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Implementation of novel statistical procedures and other
advanced approaches to improve analysis of CASA data
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Abstract. Computer-aided sperm analysis (CASA) produces a wealth of data that is frequently ignored. The use of
multiparametric statistical methods can help explore these datasets, unveiling the subpopulation structure of sperm
samples. In this review we analyse the significance of the internal heterogeneity of sperm samples and its relevance. We

also provide a brief description of the statistical tools used for extracting sperm subpopulations from the datasets, namely
5 unsupervised clustering (with non-hierarchical, hierarchical and two-step methods) and the most advanced supervised

methods, based on machine learning. The former method has allowed exploration of subpopulation patterns in many

species, whereas the latter offering further possibilities, especially considering functional studies and the practical use of
subpopulation analysis. We also consider novel approaches, such as the use of geometric morphometrics or imaging flow
cytometry. Finally, although the data provided by CASA systems provides valuable information on sperm samples by

10 applying clustering analyses, there are several caveats. Protocols for capturing and analysing motility or morphometry
should be standardised and adapted to each experiment, and the algorithms should be open in order to allow comparison of
results between laboratories. Moreover, wemust be aware of new technology that could change the paradigm for studying
sperm motility and morphology.
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machines (SVM).
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Introduction

Computer-aided sperm analysis (CASA-Mot for motility and
CASA-Morph for morphometry) systems are able to produce a

huge amount of data (Amann and Waberski 2014). However,
5 this wealth of information remains underutilised because of

computer limitations and disregard of the possibilities hidden in
those data.

Automated sperm analysis yields the two-dimensional coor-
dinates of tracks (for motility) or head boundaries (for mor-

10 phometry) of several hundred spermatozoa per sample (usually

summarised by eight to 12 parameters per cell; Verstegen et al.
2002). Other approaches use the contour coordinates of the head
(Varea Sánchez et al. 2013), whereas some studies have focused

on the dimensions of the midpiece and principal piece (Malo
15 et al. 2006). For a long time, these analyses were limited to

producing a few average parameters per sample. Although an
efficient approach (CASA systems directly provide the results),

it misses the natural variability of samples, which potentially
conceals valuable information and the presence of special or

20 valuable spermatozoa in the sample. Currently, the features

offered by standard microcomputers allows the average
researcher to perform multiparametric analyses in large data-
bases, taking advantage of the amount of data provided by image

analysis of sperm samples. However, the challenge here is to
5choose the right tools to analyse these data.

The aim of this review is to present an overview of the
possibilities of CASA data analysis to the spermatologist,

especially regarding the study of sperm subpopulations (data
clustering). We have omitted a myriad of important details on

10both automated spermmotility or morphometry analysis, and on

the statistics of clustering datasets. Readers seeking further
information should use this review as a starting point to a more
specialised bibliography on either the settings, software and

interpretation of CASA-Mot and CASA-Morph (Verstegen
15et al. 2002; Castellini et al. 2011; Amann and Waberski 2014)

or statistical algorithms and data manipulation (linkage and
clustering methods, data before and after processing, cluster

description etc.; Xu and Wunsch 2005; Leonard and Droege
2008; Martı́nez-Pastor et al. 2011; Yániz et al. 2015b, 2016;

20Maroto-Morales et al. 2016).
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Sperm heterogeneity: when differences make the
difference

If anything has been confirmed by the use of CASA systems, it is
the existence of clear sperm heterogeneity. The existence of

5 morphological diversity among species is widely assumed,
although this diversity seems less clear as we go deeper at the
individual level (Birkhead et al. 2008). Sperm heterogeneity has
been related to different key issues of male reproductive per-

formance (Martinez-Pastor et al. 2005; Petrunkina et al. 2007;
10 Ramón et al. 2013; Maroto-Morales et al. 2015). It is therefore

necessary to characterise this heterogeneity in a detailed and

precise way to increase our chances of finding associations
between sperm features and outcomes of the fertilisation pro-
cess. Nevertheless, for a long time, characterisation of sperm

15 features was limited to producing a few average parameters per
sample, with the consequent loss of valuable information about
the natural variability of the samples. Ramón et al. (2014)

highlighted the disadvantages of characterising an ejaculate
using only average values. As an example, in that paper Ramón

20 et al. (2014) showed six ejaculates exhibiting similar mean
values for two sperm head shape parameters (head length and

the perimeter to area factor, p2a) but with clear differences in
subpopulation structure. Considering only mean values did not
lead to any association with the fertility of the males. However,

25 when the subpopulation structure (i.e. sperm heterogeneity) was
considered, strong associations with fertility were observed
(Ramón et al. 2014).

