niche (i.e., overall environmental requirements for successful 84 

reproduction; Titeux et al., 2007; Bykova et al., 2012). When this occurs, SDM may 85 

predict high suitability in areas not relevant for breeding or even in “sink” or “trap” 86 

environments (Van Horne, 1983). Thus, the viability of the species is likely to be over-87 

estimated. In the case of species using different environments during the breeding 88 

period, another problem emerges when occurrence data are collected in areas and 89 

moments where species detectability is the highest (e.g., at the beginning of the 90 

breeding season when birds arrive from migration and begin the occupation of 91 

territories or when they are singing or displaying before the mating; Strebel et al., 92 

2014), but that are not central for offspring production. When the predictions of models 93 

fitted to such data are used to prioritize conservation efforts, key biological 94 

requirements may not be met by the resulting conservation strategy, as different parts of 95 

a species’ life cycle can only take place in certain environments.  96 

Arguably, a main drawback of SDM calibrated with breeding occurrence data is 97 

the interpretation of model predictions in terms of reproductive outputs. Identifying 98 

areas where the breeding success of a given species is high, low or null is critical to 99 

devise and implement effective conservation and management plans addressed to 100 

guarantee species long-term persistence (Soga & Koike, 2013). In this sense, Brambilla 101 

& Ficetola (2012) found that habitat suitability estimated through a presence-only SDM 102 

correlated positively with two reproductive parameters of a passerine bird. However, 103 

even if this approach can provide useful information for preliminary assessments of 104 

breeding success at large-scale, it should be considered that the factors driving breeding 105 
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habitat selection (and therefore the estimates of habitat suitability) do not necessarily 106 

influence in a similar way reproductive performance. In fact, a high level of mismatches 107 

between observed avian breeding habitat preferences and fitness outcomes (breeding 108 

success) have been identified across a wide variety of taxa (see Chalfoun & Schmidt, 109 

2012 for a review on this topic).  110 

An emerging response to these concerns is to seek mechanistic approaches (such 111 

as metapopulation models) that are based on fundamental relationships and 112 

dependencies and can provide a more robust way to predict species distribution than 113 

correlative SDM. However, mechanistic models are highly parameterized and present 114 

higher technical demands in terms of time, effort, resources and data for model 115 

calibration and validation in comparison to correlative approaches (Kearny & Porter, 116 

2009). Consequently, they are unable to compete with correlative SDM for widespread 117 

application in conservation and management. In this context, hybrid 118 

(mechanistic/correlative) approaches represent a good compromise between the 119 

simplicity of correlative SDM and the benefits of being more complex mechanistic 120 

models (Kearney et al. 2010; Michel, 2017). Fitting correlative models to spatial data on 121 

population parameters, such as fecundity, and mapping the predictions of such models 122 

across the landscape may provide a suitable compromise between simplicity and 123 

robustness (sensu Falcucci et al., 2009) when modelling reproductive performance.  124 

However, modelling spatial variation in population parameters in the framework 125 

of SDM is challenging. On one hand, collecting population data samples for model 126 

calibration is much more time and effort consuming than collecting occurrence data. 127 

Additionally, there are many technical choices to be made about the nature of the 128 

dependent variable chosen to represent the population parameter of interest. For 129 

example, in the case of birds, there are various ways to measure breeding success, 130 
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including: clutch size, hatching success, nesting success, breeding success per female or 131 

group of females, general success of the breeding season and so on (Murray, 2000). 132 

Indeed, the value of the dependent variable can take the form of counts, continuous 133 

values and multiple or binary categorical values, which effectively increases model 134 

structural uncertainty. While both the influence of predictor choice and model structural 135 

uncertainty have received a great deal of attention in the SDM literature (e.g. Thuiller, 136 

2003; Wintle et al., 2003; Pearson et al., 2006), we have find no studies investigating 137 

how the definition of the dependent variable contributes to uncertainty in modelling 138 

spatial variation in population parameters.  139 

In this study, we aimed to compare the inference of a correlative species 140 

distribution modelling approach based on species breeding occurrence data (i.e., 141 

presence-absence) against another correlative, but more mechanistic, approach based on 142 

vital rates’ data (i.e., breeding success) in order to gain insights on species persistence. 143 

As study case, we used an endangered species, the Great Bustard (Otis tarda) across 144 

Spain. We explored how the definition of the population parameter impacts on 145 

ecological inference and predictions about key areas for conservation. We discussed the 146 

implications of the modelling options and what the predictions and ecological inference 147 

tell us about the biology of the species, as well as the best strategies for improving the 148 

realism and applicability of species distribution modelling approaches to support 149 

conservation decisions. 150 

 151 

(A) METHODS 152 

 153 

(B) The study model: Great Bustards in Spain 154 
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Great Bustards are large, lekking birds that live in highly fragmented populations in 155 

cereal pseudo-steppes throughout the Palaearctic, from Morocco to eastern China 156 

(Palacín & Alonso, 2008). Spain holds ca. 60-70% of the world population (Alonso & 157 

Palacín, 2010). The species is globally threatened and classified as Vulnerable on the 158 

Red List of Threatened Species (BirdLife International, 2015). Females nest on the 159 

ground and rear their precocial chicks (usually one, sometimes two) alone over a period 160 

of six to 12 months (Alonso et al., 1998). Breeding success is highly variable, with 161 

productivity values ranging between 0.04 and 0.53 chicks per female (Morales et al., 162 

2002; Martín et al., 2007). 163 

 164 

(B) Great Bustard breeding occurrence and breeding success databases 165 

Great Bustard breeding occurrence was modelled using a database on presence-absence 166 

records (PA database) compiled in Spring, when species detectability is maximal 167 

(Alonso et al., 2005), during the period 1987-2010 (Figure 1a). Presence data consisted 168 

of all 350 lek centres known in Spain (Alonso et al., 2012a). Absence data comprised an 169 

equivalent sample of 350 points randomly distributed across Spain, excluding coastal 170 

border areas, mountainous ranges and home ranges around lek centres (estimated with a 171 

buffer of 2 km; Palacín et al., 2012). These data can be considered as true absences, 172 

since the distribution of the species at this time of the year is well known. 173 

To estimate breeding success, we carried out population censuses across the 174 

breeding range in Spain during the month of September (when the mortality peak of 175 

juveniles is over and families can be detected due to their less elusive behaviour 176 

compared to early summer; Martín et al., 2007) of the same period 1987-2010 (Figure 177 

1b, c). Breeding success was estimated annually as the young productivity (i.e., ratio of 178 

the number of chicks to females) for each reproductive group (RG), which was made of 179 
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all flocks of females (FF) with or without chicks found in the same lek. Values >100% 180 

were discarded because they were associated with very small groups consisting of one 181 

or two females and their chicks, or corresponded to RG with a very low detectability 182 

(i.e., where number of females counted in September was lower than 30% of those 183 

counted in Spring). It should be considered that productivity data were heterogeneously 184 

distributed across space and time during the study period (i.e., data were not available 185 

for all RG all years). Therefore, the raw values were averaged for the whole series to 186 

achieve a spatially and temporally consistent coverage of this population parameter, 187 

reflecting the long-term trends of species persistence better than single measures made 188 

for shorter (or even isolated) periods of time. See Alonso et al. (2005) and Álvarez-189 

Martínez et al. (2015) for more details on breeding success surveys and GIS database 190 

preparation. We accounted for a total of 208 RGs. 191 

In order to build dependent variables informing on breeding success, three 192 

methodological criteria were applied on the original multi-temporal dataset, generating 193 

five datasets on breeding success (BS databases; Table 1). Each database was based on 194 

a particular combination of subjective and data-driven choices about the treatment of 195 

dependent variables: (i) Dependent variables could be continuous (productivity values 196 

ranged from 0 to 100%) or binary (productivity only had two values, which represent 197 

high/low productivity, high/null productivity or positive/null productivity). (ii) 198 

Continuous dependent variables were calculated by averaging annual productivity data 199 

across the temporal series, using either the mean (database BS1) or the range of the 200 

values (database BS2). (iii) Binary dependent variables were built by comparing: (iii.1) 201 

RG with high productivity (locations where the productivity value was higher than the 202 

averaged mean value for all RG across the whole study period; i.e., 0.15 young/female) 203 

vs. RG with low productivity (locations collected across the occupied breeding area 204 
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where productivity was positive, but lower than the averaged mean value) (database 205 

BS3). (iii.2) RG with high productivity (higher than the averaged mean) vs. locations 206 

where productivity was null (i.e., a set of random points sampled across the potential 207 

breeding distribution estimated by Suárez-Seoane et al., 2002, avoiding a buffer of 2 km 208 

-the species home range- around each FF) (database BS4). (iii.3) RG with positive 209 

productivity (value greater than “0”; i.e., birds successfully bred, independently of the 210 

number of chicks raised) vs. locations where productivity was null (database BS5). 211 

Databases generated in occupied breeding areas (BS1, BS2 and BS3) are useful for 212 

modelling “breeding performance”, as they allow for comparing different (but always 213 

positive) values of breeding success. Databases generated also in potential breeding 214 

areas (BS4 and BS5) are useful for modelling “breeding site selection”, as they allow 215 

for comparing locations where birds had successfully bred from other potential sites 216 

where breeding success was null. 217 

 218 

(B) Environmental variables 219 

On the basis of exploratory analyses, expert knowledge and published information 220 

(Morales et al., 2002; Alonso et al., 2004; Pinto et al., 2005; Martínez, 2008; Palacín et 221 

al., 2012), we selected a pool of 12 environmental GIS predictors potentially driving 222 

both breeding occurrence and breeding success of Great Bustards in Spain (Table 2). 223 

Predictors described topography, climate, primary production, landscape structure and 224 

human disturbances. Scales ranged from 1:5000 to 1:200000 and pixel sizes from 25m 225 

to 1km, depending on original data and methodological restrictions. All data were 226 

rescaled to the same spatial resolution, matching the pixel size of 1km among variables.  227 

The role of topographic predictors on breeding occurrence and breeding success 228 

was evaluated through the slope and its variation among agricultural plots. Topography 229 
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largely influence visual communication with conspecifics, as the breeding system of 230 

dispersed leks involves strong visual cues over long distances (Alonso et al., 2012a). 231 

Data sources were, respectively, a digital elevation model at 25m (CNIG; 232 

http://www.cnig.es) and the Spanish Geographic Information System for Agricultural 233 

Plots (SIGPAC; http://www.magrama.gob.es/en/agricultura/temas/sistema-de-234 

informacion-geografica-de-parcelas-agricolas-sigpac) at 1:5000 scale. Data on climate 235 

and primary production were seasonally averaged (mean values and variation 236 

coefficients) to assess the effect of these environmental factors during critical periods of 237 

the year on breeding occurrence and breeding success. The effect of climate was 238 

included through the maximum Summer temperature (temperature during the last days 239 

of incubation and first days after hatching) and Autumn-Winter rainfall (precipitation 240 

prior to breeding season), both extracted from the Climatic Map of the Iberian Peninsula 241 

(Ninyerola et al., 2005, 2007). The relevance of these climatic variables for Great 242 

Bustards has been demonstrated previously by Morales et al. (2002) and Osborne et al. 243 

(2007). According to these authors, winter precipitation controls the productivity of 244 

annual plants during the following spring and, therefore, the availability of arthropods 245 

during the period of chick maximum growth rate in early summer. The development of 246 

herbaceous vegetation in early spring also contributes positively to the physiological 247 

condition of females, which directly affects the percentage of females attempting to 248 

breed, their clutch size and brood viability. The above-ground net primary production 249 

was represented through the Normalized Difference Vegetation Index of Spring (NDVI; 250 

Pettorelli et al., 2007, 2011; Bro-Jørgensen et al. 2008; Hamel et al. 2009) obtained 251 

from a temporal series of NOAA-AVHRR satellite imagery (1987-2010), that was 252 

acquired from the SerGEO database from CCHS-CSIC 253 

(http://humanidades.cchs.csic.es/cchs/sig/sergeo.html). Landscape structure was 254 
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quantified from the SIGPAC, that have been elaborated at 1:5000 scale for the year 255 

2012. We created a grid of 1-km over the whole Spain that intersected with the SIGPAC 256 

layer in order to calculate both the maximum perimeter of plots and the percentage of 257 

arable land within each 1-km grid (authors' unpublished data). Human disturbances 258 

were evaluated through the Euclidean-distance from each pixel to the nearest paved 259 

road or highway (Suárez-Seoane et al., 2002) and the land protection status. Data were 260 

obtained, respectively, from the Spanish Centre of Geographic Information (CNIG; 261 

http://www.cnig.es) at 1:200000 scale and the Nature 2000 Ecological Network 262 

(http://www.magrama.gob.es). All GIS analyses were done in ArcGIS10.2 (ESRI, 263 

2014). 264 

Environmental features were gathered for each database on occurrence and 265 

breeding success using a pixel-based approach. The spatial resolution of the analyses, 266 

allowing for model inference across Spain, was 1km. In the case of BS databases, points 267 

were spatially assigned to the location of the female flock with chicks (isolated family 268 

or flock of females including at least one family) closest to the “centroid” of all female 269 

flocks, with or without chicks, in a RG. Points were recalculated for each year during 270 

the study period and averaged afterwards.  271 

In order to avoid multi-colinearity problems that may lead to parameter bias 272 

(Freckleton, 2011), we checked that Spearman's bivariate correlations among all 273 

predictors were below 0.7 (Randin et al., 2006), as well as that variance inflation factor 274 

(VIF) in further modelling analyses was lower than 4. There is no formal VIF threshold, 275 

but a value of 10 is commonly used as an indicator of severe multicollinearity (Neter et 276 

al., 1990; Graham, 2003; Zuur et al., 2010). 277 

 278 

(B) Model building 279 
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Both breeding occurrence and breeding success of Great Bustards in Spain were 280 

independently modelled on the basis of the environmental features described in Table 2 281 

using generalized linear models (GLM). Multi-model inference, based on AIC values, 282 

and model averaging (Burnham & Anderson, 2002; Burnham et al., 2011) were 283 

implemented for each of the six datasets (PA, BS1 to BS5). This method allows for 284 

selecting the best subset of approximating models (i.e., those the smallest AIC value, 285 

indicating the most parsimonious models) among all possible candidates. Models with 286 

∆i (AICbest-AICi) ≤2 were considered substantially supported by the data and similar to 287 

the best model in their empirical reliability. Using this subset of models, we estimated 288 

the averaged standardised coefficients (β) for each predictor, as well as its significance 289 

and relative importance. Model coefficients were standardised to allow comparisons 290 

among predictors. The relative importance of each predictor was measured as the sum 291 

of the Akaike weights of all models in the subset where that predictor was present. The 292 

value of the summed Akaike weight of each predictor ranges from 0 (if it appears only 293 

in the most unlikely models) to 1 (if it appears in all the best models) (Burnham and 294 

Anderson 2002; Symonds & Moussalli, 2011). GLM were built using either a binomial 295 

distribution with logit link, when the response variable was binomial, or a Gamma 296 

distribution with log link, when the response variable was continuous. Model algorithms 297 

were spatially projected across the study area using GIS tools, providing maps of habitat 298 

suitability ranging from 0 to 1. Finally, variations in performance (deviance explained 299 

by the best subset of variables against a null model), family of the most contributing 300 

predictors and spatial predictions were evaluated across model outputs.  301 

 To assess the accuracy of model predictions, we built two validation datasets 302 

consisting of 67 cases with the best reproductive performance across the study period 303 

(RG with an average annual productivity higher than the average value for the study 304 
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period, with more than five years of available data) along with an equivalent sample of 305 

points randomly chosen within either: (i) occupied breeding areas (home ranges in 306 

Figure 1) or (ii) potential breeding areas (potential area defined by Suárez-Seoane et al., 307 

2002). We thus estimated, for each model output, the statistical significance of the 308 

differences in habitat suitability across occupied and potential breeding areas (the larger 309 

difference, the better is the discrimination capacity of a model). 310 

 We used these validation datasets to check the Pearson bivariate correlations 311 

among prediction values achieved from PA and BS models in both occupied and 312 

potential breeding areas. Finally, we mapped the areas of congruence between the 313 

outputs achieved by the occurrence model (PA) and the breeding success models 314 

calibrated in the potential area (BS4 and BS5). We have not compared PA with BS1, 315 

BS2 and BS3 because the predictions made by these models are not applicable outside 316 

the occupied area. 317 

 Analyses were done with the packages MASS and MuMIn from R 3.0.2 318 

statistical software (R Development Core Team, 2014) and ArcGIS10.2 (ESRI, 2014). 319 

 320 

(A) RESULTS 321 

 322 

Table 3 summarises the results of the modelling approach. Performance varied widely 323 

across model outcomes. In the case of the presence-absence (PA) model, the deviance 324 

explained by the best subset of variables against a null model was 64.98%, being Great 325 

Bustard occurrence significantly correlated with all families of predictors. In the case of 326 

breeding success (BS) models, deviance ranged from 7.83% to 62.27%. The largest 327 

differences were found between two groups of BS models. Models calibrated within 328 

occupied breeding areas (BS1 to BS3) explained less deviance than those calibrated 329 
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within the potential distribution area (BS4 and BS5). The most relevant predictors of 330 

breeding success also changed markedly between these two groups. In the former, 331 

breeding success was significantly correlated with climate (temperature), primary 332 

production and distance to IBAs. In the latter, breeding success was also related to 333 

topography and landscape structure, instead of primary production.  334 

 The predictive performance of models fitted to mean (BS1) and range (temporal 335 

variability) of breeding success (BS2) was similar. Nevertheless, mean breeding success 336 

was driven by temperature, primary production and distance to IBAs, while breeding 337 

success range was only significantly correlated with temperature. When modelling high 338 

levels of breeding success (values above the mean for the period) in occupied (BS3) 339 

versus potential (BS4) breeding areas, we found that the latter models had much higher 340 

performance and comprised significant variables of different types, including 341 

topography, temperature, landscape structure and human disturbances. In contrast, BS3 342 

models only included primary production and human disturbances as significant 343 

predictors. Models calibrated in potential breeding areas (BS4 and BS5) showed similar 344 

predictive performance and were driven by the same families of predictors. 345 

 Spatial patterns of habitat suitability varied substantially across the pool of 346 

models (Figure 2). The output of the PA model showed clear differences among suitable 347 

and non-suitable areas at large scale. In the case of BS models, those calibrated in 348 

occupied breeding areas (BS1 to BS3) presented homogeneous or even random patterns 349 

of habitat suitability outside the reproductive areas, as predictions were only valid at 350 

local scale (i.e., within home ranges; Figure 1b, c). Models calibrated in potential 351 

breeding areas (BS4 and BS5) clearly identified differences between suitable and non-352 

suitable areas at large scale. Overall, the prediction values generated by BS4 and BS5 353 
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models were the most correlated to the predictions of PA model, in both occupied and 354 

potential areas (Figures 3 and 4). 355 

 Model discrimination was lower in occupied than potential breeding areas. In the 356 

former case, significant differences were only found for model BS3, while in the last 357 

case, significant differences emerged for the PA model, as well as for all BS models 358 

except for BS3 (Table 4). 359 

 360 

(A) DISCUSSION  361 

 362 

Many authors have highlighted the need to move beyond static correlative predictions of 363 

species occurrence probability or relative likelihood of occurrence to model processes 364 

that are more directly related to the long-term persistence of species (Guisan & Thuiller, 365 

2005; Thuiller et al., 2008; Zurrell et al., 2009; Franklin, 2010; Álvarez-Martínez et al., 366 

2015). The anticipated benefits of modelling processes closely linked to species 367 

persistence is that it will improve the robustness of predictions about species future 368 

ranges in rapidly changing environments. In this sense, the current study pioneers a 369 

comparison of the ecological inference arising from a classical correlative species 370 

distribution modelling approach, based on presence-absence data, with that of another 371 

approach in which correlative models are fitted to the spatial variation in a population 372 

parameter, in this case, breeding success. Our results provided insights into the specific 373 

strengths and weaknesses of SDM regarding their application in conservation biology.  374 

Correlative models based on occurrence data have been formerly demonstrated as 375 

valuable conservation tools for designing management actions aimed to promote patch 376 

occupancy (e.g. Suárez-Seoane et al., 2002) and density of focal species (García et al., 377 

2007). The application of such models implies several practical strengths, as they have 378 
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low input data needs, avoid the challenges of scaling up from individual to landscape 379 

level and allow for evaluating niche tolerance limits at large scale (Peterson et al., 380 