This example highlights the importance of examining sperm
heterogeneity when conducting a study; otherwise, we may fail

30 in our attempt to find functional associations. The statistical

procedures for the assessment of sperm heterogeneity have been
reviewed previously (Martı́nez-Pastor et al. 2008, 2011; Ramón
et al. 2014; Yániz et al. 2016) andwill be discussed succinctly in
the following two sections, but some general recommendations

35 are presented here. First, it is important to consider at which
level sperm heterogeneity is going to be assessed; that is,
whether an intraspecific or an intraindividual (from the same

population) comparison is going to be investigated. For themost
general case, namely the interspecific comparison, an approach

40 characterising sperm samples with mean values and a relatively

small sample size may be enough to identify existing differ-
ences. However, as we go deeper and look for differences within
the same species, or even within the same individual, this
characterisation must be more detailed and a larger sample will

45 be required to ensure that we have a representative sample of the
variability of the population under investigation (unsupervised
clustering methods might be the choice for initial studies; see

below). Second, inmost cases the graphical representation of the
data will be useful to determine the degree of heterogeneity

50 within the samples and to decide which statistical procedure will

be adequate to analyse the data. Third, when conducting a
clustering procedure, the choice of the variables to be used
(and the weight that each will have in the analysis) is as

important as the clustering method. For the selection of the
55 variables, the graphical exploration recommended before may

be useful, but variables should be also selected according to the
objectives of the study. Variable selection leads to our last

recommendation: whenever possible, we should take advantage
of previous results about the processes under investigation in

order to maximise our chances of finding relevant functional
relationships. Thus, implementation of supervised clustering

5methods (see below) is presented as a good option for the

assessment of sperm heterogeneity considering other sources
of prior information.

Statistical analysis of CASA data: unsupervised clustering

Unsupervised clustering of data refers to the lack of a priori

10criteria for grouping observations (Everitt et al. 2011). That is,

the results of the clustering will depend on the characteristics of
the dataset alone. Thus, although this approach is useful for
learning about sperm subpopulations and defining the clustering

structure of datasets obtained from different species and treat-
15ments, these approaches should be considered as a first step. The

use of supervised methods (with criteria established from prior

experiences) is more computationally efficient and more ade-
quate for practical deployment of this kind of analysis (e.g.
embedded into CASA software).

20Unsupervised clustering has been used in most studies on

sperm motility and morphometry subpopulations. Two main
clustering strategies are available in most studies: hierarchical
and non-hierarchical (partitional) methods (Xu and Wunsch

2005). Non-hierarchical methods (the k-means method being
25the most well known) are based on the initial partitioning of the

data in a predefined number of clusters, followed by iterations in

order to reassign observations to the ‘correct’ cluster. The initial
number of clusters (k) must be specified, either by the researcher
(based on a sensible guess) or by the algorithm (optimisation).

30Some algorithms are relatively fast (even with large datasets)
and simple to use, but the main problem is deciding on the
number of clusters before the partition. Because the number of
sperm populations is generally reported to be between three and

five, it is feasible to explore the partitioning results in this
35narrow margin. Indeed, the k-means algorithm, or versions of it,

have been highly popular, especially for classifying motility

data (Davis et al. 1995; Rivera et al. 2005; Quintero-Moreno
et al. 2007; Martı́nez-Pastor et al. 2008).