2016). However, as stated by Oliver et al. (2012), these models overlook important 381 

features for long-term population persistence, such as population stability and source-382 

sink dynamics.  383 

In this sense, the incorporation of long temporal series of vital rates´ data in SDM 384 

allowed for achieving well performing models (deviance ranged from 7.83% to 62.27%; 385 

see Donázar et al., 2002 and Rodríguez & Bustamante, 2003 for comparison with other 386 

studies dealing with breeding success modelling), that are useful for the identification of 387 

landscape attributes contributing to population stability. We also detected that certain 388 

environmental relationships affecting breeding success were overlooked in PA models. 389 

For example, temporal variability in Summer maximum temperature was a significant 390 

driver of breeding success, while it did not appear to strongly influence species 391 

occurrence. This suggests that climatic stability is a demand much more evident for 392 

breeding than for surviving. A similar scenario was found for the mean primary 393 

production, which was not significantly correlated to species occurrence, but appeared 394 

as one of the most important explanatory predictors of breeding success (BS1 and BS3 395 

models). This indicates that primary production influences where and when to breed, as 396 

it indirectly reflects the availability of food for chicks, but may be less important for 397 

adult survival. These differences should be explicitly considered when planning 398 

conservation measures that may fail if they are not undertaken in areas that nurture 399 

long-term breeding success.  400 

Indeed, the comparison between the habitat suitability patterns achieved by PA 401 

and BS models allowed for the discrimination of critical areas for the long term 402 

persistence of the species (i.e., areas potentially supporting high breeding performance 403 
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during the study period) from other areas that may be occupied periodically or 404 

consistently in other life stages, but have a low suitability for reproduction and then, for 405 

population maintenance. In this sense, the identification of marginal areas for species 406 

persistence is a matter of conservation priority, due to the high risk of local extinction. 407 

For example, the regions where BS models predicted much higher suitability than PA 408 

models (highlighted in black in Figure 4) are those where most local extinctions have 409 

occurred during recent decades (79% of 29 extinctions documented in 1960-1990 in the 410 

whole of Spain have occurred in the northeastern and southwesternmost black patches), 411 

due to hunting pressure and agricultural transformations (Alonso et al. 2003). The 412 

message for conservation managers is that, with appropriate environmental measures, 413 

the high potential breeding success in these areas would help restoring the original 414 

populations. The larger geographic area predicted as suitable by the PA model, when 415 

compared with BS models, could be associated to the fact that correlative models might 416 

overestimate niche breadth by not constraining the niche to account for breeding needs 417 

(Peterson et al., 2016). Titeux et al. (2007) reached a similar conclusion when exploring 418 

the role of incorporating fitness parameters (i.e., breeding success) in the definition of 419 

niche boundaries for red-clacked shrike.  420 

Modelling choices when building the dependent variable influenced the inference 421 

and potential utility of the model outputs for environmental managers and decision-422 

makers. In this sense, Mostashari & Sussman (2005) propose a stakeholder-assisted 423 

modelling process in which stakeholders participate through contributions of input and 424 

feedback to the modelling process to improve the representation of focal systems. 425 

Discussions should begin in the earliest stages of the ecological modelling process, as 426 

they are essential for identifying the key choices for model building, mitigating many of 427 

the subsequent problems that arise from inappropriate methodological decisions (Martin 428 
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et al., 2012). For example, we showed here that models fitted using continuous variants 429 

of breeding success within occupied breeding areas (BS1 and BS2) explained a greater 430 

proportion of deviance than the binary model calibrated across occupied area (BS3), 431 

being thus more indicative of species persistence. In addition, while binary models of 432 

databases BS4 and BS5 explained much more deviance, we should consider that they 433 

were calibrated in non-occupied areas and, therefore, they are actually more useful to 434 

evaluate breeding sites’ selection than species persistence. The ability of BS1, BS2 and 435 

BS3 models to find even slight differences within currently occupied areas casts light on 436 

critical parameters for species persistence linked to spatial and temporal environmental 437 

restrictions and feeding resource availability (Alvarez-Martínez et al., 2015). 438 

A key modelling choice was whether the dependent variable should be continuous 439 

(databases BS1 and BS2) or binary (BS3 to BS5). While the predictive performance of 440 

BS1 (general pattern; mean value of breeding success across the temporal series) and 441 

B2 (temporal variation; range value) models was similar, they were driven by a different 442 

set of predictors. Areas of consistently good breeding performance over time, and 443 

therefore of high species persistence, would be selected by Great Bustards’ based on 444 

many interacting environmental and social cues (Parejo et al., 2006; Osborne et al., 445 

2007; Rieucau & Giraldeau, 2011). Temporal variation in breeding success was linked 446 

to Summer maximum temperatures, which may be interpreted as the negative effect that 447 

severe Summer droughts can have over breeding performance by limiting food 448 

availability for the rearing chicks. 449 

The choice of converting continuous values of breeding success into binary 450 

dependent variables (BS3 to BS5) implies summarising the observed variability 451 

according to unique thresholds, which involves a loss of information. This decision is 452 

strongly linked to vagueness, a form of linguistic uncertainty which refers to the 453 

Page 19 of 84

Diversity and Distributions

Diversity and Distributions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

20 

possibility of borderline cases which neither satisfy a criterion, nor its negation, when 454 

performing categorical classifications of data (Regan et al., 2002). In such a situation, 455 

the development of fuzzy logic sets and rules (Ascough II et al., 2008; Álvarez-456 

Martínez et al., 2010) is recommended to reduce the level of vagueness in decision-457 

making. If this is not possible, a deliberate consideration of the meaning and 458 

implications of the chosen thresholds is advised.  459 

The most influential methodological choice in terms of model performance, 460 

selected predictors and spatial pattern of habitat suitability across the pool of results was 461 

the area of calibration for binary BS variables. In fact, Jiménez-Valverde et al. (2009) 462 

and Lobo et al. (2010) already highlighted the key importance of carefully choosing the 463 

area of calibration depending on the question at hand. Models calibrated with binary 464 

variables collected in occupied breeding areas (BS3) explained much less deviance than 465 

models calibrated across non-occupied sites within the potential distribution area; BS4 466 

and BS5). This is a common and expected result, since describing local differences 467 

within suitable areas using models narrowly calibrated across space and environment 468 

(i.e., comparing between areas of higher-than-average and those of lower-than-average 469 

breeding success) is more demanding than assessing coarse differences between areas of 470 

positive breeding performance and potential areas including many unsuitable pockets. 471 

The lower deviance explained by BS3 model could be associated to the fact that short-472 

term environmental changes that may affect breeding success in suitable breeding areas 473 

cannot be anticipated by birds at local scale. For example, the temporal variation in 474 

Summer maximum temperature was significantly correlated with breeding success in 475 

BS4 and BS5, but not in BS3 models. This fact suggest that Great Bustards might 476 

“predict” general patterns of climatic stability across their range and use it as an 477 

indicator of quality or suitability when looking for breeding areas through “public 478 
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information” that can be gained from the presence of conspecifics (Osborne et al., 479 

2007). However, birds cannot identify local differences in climatic stability within 480 

reproductive areas. On the top of this, it should be considered that certain differences in 481 

the variables selected by these models might be, at least partially, related to the extent of 482 

the area where models were calibrated (Van Der Wal et al., 2009). Nevertheless, model 483 

calibration across different scenarios (implying different extents) was necessary to test 484 

our hypothesis.  485 

In this study, we have combined spatially explicit data from both species 486 

occurrence and vital rates into a SDM framework to identify priority conservation areas 487 

and landscape structures supporting population maintenance. The utility of this 488 

approach would be greatly enhanced through the integration of temporal fluctuations in 489 

other vital rates, such as survival and dispersal, using metapopulation models. Such an 490 

approach would allow the identification of the threats most likely influencing 491 

population persistence over time horizons relevant to management decision-making. 492 

However, the extra data and expertise demands of such an approach preclude its 493 

application in many instances (Franklin, 2010). We argue that our approach may 494 

represent a suitable compromise between mechanistic models and the simpler 495 

correlative SDM based on occurrence data. 496 
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Table 1. Methodological criteria used to define dependent variables informing on the population parameter to be modelled. Each column represents a different 741 

database on breeding success (BS) elaborated from the original dataset by applying different decisions. For example, in the case of database BS1, the dependent 742 

variable consisted of continuous values and the statistical parameter used to average the temporal series of productivity data was the mean. The table also 743 

includes the sample size of each dataset. 744 

 745 

  

Methodological criteria      BS1 BS2  BS3         BS4            BS5  

(i) General type of dependent variable Continuous Binary  

(ii) Continuous dependent variable  
Mean 

(n=208) 

Range 
(n=208) 

 

(iii) Binary dependent variable:  
 
-High or positive productivity 

 
High productivity (> averaged mean for the whole 

period; 0.15 young/female) 
                (n=98) 

Positive productivity (>0) 
 

(n=208) 

-Low or null productivity  

Occupied breeding sites 
 Low productivity (0< 

productivity < averaged mean 
for the period) 

(n=110) 

Potential breeding sites 
Null productivity (=0)  

 
 

           (n= 110)                               (n=208) 

 746 

 747 
  748 
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Table 2. Environmental predictors used to model both breeding occurrence and breeding success of Great Bustard. Spring (SP) includes March, April and May; 749 

Summer (SU): June, July and August; and Autumn-Winter (WI): September to February. CV is the coefficient of variation = [(SD/ )*100], where SD is the 750 

standard deviation. 751 

 752 
 753 

Family Variable Code Units Source 

Topography 
Slope of the terrain SLO degrees 

Digital elevation model (DEM) from the Spanish 
Centre of Geographic Information (CNIG) at 25m of 
spatial resolution 

Slope variation among agricultural plots SLOSPcv degrees 
GIS database of agricultural plots (SIGPAC) at 
1:5000 scale, year 2012 

Climate 

Maximum temperature of Summer (mean) TMAmSU ºC 
Iberian Climatic Map at 200m of spatial 
resolution, period 1950-1999 (Ninyerola et 
al. 2005, 2007)  

Maximum temperature of Summer (CV) TMAcvSU ºC 

Rainfall of Autumn-Winter (mean)  PPsmWI mm 

Rainfall of Autumn-Winter (CV)  PPcvWI mm 

Primary production 
NDVI of Spring (mean) NDVImSP dimensionless (-1, 1) NOAA-AVHRR at 1km of spatial resolution, period 

1987-2010 (SerGEO database from CCHS-CSIC) NDVI of Spring (CV) NDVIcvSP dimensionless (-1, 1) 

Landscape structure 
Maximum perimeter of plots PERIMmax m GIS database of agricultural plots (SIGPAC) at 

1:5000 scale, year 2012 Arable land (% occupation) ARLAND % 

Human disturbances 
Distance to paved roads and highways DISTRO m 

Spanish Centre of Geographic Information (CNIG) at 
1:200000 scale 

Distance to IBAs (Important Bird Areas) DISTIBA m Nature 2000 ecological network at 1:50000 scale 

 754 

  755 

X
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Table 3. Results of multi-model averaging for presence-absence (PA) and breeding success (BS1 to BS5) models (see definitions of variables in Table 2). Each 756 

cell shows the sign, the full model-averaged standardised coefficients (β) (with shrinkage) ± their standard errors multiplied by 100, the significance categories 757 

(***p<0.001, **p<0.01, *p<0.1) and, in parenthesis, the relative importance of each variable estimated as the sum of the AIC weights for each predictor 758 

included in n subsets of models having ∆i (AICbest-AICi) ≤2. Deviance explained in relation to the null model was calculated for a final model including the 759 

best subset of variables. We also show the values corresponding to a final GLM model including variables retained after multi-model inference. 760 

 761 

Family Variable PA BS1 BS2 BS3 BS4 BS5 

Topography 
SLO +0.65±12.94*** (1) +0.01±0.09 (0.05) +0.45±0.44 (0.67) +0.87±7.7 (0.05) -415±157.88** (1) -449.45±140.94** (1) 

SLOSPcv -4.01±71.83*** (1) - +0.69±0.43 (0.87) -2.72±12.58 (0.11) -90.79±45.07* (1) -112.19±35.73** (1) 

Climate 

TMAmSU +0.02±0.87* (0.1) +0.7±0.43* (0.92) +1.18±0.47* (1) +6.18±18.5 (0.17) -25.84±51.27 (0.33) -97.42±41.6* (1) 

TMAcvSU -0.55±30.29 (0.64) +0.06±0.21 (0.18) -1.35±0.45** (1) -1.38±9.05 (0.06) -238.34±69.87*** (1) -214.49±46.37*** (1) 

PPsmWI -0.01±0.02** (1) - -0.23±0.41 (0.36) - -3.19±25.77 (0.07) - 

PPcvWI -0.10±3.48** (1) -0.32±0.38 (0.58) +0.18±0.35 (0.31) -0.49±6.93 (0.05) -13.16±39.12 (0.24) -8.73±24.66 (0.22) 

Primary  

production 

NDVImSP - -0.98±0.35** (1) - -73.63±30.32* (1) - +1.73±15.32 (0.13) 

NDVIcvSP +15.63±500.90** (1) -0.01±0.1 (0.06) -0.07±0.22 (0.16) -5.34±17.11 (0.16) -44.06±64.83 (0.46) -3.99±18.86 (0.15) 

Landscape  

structure 

PERIMmax +0.02±1.43 (0.47) +0.53±0.41 (0.82) +0.02±0.13 (0.07) +3.72±15.77 (0.12) +5.89±37.25 (0.08) -1.91±17.34 (0.13) 

ARLAND +0.04±0.56*** (1) +0.05±0.19 (0.14) +0.01±0.08 (0.03) -1.07±8.39 (0.06) +582.53±108.23*** (1) +479.32±64.64*** (1) 

Human 

disturbances 

DISTRO +0.01±0.01 (0.59) +0.5±0.36 (0.88) - +31.06±33.06 (0.65) +127.9±61.13* (1) +82.81±34.01* (1) 

DISTIBA +0.01±0.01*** (1) +0.8±0.35* (1) +0.07±0.23 (0.16) +85.31±33.02* (1) -116.5±48.94* (1) -195.65±36.06*** (1) 

Global Model 

 

Nb of predictors 11 10 10 11 11 11 

Dev. explained 64.98 19.88 21.11 7.83 62.27 59.02 

Adj.r.squared 0.79 0.21 0.24 0.14 0.77 0.74 

  762 
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 763 

Table 4. Spatial verification of the models in occupied vs. potential breeding areas (i.e., breeding areas with successful reproduction vs. potential breeding areas 764 

not used for reproduction). The values shown are the mean (± standard deviation) habitat suitability for highly productive RG and random points, as well as the 765 

difference in suitability between them (the larger this difference, the better is the discrimination capacity of the models) and the statistical significance of these 766 

differences (*p<0.05, **p<0.01, ***p<0.001) when the value is positive. PA represents the presence-absence model and BS the breeding success models. 767 

 768 

 PA BS1 BS2 BS3 BS4 BS5 

Occupied breeding areas  
     

Suitability of highly productive RG 0.812± 0.220 0.059 ± 0.011 0.050 ± 0.019 0.455 ± 0.14 0.781 ± 0.272 0.786 ± 0.266 

Suitability of random points 0.834 ± 0.220 0.063 ± 0.009 0.057 ± 0.017 0.401 ± 0.108 0.825 ± 0.233 0.84 ± 0.219 

Mean difference of suitability -0.023 -0.004 -0.007 0.054** -0.044 -0.055 

Potential breeding areas  
     

Suitability of highly productive RG 0.811 ± 0.220 0.059 ± 0.011 0.05 ± 0.019 0.455 ± 0.14 0.781 ± 0.272 0.786 ± 0.266 

Suitability of random points 0.355 ± 0.353 0.049 ± 0.021 0.043 ± 0.022 0.629 ± 0.19 0.236 ± 0.328 0.211 ± 0.297 

Mean difference of suitability 0.457*** 0.010* 0.007* -0.174 0.544*** 0.575*** 

 769 

 770 

 771 

 772 
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Figure legends  773 

 774 

Figure 1. Geographic range of Great Bustard in Spain during the period 1987-2010 at 775 

different seasons. Back dots correspond to: (a) Lek centres identified in Spring (Alonso 776 

et al. 2012b), (b) flocks of females with chicks (isolated family or flock of females with 777 

at least one family) detected in September, (c) flocks of females with a number of 778 

chicks higher than the averaged mean value for the study period (Álvarez-Martínez et 779 

al. 2015). In (b) and (c), points were defined by the location of the female flock with 780 

chicks closest to the “centroid” of all female flocks, with or without chicks, constituting 781 

a reproductive group. Grey buffers represent the species home range, estimated as a 782 

buffer of 2 km (Palacín et al. 2012) around either lek centres or family flocks for either 783 

Spring or September. 784 

 785 

Figure 2. Spatial patterns of habitat suitability achieved from occurrence (PA) and 786 

breeding success (BS) models. 787 

 788 

Figure 3. Pearson correlation matrices between habitat suitability for breeding 789 

occurrence (PA) and breeding success (BS1 to BS5) in: (a) occupied breeding area, (b) 790 

potential breeding area. The graph also shows histograms and scattered plots. 791 

 792 

Figure 4. Spatial agreement between model outputs for occurrence (PA model) and 793 

breeding success (BS4 and BS5 models). 794 

 795 

  796 

Page 37 of 84

Diversity and Distributions

Diversity and Distributions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

38 

Figure 1 797 
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ABSTRACT 26 

IntroductionAim. Basic Species distribution models based on breeding occurrence data 27 

allow for exploring the factors driving species distribution. They can be used to 28 

identifying both environmental drivers and geographic areas potentially relevant for 29 

breeding. . However,they do not allow for discriminating between areas of different 30 

reproductive performance, which may limit their usefulness for conservation and 31 

management decisions.However, the interpretation of model predictions in terms of 32 

reproductive performance should be further investigated, as this information is crucial 33 

for conservation planning.Aim. We evaluated the strengths and weaknesses of a 34 

correlative species distribution modelling approach based on breeding occurrence data 35 

(presence-absence) against another approach based on vital rates’ data (breeding 36 

success) for gaining insights on species persistence in the case of Great Bustards (Otis 37 

tarda) in Spain. 38 

Location. Spain. 39 

Methods. Breeding occurrence and breeding success were independently modelled 40 

using generalized linear models and multi-model inference analyses. Sensitivities to the 41 

way in which the population parameter (breeding success) was defined were explored 42 

by building five versions of the dependent variable. We evaluated differences in model 43 

performance and identified areas of congruence for breeding occurrence and breeding 44 

success.  45 

Results. The agreement between the spatial predictions achieved by breeding 46 

occurrence and breeding success models differed substantially across databases, with 47 

the largest differences between models calibrated withinin occupied vs. potential 48 

breeding areas. The deviance explained by the breeding occurrence model was 64.98% 49 
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and ranged from 7.83% to 62.27% for the breeding success models. Model performance 50 

was higher for models calibrated within potential than within occupied breeding areas. 51 

ConclusionsMain conclusions. The combination of spatially explicit data on both 52 

breeding occurrence and vital ratesbreeding success into a species distribution 53 

modelling framework showed the limitations of breeding occurrence models for 54 

inferring reproductive parameters. The definition of the population parameter as 55 

dependent variable was a key factor that strongly affected the inference of vital rates’ 56 

models. The approach allowed for discriminating between areas and landscape 57 

attributes necessary for the long-term species persistence from others that may be 58 

relevant in certain parts of the life cycle, but not so much for reproductionreproductive 59 

performance.  60 

Key words: Breeding success, SDMspecies distribution modelling, Great Bustard, Otis 61 

tarda, population persistence.  62 
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(A) INTRODUCTION 63 

 64 

Species Distribution Models (SDM; Guisan & Zimmerman, 2000) are useful tools for 65 

exploring the factors driving species distribution. These techniques are increasingly 66 

seen as crucial tools in species conservation and management (Suárez-Seoane et al., 67 

2002; Franklin, 2010; Austin & Van Niel 2011; Guisan et al., 2014). However, the 68 

reliability of SDM predictions and, therefore, their applicability in prioritizing 69 

conservation efforts strongly depends on the data used for model calibration (Guisan et 70 

al., 2013). 71 

In bird studies, SDM have been typically calibrated with species occurrence data 72 

(presence-absence, presence-only and, less frequently, abundance) collected during the 73 

breeding season, which allows producing breeding habitat suitability maps. Major 74 

sources of occurrence data are, besides one's own field work, breeding bird atlases and 75 

long-term monitoring programs, which are widely available at regional, national and 76 

continental scales. Typical data from atlases allow discriminating, in a general grid 77 

framework, between sites where species are likely (or even confirmed) to breed and 78 

sites where breeding is unlikely. In the most recent approaches, this basic information is 79 

complemented with data on species abundance at more detailed spatial resolution. 80 