Hierarchical methods work by successively organising the

40data into a hierarchical structure. The resulting tree-like struc-
ture (plotted as a dendrogram) allows the immediate investiga-
tion of different clustering results, depending on the level the
dendrogram is cut. Moreover, this kind of representation clearly

shows the clustering structure and the relationship among
45different observations. The main drawback of this method is

that hierarchical algorithms work, at the very least, in quadratic

time, making direct analysis of large datasets (e.g. CASA-Mot
or CASA-Moprh data) prohibitive. Nonetheless, algorithm
refinement (e.g. parallelisation) and the increasing power of

50modern desktop computers (fast processors, large memory, 64-
bit architecture) allow for the use of hierarchical methods with
these data. Indeed, some studies have already used hierarchical

algorithms in a single step to cluster moderately large CASA
datasets (Henning et al. 2014).

55Hierarchical algorithms are also used for variable clustering,
helping identify relationships between variables. This information

B Reproduction, Fertility and Development M. Ramón and F. Martı́nez-Pastor
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can be used to select a variable set with minimal redundancy, for
data clustering (Flores et al. 2009; Gallego et al. 2015).

Most clustering attempts, with both CASA-Mot and CASA-
Morph data, have relied on a compromise between the celerity of

5 non-hierarchical methods and the flexibility and information
provided by hierarchical methods. In two-step methods, the

dataset is first partitioned into a predefined number of clusters.
This first step is performed by a fast, non-hierarchical method
and the resulting cluster centroids are fed into a hierarchical

10 algorithm. This second step performs the final classification in a
reasonable time, and is also used to determine the final number
of clusters and to perform exploratory analyses on the classifi-

cation. Two-step methods have been very popular for classify-
ing CASA-Mot data (Abaigar et al. 1999; Martinez-Pastor et al.

15 2005; Martı́nez et al. 2006; Yániz et al. 2015a) and particularly
CASA-Morph data (Peña et al. 2005; Esteso et al. 2009;Maroto-

Morales et al. 2012, 2015). Recently, we proposed a variation of
this methodology, in which a first hierarchical step was per-
formed in individual samples, resulting in three to eight clusters

20 per sample, and then a second hierarchical step reclassified the
resulting centroids, reassigning the initial clusters to three to
four subpopulations (Gallego et al. 2015; Fernández-Gago et al.

2017; Ledesma et al. 2017). This method is fast and allows
exploration of the individual hierarchical classification within

25 samples, but it requires a fairly high number of observations in

each sample.
The use of unsupervised methods has yielded promising

results on the detection and characterisation of sperm subpopu-
lations depending on motility or morphometry parameters.

30 However, whereas the studies shed light on the effects of
capacitation, cryopreservation, individual variability etc. on
sperm motility and morphology, there was a lack of association

between the cluster structure and sperm fertility. Recently, some
efforts to relate sperm subpopulations with field fertility have

35 yielded fruitful results (Santolaria et al. 2015; Yániz et al.

2015a), adding practical meaning to this research area.

Nevertheless, the researcher must always keep in mind this
advice, when using unsupervised methods: ‘Clustering finds

patterns in data – whether they are there or not’ (Altman and
Krzywinski 2017).

5Statistical analysis of CASA data: statistical learning
(supervised methods)

The advantage of unsupervised methods is that they allow for

the categorisation of sperm heterogeneity in an efficient man-
ner and without the need for any other prior information.

10Nevertheless, this advantage limits their applicability, espe-

cially when looking for functional associations of sperm het-
erogeneity with fertility or sperm cryoability (the resilience to
withstand cryopreservation, also called freezability), among
others. This limitation is illustrated in Fig. 1: this figure shows

15the three possible ways of classifying 10 points (e.g. males) into
two groups (e.g. high and low fertility) depending on the value
of two parameters (any morphometric or motility parameter; x1
and x2 in this example). Obtaining one classification or another
will depend on the weight of the variables used for classifica-

20tion, on the clustering methods or the points chosen as starting

values etc.; that is, on methodological aspects more than on
physiological and/or functional aspects. Indeed, although
articles reporting unsupervisedmethods reach a similar number

of subpopulations, the characteristics of these subpopulations
25vary more or less widely among studies. To overcome this

limitation (and also with the aim of implementing efficient and
repeatable sperm classification protocols), prior information

from other studies could be used. Following the example above,
suppose that results from previous studies have shown that

30values of x2 below 4 units are related with low fertility. Con-

sidering this information as a prior would lead us to the clas-
sification shown in Fig. 1c, and this would result in a
signification association with the feature of interest (in this

example, fertility).
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Fig. 1. Three possible ways of classifying 10 points (e.g. males) into two groups (CL1 and CL2) based on values of two variables (x1 and x2).