Numerous examples can be found across the literature where SDM are calibrated with 81 

breeding bird atlas data; see, for example, Araújo et al. (2005), Virkkala et al. (2014), 82 

Moudrý et al. (2017) or Howard et al. (2014). On the otherir hand, long-term 83 

monitoring programs are primarily designed to provide data for evaluating population 84 

trends in abundance, but can be also integrated in SDM to explore factors determining 85 

species presence-absence and abundance (Brotons et al., 2007). 86 
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However, despite the widespread use of SDM calibrated with breeding 87 

occurrence data in conservation applications, this approach may have limitations. A 88 

constraint arises from the fact that species occurrence data might be collected outside of 89 

the species’ reproductive niche (i.e., overall environmental requirements for successful 90 

reproduction; Titeux et al., 2007; Bykova et al., 2012). When this occurs, SDM may 91 

predict high suitability in areas not relevant for breeding or even in “sink” or “trap” 92 

environments (Van Horne, 1983). Thus, the viability of the species is likely to be over-93 

estimated. In the case of species using different environments during the breeding 94 

period, another problem emerges In such situations, the viability of the species is likely 95 

to be over-estimated.(Pulliam, 2000; Titeux et al., 2007; Álvarez-Martínez et al., 2015). 96 

When this occurs, SDM may predict areas of high suitability for breeding in what could 97 

be considered “sink” or “trap” environments (Van Horne, 1983). This problem is 98 

particularly acute when occurrence data are collected in areas and moments where 99 

species detectability is the highest (e.g., at the beginning of the breeding season when 100 

birds arrive from migration and begin the occupation of territories or when they are 101 

singing or displaying before the mating; Strebel et al., 2014), but that are not central for 102 

offspring productionbreeding success. When the predictions of models fitted to such 103 

data are used to prioritize conservation efforts, key biological requirements may not be 104 

met by the resulting conservation strategy, as different parts of a species’ life cycle can 105 

only take place in certain environments. In such situations, the viability of the species is 106 

likely to be over-estimated. 107 

Arguably, the a main limitationdrawback for conservation applications of SDM 108 

calibrated with breeding occurrence data is the interpretation of model predictions in 109 

terms of reproductive outputs. Identifying areas where the breeding success of a given 110 

species is high, low or null In fact, this approach ignores the key component of species-111 
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environment modelling, as it does not allow for identifying areas where the breeding 112 

success of a given species is high, low or null. Understanding In fact, this approach 113 

ignores the key component of species-environment modelling, as it does not allow for 114 

identifying areas where the breeding success of a given species is high, low or null. the 115 

effects of landscape parameters on species breeding success is critical to devise and 116 

implement effective conservation and management plans addressed to guarantee species 117 

long-term species persistence (Soga & Koike, 2013). In fact, this approach ignores the 118 

key component of species-environment modelling, as it does not allow for identifying 119 

areas where the breeding success of a given species is high, low or null. In this sense, 120 

Brambilla & Ficetola (2012) found that habitat suitability estimated through a presence-121 

only SDM correlated positively with two reproductive parameters of a passerine bird. 122 

However, even if this approach can provide useful information for preliminary 123 

assessments of breeding success at large-scale, it should be considered that the factors 124 

driving breeding habitat selection (and therefore the estimates of habitat suitability) do 125 

not necessarily influence in a similar way reproductive performance. In fact, a high 126 

level of mismatches between observed avian breeding habitat preferences and fitness 127 

outcomes (breeding success) have been identified across a wide variety of taxa (see 128 

Chalfoun & Schmidt, 2012 for a review on this topic).  129 

An emerging response to this these concerns is to seek more mechanistic 130 

approaches (such as metapopulation models) that are based on fundamental 131 

relationships and dependencies and can provide a more robust way to predict species 132 

distribution than correlative SDM. However, mechanistic models are highly 133 

parameterized and present higher technical demands in terms of time, effort, resources 134 

and data for model calibration and validation in comparison to correlative approaches 135 

(Kearny & Porter, 2009). Consequently, they are unable to compete with correlative 136 
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SDM for widespread application in conservation and management. In this context, 137 

hybrid (mechanistic/correlative) approaches represent a good compromise between the 138 

simplicity of correlative SDM and the benefits of being more complex mechanistic 139 

models (Kearney et al. 2010; Michel, 2017). Fitting correlative models to spatial data on 140 

population parameters, such as fecundity, and mapping the predictions of such models 141 

to variation in correlates across the landscape may provide a suitable compromise 142 

between simplicity and robustness (sensu Falcucci et al., 2009) when modelling 143 

reproductive performance.  144 

However, modelling spatial variation in population parameters in the framework 145 

of SDM is challenging. On one hand, collecting population data samples for model 146 

calibration is much more time and effort consuming than collecting occurrence data. 147 

Additionally, there are many technical choices to be made about the nature of the 148 

dependent variable chosen to represent the population parameter of interest. For 149 

example, in the case of birds, there are various ways to measure breeding success, 150 

including: clutch size, hatching success, nesting success, breeding success per female or 151 

group of females, general success of the breeding season and so on (Murray, 2000). 152 

Indeed, the value of the dependent variable can take the form of counts, continuous 153 

values and multiple or binary categorical values, which effectively increases model 154 

structural uncertainty. While both, the influence of predictor choice and model 155 

structural uncertainty, have received a great deal of attention in the SDM literature (e.g. 156 

Thuiller, 2003; Wintle et al., 2003; Pearson et al., 2006), we could have find no studies 157 

investigating how the definition of the dependent variable contributes to uncertainty in 158 

modelling spatial variation in population parameters.  159 

In this study, we aimed to compared the inference of a correlative species 160 

distribution modelling approach based on species breeding occurrence data (i.e., 161 
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presence-absence) against another correlative, but more mechanistic, approach based on 162 

vital rates’ data (i.e., breeding success) in in order to gain insights on species 163 

persistence. As study case, we used an endangered species, the Great Bustard (Otis 164 

tarda) across Spain. We explored how the definition of the population parameter 165 

impacts on ecological inference and predictions about key areas for conservation. We 166 

discussed the implications of the modelling options and what the predictions and 167 

ecological inference tell us about the biology of the species, as well as the best strategies 168 

for improving the realism and applicability of modelling species distribution modelling 169 

approaches to support conservation decisions. 170 

 171 

(A) METHODS 172 

 173 

(B) The study model: Great Bustards in Spain 174 

Great Bustards are large, lekking birds that live in highly fragmented populations in 175 

cereal pseudo-steppes throughout the Palaearctic, from Morocco to eastern China 176 

(Palacín & Alonso, 2008). Spain holds ca. 60-70% of the world population (Alonso & 177 

Palacín, 2010). The species is globally threatened and classified as Vulnerable on the 178 

Red List of Threatened Species (BirdLife International, 2015). Females nest on the 179 

ground and rear their precocial chicks (usually one, sometimes two) alone over a period 180 

of six to 12 months (Alonso et al., 1998). Breeding success is highly variable, with 181 

productivity values ranging between 0.04 and 0.53 chicks per female (Morales et al., 182 

2002; Martín et al., 2007). 183 

 184 

(B) Great Bustard breeding occurrence and breeding success databases 185 
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Great Bustard breeding occurrence was modelled using a database on presence-absence 186 

records (PA database) compiled in Spring, when species detectability is maximal 187 

(Alonso et al., 2005), during the period 1987-2010 (Figure 1a). Presence data consisted 188 

of all 350 lek centres known in Spain (Alonso et al., 2012a). Absence data comprised an 189 

equivalent sample of 350 points randomly distributed across Spain, excluding both the 190 

coastal border areas, mountainous ranges and the home ranges around lek centres 191 

(estimated with a buffer of 2 km; Palacín et al., 2012). These data can be considered as 192 

true absences, since the distribution of the species at this time of the year is well known. 193 

To estimate breeding success, we carried out population censuses across the 194 

breeding range in Spain during the month of September (when the mortality peak of 195 

juveniles is over and families can be detected due to their less elusive behaviour 196 

compared to early summer; Martín et al., 2007) of the same period 1987-2010 (Figure 197 

1b, c). Breeding success was estimated annually as the young productivity (i.e., ratio of 198 

the number of chicks to females) for each reproductive group (RG), which was made of 199 

all flocks of females (FF) with or without chicks (FF) found in the same lek. Values 200 

>100% were discarded because they were associated with very small groups consisting 201 

of one or two females and their chicks, or corresponded to RG with a very low 202 

detectability (i.e., where number of females counted in September was lower than 30% 203 

of those counted in Spring). It should be considered that productivity data were 204 

heterogeneously distributed across space and time during the study period (i.e., data 205 

were not available for all RG all years). Therefore, the raw values were averaged for the 206 

whole series to achieve a spatially and temporally consistent coverage of this population 207 

parameter, reflecting the long-term trends of species persistence better than single 208 

measures made for shorter (or even isolated) periods of time. See Alonso et al. (2005) 209 
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and Álvarez-Martínez et al. (2015) for more details on breeding success surveys and 210 

GIS database preparation. We accounted for a total of 208 RGs. 211 

In order to build dependent variables informing on breeding success for further 212 

modelling analyses and compare outcomes of methodological choices, three 213 

methodological criteria were applied on the original multi-temporal dataset, generating 214 

five datasets on breeding success (BS databases; Table 1). Each database was based on 215 

a particular combination of subjective and data-driven choices about the treatment of 216 

dependent variables: (i) Dependent variables could be continuous (productivity values 217 

ranged from 0 to 100%) or binary (productivity take only had two values, which 218 

represent high/low productivity, high/null productivity or positive/null productivity). (ii) 219 

Continuous dependent variables were calculated by averaging annual productivity data 220 

across the temporal series, using either the mean (database BS1) or the range of the 221 

values (database BS2). (iii) Binary dependent variables were built by comparing: (iii.1) 222 

RG with high productivity (locations where the productivity value was higher than the 223 

averaged mean value for all RG across the whole study period; i.e., 0.15 young/female) 224 

vs. RG with low productivity (locations collected across the occupied breeding area 225 

where productivity was positive, but lower than the averaged mean value) (database 226 