(a) Variable x2 drives the classification, with points with higher values classified as a unique group. (b) Variable x1 drives the classification.

(c) Variable x2 drives the classification, but in this case points with lower values were classified as a unique group.
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The use of prior information guiding the clustering process is

what characterises supervised methods. Supervised methods

represent a step forward to unsupervised methods, in which
prior information guides the prediction processes, and where

5 outcomes from previous analysis can be used to update the

inferred function and to predict new events. As Hastie et al.
(2017) state, supervised learning makes use of inputs (a set of
variables that are measured or preset and have some effect on

one or more outputs) to predict the value of the outputs. In their
10 book, Hastie et al. (2017) provide an in-depth review ofmachine

learning methods and their applications in several research
fields that may be of interest to those readers who want to start

in this type of analysis.
The use of this type of analysis in reproductive biology, and

15 specifically in CASA, is still scarce. One of the first studies

implementing these methods was conducted by Goodson et al.
(2011), who used support vector machines (SVM) to classify
spermatozoa based onmotility features throughout the transition

from a progressive to hyperactive pattern inmice, and developed
20 a software that uses SVM equations to classify individual sperm

motility patterns automatically (this software can be requested
from these authors). The samemethodologywas used by Ramón

et al. (2012) to classify spermatozoa based on motility features
in relation to sperm cryopreservation. Ramón et al. (2012)

25 compared SVMwith the unsupervised methods commonly used

to assess sperm subpopulations (hierarchical, non-hierarchical
and the multistep method proposed by Martinez-Pastor et al.
2005), and showed how SVMs were superior to classical

methods. The use of supervised learning methods allowed
30 associations to be found between the structure of subpopulations

obtained from that analysis and male cryoability. In another

study, Sahoo and Kumar (2014) compared five data-mining
techniques on a fertility database to evaluate seminal quality and
to predict whether the patient was either normal or had altered

35 fertility based on environmental and lifestyle parameters or

features. Focusing on morphometric features, Mirsky et al.
(2017) used an SVM classifier to automatically classify sper-
matozoa as having good or bad morphology based on

three-dimensional (3D) morphology information obtained by
40 interferometric phasemicroscopy, as a prior step to the selection

of sperm cells to be used for IVF. In another study, Chang et al.

(2017) compared four supervised learning methods to charac-
terise spermatozoa based on morphometric measures of sperm
heads. Chang et al. (2017) emphasised the need to use auto-

45 mated methods given the high degree of inter-expert variability

in the assessment of morphological sperm characteristics.
All the studies mentioned above performed classifications

based on several sperm features but, more importantly, guided

this classification according to functional aspects that helped find
50 associations. It is expected that the use of thesemethodologieswill

increase in the future. The development of dedicated software for

the classification process would contribute to the widespread use
of these analyses while allowing automatisation of the procedure.

Going beyond the CASA systems

55 As pointed out in the Introduction, CASA-Mot and CASA-
Morph systems have caused a revolution in the field of

spermatology by allowing, in an objective way, the collection of
a large amount of information about the morphological and

motility characteristics of spermatozoa. The use of this infor-
mation has revealed new associations between sperm char-

5acteristics and their functionality, which has ultimately allowed

us to better understand the complex mechanism of the fertili-
sation process. Conversely, the implementation of these systems
in the daily routine of assisted reproduction centres has allowed

a better characterisation of sperm quality and an increase in
10fertility and prolificacy (Holt et al. 1997; Broekhuijse et al.