BS3); ). (iii.2) RG with high productivity (a productivity value higher than the averaged 227 

mean) vs. locations where productivity was null (i.e., a set of random points sampled 228 

across the potential breeding distribution, that have been formerly estimated by Suárez-229 

Seoane et al., 2002, avoiding a buffer of 2 km -the species home range- around each FF) 230 

(database BS4). (iii.3) RG with positive productivity (value greater than “0”; i.e., birds 231 

successfully bred, independently of the number of chicks raised) vs. locations where 232 

productivity was null (database BS5). The application of these three criteria generated 233 

five datasets on breeding success (BS databases), each based on a particular 234 
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combination of subjective and data-driven choices about the treatment of dependent 235 

variables. Databases generated in occupied breeding areas (BS1, BS2 and BS3) are 236 

useful for modelling “breeding performance”, as they allow for comparing different (but 237 

always positive) values of breeding success. D; while databases generated also in 238 

potential breeding areas (BS4 and BS5) are useful for modelling “breeding site 239 

selection”, as they allow for comparing locations where birds had successfully bred 240 

from other potential sites where breeding success was equal to 0null. 241 

 242 

(B) Environmental variables 243 

On the basis of exploratory analyses, expert knowledge and published information 244 

(Morales et al., 2002; Alonso et al., 2004; Pinto et al., 2005; Martínez, 2008; Palacín et 245 

al., 2012), we selected a pool of 12 environmental GIS predictors potentially driving 246 

both breeding occurrence and breeding success of Great Bustards in Spain (Table 2). 247 

Predictors described topography, climate, primary production, landscape structure and 248 

human disturbances. Scales ranged from 1:25000 to 1:200000 and pixel sizes from 249 

200m 25m to 1km, depending on original data and methodological restrictions. All data 250 

were interpolated rescaled using a natural neighbour method to the same spatial 251 

resolution, matching the pixel size of 1km among variables.  252 

The role of topographic predictors on breeding occurrence and breeding success 253 

was evaluated through the slope and its variation among agricultural plots. Topography 254 

largely influence visual communication with conspecifics, as the breeding system of 255 

dispersed leks involves strong visual cues over long distances (Alonso et al., 2012a). 256 

Data sources were, respectively, a digital elevation model at 25m (CNIG; 257 

http://www.cnig.es) and the Spanish Geographic Information System for Agricultural 258 

Plots (SIGPAC; http://www.magrama.gob.es/en/agricultura/temas/sistema-de-259 
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informacion-geografica-de-parcelas-agricolas-sigpac) at 1:5000 scale. Data on climate 260 

and primary production were seasonally averaged (mean values and variation 261 

coefficients) to assess the effect of these environmental factors during critical periods of 262 

the year on breeding occurrence and breeding success. The effect of climate was 263 

included through the maximum Summer temperature (temperature during the last days 264 

of incubation and first days after hatching) and Autumn-Winter rainfall (precipitation 265 

prior to breeding season), both extracted from the Climatic Map of the Iberian Peninsula 266 

(Ninyerola et al., 2005, 2007). The relevance of these climatic variables has been 267 

demonstrated for many species of birds and, specifically, for Great Bustards (Morales et 268 

al., 2002; Osborne et al., 2007). for Great Bustards has been demonstrated previously 269 

by Morales et al. (2002) and Osborne et al. (2007). According to these authors, winter 270 

precipitation controls the productivity of annual plants during the following spring and, 271 

therefore, the availability of arthropods during the period of chick maximum growth 272 

rate in early summer. Theis early spring development of herbaceous vegetation in early 273 

spring also contributes positively to the physiological condition of females, which 274 

directly affects the percentage of females attempting to breed, their clutch size and 275 

brood viability. The above-ground net primary production was represented through the 276 

Normalized Difference Vegetation Index of Spring (NDVI; Pettorelli et al., 2007, 2011; 277 

Bro-JørgensenBro-Jorgensen et al. 2008; Hamel et al. 2009) obtained from a temporal 278 

series of NOAA-AVHRR satellite imagery (1987-2010), that was acquired from the 279 

SerGEO database from CCHS-CSIC 280 

(http://humanidades.cchs.csic.es/cchs/sig/sergeo.html). Landscape structure was 281 

quantified from the Spanish Geographic Information System for Agricultural Plots 282 

(SIGPAC; http://www.magrama.gob.es/en/agricultura/temas/sistema-de-informacion-283 

geografica-de-parcelas-agricolas-sigpac), that have been elaborated at 1:5000 scale for 284 
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the year 2012. We created a grid of 1-km over the whole Spain that intersected with the 285 

SIGPAC layer in order to calculate both the maximum perimeter of plots and the 286 

percentage of arable land within each 1-km grid (authors' unpublished data). Human 287 

disturbances were evaluated through the Euclidean-distance from each pixel to the 288 

nearest paved road or highway (Suárez-Seoane et al., 2002) and the land protection 289 

status. Data were obtained, respectively, from the Spanish Centre of Geographic 290 

Information (CNIG;  http://www.cnig.es) at 1:200000 scale and the Nature 2000 291 

Ecological Network (http://www.magrama.gob.es). All GIS analyses were done in 292 

ArcGIS10.2 (ESRI, 20132014). 293 

Environmental features were gathered for each of the six databases on 294 

occurrence and breeding success using a pixel-based approach. The spatial resolution of 295 

the analyses, allowing for model inference across Spain, was 1km. In the case of BS 296 

databases, points were spatially assigned to the location of the female flock with chicks 297 

(isolated family or flock of females including at least one family) closest to the 298 

“centroid” of all female flocks, with or without chicks, in a RG. Points were 299 

recalculated for each year during the study period and averaged afterwards.  300 

In order to avoid multi-colinearity problems that may lead to parameter bias 301 

(Freckleton, 2011), we checked that Spearman's bivariate correlations among all 302 

predictors were below 0.7 (Randin et al., 2006), as well as  and that variance inflation 303 

factor (VIF) in further modelling analyses was lower than 4. There is no formal VIF 304 

threshold, but a value of 10 is commonly used as an indicator of severe multicollinearity 305 

(Neter et al., 1990; Graham, 2003; Zuur et al., 2010). 306 

 307 

(B) Model building 308 
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Both breeding occurrence and breeding success of Great Bustards in Spain were 309 

independently modelled on the basis of the environmental features described in Table 2 310 

using generalized linear models (GLM). Multi-model inference, based on AIC values, 311 

and model averaging (Burnham & Anderson, 2002; Burnham et al., 2011) were 312 

implemented for each of the six datasets (PA, BS1 to BS5). This method allows for 313 

selecting the best subset of approximating models (i.e., those the smallest AIC value, 314 

indicating the most parsimonious models) among all possible candidates. Models with 315 

∆i (AICbest-AICi) ≤2 were considered substantially supported by the data and similar to 316 

the best model in their empirical reliability. Using this subset of models, we estimated 317 

the averaged standardised coefficients (β) for each predictor, as well as its significance 318 

and relative importance. Model coefficients were standardised to allow comparisons 319 

among predictors. The relative importance of each predictor was measured as the sum 320 

of the Akaike weights of all models in the subset where that predictor was present. The 321 

value of the summed Akaike weight of each predictor ranges from 0 (if it appears only 322 

in the most unlikely models) to 1 (if it appears in all the best models) (Burnham and 323 

Anderson 2002; Symonds & Moussalli, 2011). GLMs were built using either a binomial 324 

distribution with logit link, when the response variable was binomial, or a Gamma 325 

distribution with log link, when the response variable was continuous. Model algorithms 326 

were spatially projected across the study area using GIS tools, providing maps of habitat 327 

suitability ranging from 0 to 1. Finally, variations in performance (deviance explained 328 

by the best subset of variables against a null model), type family of the most 329 

contributing predictors and spatial predictions were evaluated across the model outputs.  330 

 To evaluate assess the accuracy of model predictions, we built two validation 331 

datasets consisting ofused the next validation datasets: 67 cases showing with the best 332 

reproductive performance across the study period (RG with an average annual 333 
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productivity higher than the average value of for the study period, with more than five 334 

years of available data) along with an equivalent sample of points randomly chosen 335 

within either: (i) occupied breeding areas (home ranges in Figure 1) or (ii) potential 336 

breeding areas (potential area defined by Suárez-Seoane et al., 2002). We thus 337 

estimated, for each model output, the statistical significance of the differences in habitat 338 

suitability across occupied and potential breeding areas (the larger difference, the better 339 

is the discrimination capacity of a model). 340 

 We used this these validation datasets to check the Pearson bivariate correlations 341 

among prediction values achieved from PA and BS models in both occupied and 342 

potential breeding areas. Finally, we mapped the areas of congruence between the 343 

outputs achieved by the occurrence model (PA) and the breeding success models 344 

calibrated in the potential area (BS4 and BS5). We have not compared PA with BS1, 345 

BS2 and BS3 because the predictions made by these models are not applicable outside 346 

the occupied area. 347 

 Analyses were done with the packages MASS and MuMIn from R 3.0.2 348 

statistical software (R Development Core Team, 2014) and ArcGIS10.2 (ESRI, 2014). 349 

 350 

(A) RESULTS 351 

 352 

Table 3 summarises the results of the modelling approach. Performance varied widely 353 

across model outcomes. In the case of the presence-absence (PA) model, the deviance 354 

explained by the best subset of variables against a null model was 64.98%, being Great 355 

Bustard occurrence significantly correlated with all families of predictors. In the case of 356 

breeding success (BS) models, deviance ranged from 7.83% to 62.27%. The largest 357 

differences were found between two groups of BS models. Models calibrated within 358 
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occupied breeding areas (BS1 to BS3) explained less deviance than those calibrated 359 

within the potential distribution area (BS4 and BS5). The most relevant predictors of 360 

breeding success also changed markedly between these two groups. In the former, 361 

breeding success was significantly correlated with climate (temperature), primary 362 

production and distance to IBAs. In the latter, breeding success was also related to 363 

topography and landscape structure, instead of primary production.  364 

 The predictive performance of models fitted to mean (BS1) and range (temporal 365 

variability) of breeding success (BS2) was similar. Nevertheless, mean breeding success 366 

was driven by temperature, primary production and distance to IBAs, while breeding 367 

success range was only significantly correlated with temperature. When modelling high 368 

levels of breeding success (values above the mean for the period) in occupied (BS3) 369 

versus potential (BS4) breeding areas, we found that the latter models had much higher 370 

performance and comprised significant variables of different types, including 371 

topography, temperature, landscape structure and human disturbances. In contrast, BS3 372 

models only included primary production and human disturbances as significant 373 

predictors. Models calibrated in potential breeding areas (BS4 and BS5) showed similar 374 

predictive performance and were driven by the same families of predictors. 375 

 Spatial patterns of habitat suitability varied substantially across the pool of 376 

models (Figure 2). The output of the PA model showed clear differences among suitable 377 

and non-suitable areas at large scale. In the case of BS models, those calibrated in 378 

occupied breeding areas (BS1 to BS3) presented homogeneous or even random patterns 379 

of habitat suitability outside the reproductive areas, as predictions were only valid at 380 

local scale (i.e., within home ranges; Figure 1b, c) (i.e., within reproductive areas; see 381 

home range in Figure 1b, c). Models calibrated in potential breeding areas (BS4 and 382 