2015). Beyond these advantages, new technologies and the
large amount of data they generate have led to new challenges,

such as how to manage and interpret these data. Moreover,
in order to manage and interpret these data, we need to deepen

15our understanding of the mechanisms that condition the fertili-

sation process.
CASA systems yield two-dimensional coordinates of several

motility and morphometric features, and the use of mathemati-

cal formulas allows calculation of derived parameters for a
20better characterisation of the motility track or morphological

dimensions. This procedure works well if the shape of the object
wewant to capture is simple, but fails if there are complexities in

the shape, such as the sperm head apical hook in rodents.
Furthermore, the measures provided by CASA systems do not

25allow consideration of the fact that spermatozoa swim in a 3D

space or the fact that size and shape are not always equivalent.
The implementation of geometricmorphometrics (GM) analysis
has been proposed to deal with some of these limitations. The

core of these methods lies in the landmark-based approach in
30which the exact spatial position of a given anatomical structure

is specified. Thus, GM methods allow the morphometry of an

object to be assessed in a more precise way, considering all the
particular characteristics that define that object in a way that is
not affected by subjective aspects like scaling, rotation or

35translation (i.e. in a more generalisable way; Rohlf and Slice

1990; Bookstein 1997). Within the field of biological sciences,
studies using GS methods have increased in the past decade,
usually aimed at addressing questions in evolutionary morphol-

ogy (Zelditch et al. 2012; Mcnulty and Vinyard 2015). More
40specifically, GM has been used to characterise the sperm head

apical hook in mice and the role of sperm competition in

modulating its shape (Firman and Simmons 2009; Firman
et al. 2011). In a more recent study, Varea Sánchez et al.
(2013) applied the principles of morphometrics to analyse

45rodent sperm head morphometry and compared this method

with two traditional morphometric methods. All these studies
highlight the potential of GM analysis, as well as the difficulties
in interpreting GM results and the need for the integration of this

analysis with other functional analyses. A technological inno-
50vation that tries to fill this functional gap is imaging flow

cytometry (Basiji et al. 2007). This type of analysis couples

the collection of high-throughput data with streamlined image
analysis. Information on sperm features such as size and shape,
granularity, intensity, radial distribution and texture can be

55obtained (Blasi et al. 2016) in a large sperm population. The
main advantage of this technique, making it unique, is the ability
to simultaneously evaluate morphometric and physiological
parameters in the same cell. As for GM analysis, the main

D Reproduction, Fertility and Development M. Ramón and F. Martı́nez-Pastor



PR
OO

F
ON

LY
challenge in imaging flow cytometry is the management and
analysis of the data gathered. The use of machine learning

methods discussed in this section may provide a useful frame-
work for this propose, as already reported (Blasi et al. 2016).

5 Role of sperm morphometry and motility: how to reveal
functional associations between sperm design and sperm
function

The information obtained from CASA systems has proved
useful in identifying relationships between sperm characteristics

10 and functional aspects. Thus, different studies have reported

relationships between spermmorphometry andmotility and their
role in fertility or survival following cryopreservation (Garde
et al. 2006; Fitzpatrick et al. 2010; Ramón et al. 2013; Simpson

et al. 2014). Although these studies had the same objective, the
15 methodological approaches differed. In their study of red deer

(Cervus elaphus hispanicus), Malo et al. (2006) based their

findings on the small within-male and considerable between-
male variation observed in sperm dimensions, which allowed the
correct characterisation of individual sperm samples using mean

20 values and their correspondence with differences in fertility.

However, when low within-male variability and high between-
male variability are not present, the use of average values is not
suitable and characterisation of sample heterogeneity is required.

This was the case in the study of Ramón et al. (2013), who
25 characterised the subpopulation structure of sperm samples

based onmorphometric andmotility parameters andmade use of

supervised learning methods to determine relationships between
these two features and cryoability. Fitzpatrick et al. (2010), in
fish, and Simpson et al. (2014) went further in the search for

30 relationships between sperm morphometry and sperm motility,
dealing with the intramale variation in a more efficient way,
studying three internally and three externally fertilising species.
These authors measured multiple morphological and motility

traits from the same cell in order to look for correlations between
35 sperm size and velocity, making use of high-definition video and

image processing systems that allowed them to capture the shape

and trajectories of each sperm cell in a detailed way. This
approach represents a valuable improvement in the assessment of
the relationships between sperm morphometry and motility,

40 allowing the simultaneous evaluation of spermheterogeneity and
maximising our chances of finding functional relationships
between these two features. The generalisation of this type of
analysis may contribute to a better understanding of the

mechanisms determining the fertilisation process and the role of
45 different sperm traits in it. In this vein, the development of new

analytical tools, such as imaging flow cytometry, will contribute

to the expansion of these analyses.

Conclusions and practical recommendations on the
statistical assessment of sperm motility and morphometry

50 Throughout this review we have tried to highlight the advan-
tages of using advanced statistical tools to find patterns in

databases obtained from sperm image analysis. The possibilities
are enormous, and with improvements in microscopes, cameras
and computers, richer data and more informative algorithms

55 may be used.

Researchers must be aware of some caveats, some of which
have been explained in more depth in other articles in this

special volume (Bompart et al. 2018; Yániz et al. 2018a, 2018b AQ1;
Yeste et al. 2018). Adequate equipment and standardised pro-

5tocols for sample preparation and image acquisition are com-

pulsory, but details are frequently overlooked (e.g. adequate
quality controls), which may lead to within- and between-
laboratory variability (Owen and Katz 1993). A typical example

is the need of high camera frame rates when capturing motile
10spermatozoa (Castellini et al. 2011), well above those reported

in most studies. Another warning deals with the variability of
algorithms, for both the acquisition of CASA-Mot andCASMA-

Morph data and the clustering of data and subsequent analysis
(mostly proprietary software, with algorithms unknown to

15researchers). It is desirable to join other fields of biology in

the adoption of open software (Swedlow and Eliceiri 2009),
which can be examined and developed by any other researcher.
Some authors have already contributed with open software for

CASA-Mot (Wilson-Leedy and Ingermann 2007; Purchase and
20Earle 2012; Elsayed et al. 2015; Giaretta et al. 2017) andCASA-

Morph (Butts et al. 2011). Moreover, the use of open platforms
for performing statistical analyses, such as R (https://www.r-

project.org/, accessed 1 April 2018) or Python (https://www.
python.org/, accessed 1 April 2018) would allow for direct

25comparison of results between laboratories.

We must be also aware of new technological advances, or
new uses for old ones, that may result in paradigm shifts, such as
the use of fluorescence for the morphological study of the sperm

nucleus (Vicente-Fiel et al. 2013), the aforementioned imaging
30flow cytometry or the use of 3D analysis. Thus, Mirsky et al.

(2017) used an SVM classifier to automatically classify sper-

matozoa as having good or bad morphology based on 3D
morphology information obtained using interferometric phase
microscopy. Similarly, sperm analysis could be considerably

35enhanced by studying the motility of cells allowed to swim in

any direction, as demonstrated recently (Su et al. 2013).
We have also highlighted the needed to integrate these

systems with other tests and to take advantage of new statistical

approaches to reveal functional associations. Therefore, in
40parallel with the technological developments described above,

it is essential that statistical methodology and software be

developed that allow the management and analysis of all these
data, through the generalisation of its use.

Finally, we apologise for not citing all the relevant studies on
45this topic. The reference list provided is ample, and we invite

researchers willing to implement and develop these methods to
explore not only spermatology-related articles, but also general
books on data clustering and machine learning.
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J., Fernández-Santos,M. R., Roldan, E. R. S., Pérez-Guzmán,M. D., and
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E. (2007). Determinants of sperm quality and fertility in domestic

species. Reproduction 134, 3–17. doi:10.1530/REP-07-0046

Purchase, C. F., and Earle, P. T. (2012). Modifications to the IMAGEJ

35 computer assisted sperm analysis plugin greatly improve efficiency and

fundamentally alter the scope of attainable data. J. Appl. Ichthyol. 28,

1013–1016. doi:10.1111/JAI.12070

Quintero-Moreno, A., Rigau, T., and Rodriguez-Gil, J. E. (2007). Multivari-

ate cluster analysis regression procedures as tools to identify motile

40 sperm subpopulations in rabbit semen and to predict semen fertility and

litter size. Reprod. Domest. Anim. 42, 312–319. doi:10.1111/J.1439-

0531.2006.00785.X

Ramón, M., Martı́nez-Pastor, F., Garcı́a-Álvarez, O., Maroto-Morales, A.,
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