BS5) clearly identified differences between suitable and non-suitable areas at large 383 
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scale. Overall, the prediction values generated by BS4 and BS5 models were the most 384 

correlated to the predictions of PA model, in both occupied and potential areas (Figures 385 

3 and 4). 386 

 Model discrimination was lower in occupied than potential breeding areas. In the 387 

former case, significant differences were only found for model BS3, while in the last 388 

case, significant differences emerged for the PA model, as well as for all BS models 389 

except for BS3 (Table 4). 390 

 391 

(A) DISCUSSION  392 

 393 

Many authors have highlighted the need to move beyond static correlative predictions of 394 

species occurrence probability or relative likelihood of occurrence to model processes 395 

that are more directly related to the long-term persistence of species (Guisan & Thuiller, 396 

2005; Araujo & Guisan, 2006; Heikkinen et al., 2006; Thuiller et al., 2008; Zurrell et 397 

al., 2009; Franklin, 2010; Álvarez-Martínez et al., 2015). The anticipated benefits of 398 

modelling processes closely linked to species persistence is that it will improve the 399 

robustness of predictions about species future ranges in rapidly changing environments. 400 

In this sense, the current study pioneers a comparison of the ecological inference arising 401 

from a classical correlative species distribution modelling approach, based on presence-402 

absence data, with that of another approach in which correlative models are fitted to the 403 

spatial variation in a population parameter, in this case, breeding success. Our results 404 

provided insights into the specific strengths and weaknesses of correlative models of 405 

occupancySDM regarding their application in conservation biology.  406 

Correlative SDM models based on occurrence data have been formerly 407 

demonstrated as valuable conservation tools for designing management actions aimed to 408 
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promote patch occupancy (e.g. Suárez-Seoane et al., 2002) and density of focal species 409 

(García et al., 2007). The application of such models implies several practical strengths, 410 

as they have low input data needs, avoid the challenges of scaling up from individual to 411 

landscape level and allow for evaluating niche tolerance limits at large scale (Peterson 412 

et al., 2016). However, as stated by Oliver et al. (2012), these models overlook 413 

important features for long-term population persistence, such as population stability and 414 

source-sink dynamics.  415 

In this sense, we found that the incorporation of long temporal series of vital rates´ 416 

data in SDM allowed for achieving well performing models (deviance ranged from 417 

7.83% to 62.27%; , being these values high in relation to other studies dealing with 418 

breeding success modelling; e.gsee. Donázar et al., 2002 and Rodríguez & Bustamante, 419 

2003 for comparison with other studies dealing with breeding success modelling), that 420 

are useful for the identification of landscape attributes contributing to population 421 

stability. We also detected that certain environmental relationships affecting breeding 422 

success were overlooked in PA models. For example, temporal variability in Summer 423 

maximum temperature was a significant driver of breeding success, while it did not 424 

appear to strongly influence species occurrence. This suggests that climatic stability is a 425 

demand much more evident for breeding than for surviving. A similar scenario was 426 

found for the mean primary production, which was not significantly correlated to 427 

species occurrence, but appeared as one of the most important explanatory predictors of 428 

breeding success (BS1 and BS3 models). This indicates that primary production 429 

influences where and when to breed, as it indirectly reflects the availability of food for 430 

chicks, but may be less important for adult survival. These differences should be 431 

explicitly considered when planning conservation measures that may fail if they are not 432 

undertaken in areas that nurture long-term breeding success.  433 
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Indeed, the comparison between the habitat suitability patterns achieved by PA 434 

and BS models allowed for the discrimination of critical areas for the long term 435 

persistence of the species (i.e., areas potentially supporting high breeding performance 436 

during the study period) from other areas that may be occupied periodically or 437 

consistently in other life stages, but have a low suitability for reproduction and then, for 438 

population maintenance. In this sense, the identification of marginal areas for species 439 

persistence is a matter of conservation priority, due to the high risk of local extinction. 440 

For example, the regions where BS models predicted much higher suitability than PA 441 

models (highlighted in black in Figure 4) are those where most local extinctions have 442 

occurred during recent decades (79% of 29 extinctions documented in 1960-1990 in the 443 

whole of Spain have occurred in the northeastern and southwesternmost black patches), 444 

due to hunting pressure and agricultural transformations (Alonso et al. 2003). The 445 

message for conservation managers is that, with appropriate environmental measures, 446 

the high potential breeding success in these areas would help restoring the original 447 

populations. The larger geographic area predicted as suitable by the PA model, when 448 

compared with BS models, could be associated to the fact that correlative models might 449 

overestimate niche breadth by not constraining the niche to account for breeding needs 450 

(Peterson et al., 2016). Titeux et al. (2007) reached a similar conclusion when exploring 451 

the role of incorporating fitness parameters (i.e., breeding success) in the definition of 452 

niche boundaries for red-clacked shrike.  453 

Modelling choices when building the dependent variable influenced the inference 454 

and potential utility of the model outputs for environmental managers and decision-455 

makers. In this sense, Mostashari & Sussman (2005) propose a stakeholder-assisted 456 

modelling process in which stakeholders participate through contributions of input and 457 

feedback to the modelling process to improve the representation of focal systems. 458 
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Discussions should begin in the earliest stages of the ecological modelling process, as 459 

they are essential for identifying the key choices for the purpose of the model building, 460 

mitigating many of the subsequent problems that arise from inappropriate 461 

methodological decisions (Martin et al., 2012). For example, we showed here that 462 

models fitted using continuous variants of breeding success within occupied breeding 463 

areas (BS1 and BS2) explained a greater proportion of deviance than the binary model 464 

calibrated across occupied area (BS3), beingwere thus more indicative of species 465 

persistence than the binary model calibrated in occupied area (BS3), with a greater 466 

proportion of explained deviance. In addition, while binary models of databases BS4 467 

and BS5 explained much more deviance, we should consider that they were calibrated 468 

in non-occupied areas and, therefore, they are actually more useful to evaluate breeding 469 

sites’ selection than species persistence. The ability of BS1, BS2 and BS3 models to 470 

find even slight differences within currently occupied areas casts light on critical 471 

parameters for species persistence linked to spatial and temporal environmental 472 

restrictions and feeding resource availability (Alvarez-Martínez et al., 2015). 473 

A key modelling choice was whether the dependent variable should be continuous 474 

(databases BS1 and BS2) or binary (BS3 to BS5). While the predictive performance of 475 

BS1 (general pattern; mean value of breeding success across the temporal series) and 476 

B2 (temporal variation; range value) models was similar, they were driven by a different 477 

set of predictors. Areas of consistently good breeding performance over time, and 478 

therefore of high species persistence, would be selected by Great Bustards’ based on 479 

many interacting environmental and social cues (Parejo et al., 2006; Osborne et al., 480 

2007; Rieucau & Giraldeau, 2011). Temporal variation in breeding success was linked 481 

to Summer maximum temperatures, which may be interpreted as the negative effect that 482 

Page 61 of 84

Diversity and Distributions

Diversity and Distributions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

21 

severe Summer droughts can have over breeding performance by limiting food 483 

availability for the rearing chicks. 484 

The choice of converting continuous values of breeding success into binary 485 

dependent variables (BS3 to BS5) implies summarising the observed variability 486 

according to unique thresholds, which involves a loss of information. This decision is 487 

strongly linked to vagueness, a form of linguistic uncertainty which refers to the 488 

possibility of borderline cases which neither satisfy a criterion, nor its negation, when 489 

performing categorical classifications of data (Regan et al., 2002). In such a situation, 490 

the development of fuzzy logic sets and rules (Ascough II et al., 2008; Álvarez-491 

Martínez et al., 2010) is recommended to reduce the level of vagueness in decision-492 

making. If this is not possible, a deliberate consideration of the meaning and 493 

implications of the chosen thresholds is advised.  494 

The most influential methodological choice in terms of model performance, 495 

selected predictors and spatial pattern of habitat suitability across the pool of results was 496 

the area of calibration for binary BS variables. In fact, Jiménez-Valverde et al. (2009) 497 

and Lobo et al. (2010) already highlighted the key importance of carefully choosing the 498 

area of calibration depending on the question at hand. Models calibrated with binary 499 

variables collected in occupied breeding areas (BS3) explained much less deviance than 500 

models calibrated across non-occupied sites within the potential distribution area; BS4 501 

and BS5). This is a common and expected result, since describing local differences 502 

within suitable areas using models narrowly calibrated across space and environment 503 

(i.e., comparing between areas of higher-than-average and those of lower-than-average 504 

breeding success) is more demanding than assessing coarse differences between areas of 505 

positive breeding performance and potential areas including many unsuitable pockets. 506 

The lower deviance explained by BS3 model could be associated to the fact that short-507 
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term environmental changes which that may affect breeding success in suitable breeding 508 

areas cannot be anticipated by birds at local scale. For example, the temporal variation 509 

in Summer maximum temperature was significantly correlated with breeding success in 510 

BS4 and BS5, but not in BS3 models. This fact suggest that Great Bustards might 511 

“predict” general patterns of climatic stability across their range and use it as an 512 

indicator of quality or suitability when looking for breeding areas through “public 513 

information” that can be gained from the presence of conspecifics (Osborne et al., 514 

2007). However, birds cannot identify local differences in climatic stability within 515 

reproductive areas. On the top of this, it should be considered that certain differences in 516 

the variables selected by these models might be, at least partially, related to the extent of 517 

the area where models were calibrated (Van Der Wal et al., 2009). Nevertheless, model 518 

calibration across different scenarios (implying different extents) was necessary to test 519 

our hypothesis.  520 

In this study, we have combined spatially explicit data from both species 521 

occurrence and vital rates into a SDM framework to identify priority conservation areas 522 

and landscape structures supporting population maintenance. The utility of this 523 

approach would be greatly enhanced through the integration of temporal fluctuations in 524 

other vital rates, such as survival and dispersal, using metapopulation models. Such an 525 

approach would allow the identification of the threats most likely to influenceing 526 

population persistence over time horizons relevant to management decision-making. 527 

However, the extra data and expertise demands of such an approach preclude its 528 

application in many instances (Franklin, 2010). We argue that our approach may 529 

represent a suitable compromise between mechanistic models and the simpler 530 

correlative SDM based on occurrence datas on occupancy. 531 

 532 
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Table 1. Methodological criteria used to define dependent variables informing on the population parameter to be modelled. Each column represents a different 813 

database on breeding success (BS) elaborated from the original dataset by applying different decisions. For example, in the case of database BS1, the dependent 814 

variable consisted of continuous values and the statistical parameter used to average the temporal series of productivity data was the mean. The table also 815 

includes the sample size of each dataset. 816 

 817 

  

Methodological criteria      BS1 BS2  BS3         BS4            BS5  

(i) General type of dependent variable Continuous Binary  

(ii) Continuous dependent variable  
Mean 

(n=208) 

Range 
(n=208) 

 

(iii) Binary dependent variable:  
 
-High or positive productivity 

 
High productivity (> averaged mean for the whole 

period; 0.15 young/female) 
                (n=98) 

Positive productivity (>0) 
 

(n=208) 

-Low or null productivity  

Occupied breeding sites 
 Low productivity (0< 

productivity < averaged mean 
for the period) 

(n=110) 

Potential breeding sites 
Null productivity (=0)  

 
 

           (n= 110)                               (n=208) 

 818 

 819 
  820 
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Table 2. Environmental predictors used to model both breeding occurrence and breeding success of Great Bustard. Spring (SP) includes March, April and May; 821 

Summer (SU): June, July and August; and Autumn-Winter (WI): September to February. CV is the coefficient of variation = [(SD/ )*100], where SD is the 822 

standard deviation. 823 

 824 
 825 

Family Variable Code Units Source 

Topography 
Slope of the terrain SLO degrees 

Digital elevation model (DEM) from the Spanish 
Centre of Geographic Information (CNIG) at 25m of 
spatial resolution 

Slope variation among agricultural plots SLOSPcv degrees 
GIS database of agricultural plots (SIGPAC) at 
1:5000 scale, year 2012 

Climate 

Maximum temperature of Summer (mean) TMAmSU ºC 
Iberian Climatic Map at 200m of spatial 
resolution, period 1950-1999 (Ninyerola et 
al. 2005, 2007)  

Maximum temperature of Summer (CV) TMAcvSU ºC 

Rainfall of Autumn-Winter (mean)  PPsmWI mm 

Rainfall of Autumn-Winter (CV)  PPcvWI mm 

Primary production 
NDVI of Spring (mean) NDVImSP dimensionless (-1, 1) NOAA-AVHRR at 1km of spatial resolution, period 

1987-2010 (SerGEO database from CCHS-CSIC) NDVI of Spring (CV) NDVIcvSP dimensionless (-1, 1) 

Landscape structure 
Maximum perimeter of plots PERIMmax m GIS database of agricultural plots (SIGPAC) at 

1:5000 scale, year 2012 Arable land (% occupation) ARLAND % 

Human disturbances 
Distance to paved roads and highways DISTRO m 

Spanish Centre of Geographic Information (CNIG) at 
1:200000 scale 

Distance to IBAs (Important Bird Areas) DISTIBA m Nature 2000 ecological network at 1:50000 scale 

 826 

  827 

X
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Table 3. Results of multi-model averaging for presence-absence (PA) and breeding success (BS1 to BS5) models (see definitions of variables in Table 2). Each 828 

cell shows the sign, the full model-averaged standardised coefficients (β) (with shrinkage) ± their standard errors multiplied by 100, the significance categories 829 

(***p<0.001, **p<0.01, *p<0.1) and, in parenthesis, the relative importance of each variable estimated as the sum of the AIC weights for each predictor 830 

included in n subsets of models having ∆i (AICbest-AICi) ≤2. Deviance explained in relation to the null model was calculated for a final model including the 831 

best subset of variables. We also show the values corresponding to a final GLM model including variables retained after multi-model inference. 832 

 833 

Family Variable PA BS1 BS2 BS3 BS4 BS5 

Topography 
SLO +0.65±12.94*** (1) +0.01±0.09 (0.05) +0.45±0.44 (0.67) +0.87±7.7 (0.05) -415±157.88** (1) -449.45±140.94** (1) 

SLOSPcv -4.01±71.83*** (1) - +0.69±0.43 (0.87) -2.72±12.58 (0.11) -90.79±45.07* (1) -112.19±35.73** (1) 

Climate 

TMAmSU +0.02±0.87* (0.1) +0.7±0.43* (0.92) +1.18±0.47* (1) +6.18±18.5 (0.17) -25.84±51.27 (0.33) -97.42±41.6* (1) 

TMAcvSU -0.55±30.29 (0.64) +0.06±0.21 (0.18) -1.35±0.45** (1) -1.38±9.05 (0.06) -238.34±69.87*** (1) -214.49±46.37*** (1) 

PPsmWI -0.01±0.02** (1) - -0.23±0.41 (0.36) - -3.19±25.77 (0.07) - 

PPcvWI -0.10±3.48** (1) -0.32±0.38 (0.58) +0.18±0.35 (0.31) -0.49±6.93 (0.05) -13.16±39.12 (0.24) -8.73±24.66 (0.22) 

Primary  

production 

NDVImSP - -0.98±0.35** (1) - -73.63±30.32* (1) - +1.73±15.32 (0.13) 

NDVIcvSP +15.63±500.90** (1) -0.01±0.1 (0.06) -0.07±0.22 (0.16) -5.34±17.11 (0.16) -44.06±64.83 (0.46) -3.99±18.86 (0.15) 

Landscape  

structure 

PERIMmax +0.02±1.43 (0.47) +0.53±0.41 (0.82) +0.02±0.13 (0.07) +3.72±15.77 (0.12) +5.89±37.25 (0.08) -1.91±17.34 (0.13) 

ARLAND +0.04±0.56*** (1) +0.05±0.19 (0.14) +0.01±0.08 (0.03) -1.07±8.39 (0.06) +582.53±108.23*** (1) +479.32±64.64*** (1) 

Human 

disturbances 

DISTRO +0.01±0.01 (0.59) +0.5±0.36 (0.88) - +31.06±33.06 (0.65) +127.9±61.13* (1) +82.81±34.01* (1) 

DISTIBA +0.01±0.01*** (1) +0.8±0.35* (1) +0.07±0.23 (0.16) +85.31±33.02* (1) -116.5±48.94* (1) -195.65±36.06*** (1) 

Global Model 

 

Nb of predictors 11 10 10 11 11 11 

Dev. explained 64.98 19.88 21.11 7.83 62.27 59.02 

Adj.r.squared 0.79 0.21 0.24 0.14 0.77 0.74 
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 835 

Table 4. Spatial verification of the models in occupied vs. potential breeding areas (i.e., breeding areas with successful reproduction vs. potential breeding areas 836 

not used for reproduction). The values shown are the mean (± standard deviation) habitat suitability for highly productive RG and random points, as well as the 837 

difference in suitability between them (the larger this difference, the better is the discrimination capacity of the models) and the statistical significance of these 838 

differences (*p<0.05, **p<0.01, ***p<0.001) when the value is positive. PA represents the presence-absence model and BS the breeding success models. 839 

 840 

 PA BS1 BS2 BS3 BS4 BS5 

Occupied breeding areas  
     

Suitability of highly productive RG 0.812± 0.220 0.059 ± 0.011 0.050 ± 0.019 0.455 ± 0.14 0.781 ± 0.272 0.786 ± 0.266 

Suitability of random points 0.834 ± 0.220 0.063 ± 0.009 0.057 ± 0.017 0.401 ± 0.108 0.825 ± 0.233 0.84 ± 0.219 

Mean difference of suitability -0.023 -0.004 -0.007 0.054** -0.044 -0.055 

Potential breeding areas  
     

Suitability of highly productive RG 0.811 ± 0.220 0.059 ± 0.011 0.05 ± 0.019 0.455 ± 0.14 0.781 ± 0.272 0.786 ± 0.266 

Suitability of random points 0.355 ± 0.353 0.049 ± 0.021 0.043 ± 0.022 0.629 ± 0.19 0.236 ± 0.328 0.211 ± 0.297 

Mean difference of suitability 0.457*** 0.010* 0.007* -0.174 0.544*** 0.575*** 
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Figure legends  845 

 846 

Figure 1. Geographic range of Great Bustard in Spain during the period 1987-2010 at 847 

different seasons. Back dots correspond to: (a) Lek centres identified in Spring (Alonso 848 

et al. 2012b), (b) flocks of females with chicks (isolated family or flock of females with 849 

at least one family) detected in September, (c) flocks of females with a number of 850 

chicks higher than the averaged mean value for the study period (Álvarez-Martínez et 851 

al. 2015). In (b) and (c), points were defined by the location of the female flock with 852 

chicks closest to the “centroid” of all female flocks, with or without chicks, constituting 853 

a reproductive group. Grey buffers represent the species home range, estimated as a 854 

buffer of 2 km (Palacín et al. 2012) around either lek centres or family flocks for either 855 

Spring or September. 856 

 857 

Figure 2. Spatial patterns of habitat suitability achieved from occurrence (PA) and 858 

breeding success (BS) models. 859 

 860 

Figure 3. Pearson pair-wise correlation matrices between habitat suitability for breeding 861 

occurrence (PA) and breeding success (BS1 to BS5) in: (a) occupied breeding area, (b) 862 

potential breeding area. The graph also shows histograms and scattered plots. 863 

 864 

Figure 4. Spatial agreement between model outputs for occurrence (PA model) and 865 

breeding success (BS4 to and BS5 models). 866 

 867 
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Figure 1 869 
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Figure 2 874 
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Figure 3 876 
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Figure 4  881 

 882 

 883 

 884 

Page 84 of 84

Diversity and Distributions

Diversity and Distributions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


