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1 Abstract

2 This study analyzes the suitability of remote sensing data from different sources 

3 (Landsat 7 ETM+, MODIS and Meteosat) in evaluating the effect of fuel conditions on 

4 fire severity, using a megafire (11891 ha) that occurred in a Mediterranean pine forest 

5 ecosystem (NW Spain) between August 19th and 22nd, 2012. Fire severity was measured 

6 via the delta Normalized Burn Ratio index. Fuel conditions were evaluated through 

7 biophysical variables including: (i) the Visible Atmospherically Resistant Index and 

8 mean actual evapotranspiration, as proxies of potential live fuel amount; (ii) Land 

9 Surface Temperature and water deficit, as proxies of fuel moisture content. 

10 Relationships between fuel conditions and fire severity were evaluated using Random 

11 Forest models. Biophysical variables explained 40 % of the variance. The Visible 

12 Atmospherically Resistant Index was the most important predictor, being positively 

13 associated with fire severity. Evapotranspiration also positively influenced severity, 

14 although its importance was conditioned by the data source. Live fuel amount, rather 

15 than fuel moisture content, primarily affected fire severity. Nevertheless, an increment 

16 in water deficit and land surface temperature was generally associated with greater fire 

17 severity. This study highlights that fuel conditions largely determine fire severity, 

18 providing useful information for defining pre-fire actions aimed at reducing fire effects. 

19

20 Keywords: VARI index, evapotranspiration, Meteosat, MODIS, Landsat, fire effects

21
22

23

24

25

26
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27 Introduction

28 In the European Mediterranean region, fire is a major disturbance (Oliveira et al. 2012) 

29 with significant ecological and socio-economic impacts on forest ecosystems (Pausas et 

30 al. 2009). It is well established that a major determinant of the magnitude of the ecological 

31 impact and effects of wildfires is fire severity (Harris and Taylor 2017), as it can alter 

32 vegetation composition, structure and regeneration dynamics (Wang and Kemball 2003; 

33 González-De Vega et al. 2018), as well as contribute to increasing soil degradation 

34 (Heydari et al. 2017). Fire severity refers to the change between pre- and post-fire 

35 conditions (Key 2006; Meng et al. 2017; Fernández-García et al. 2018a), and is 

36 operationally represented as both aboveground and belowground consumption of organic 

37 matter (Keeley 2009). It has been commonly evaluated through field methods, (e.g., the 

38 Composite Burn Index – CBI – and the GeoCBI index); but also using remotely sensed 

39 spectral indices validated with field-measured metrics, as a timely and cost-effective 

40 alternative to field methods (Fang et al. 2018). Properties of fire regime, such as the 

41 severity and size of fires, are expected to increase in the future in the Mediterranean 

42 region, likely due to land use and climate change, and forest management policies 

43 (González-De Vega et al. 2016), which might lead to drastic shifts in fire activity and 

44 seasonality. Therefore, modelling potential fire severity and understanding its main 

45 drivers of control emerges as a priority for improving pre-fire forest management 

46 strategies (Estes et al. 2017; García-Llamas et al. 2019). 

47 Among the environmental factors that influence fire severity, there is increasing evidence 

48 that fuel is a major controlling factor (Kraaij et al. 2018; García-Llamas et al. 2019). In 

49 forest ecosystems, fuel characteristics, such as fuel moisture and structure, may affect fire 

50 spread, progression and behaviour (Harris and Taylor 2017), which largely determines 

51 fire severity levels. Furthermore, fuel composition and loading influence heat flux during 
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52 combustion, which ultimately may condition the spatial patterns of fire severity (Fang et 

53 al. 2018). Nevertheless, how fuel characteristics are specifically related to fire severity is 

54 still not fully understood. Whereas studies by Lentile et al. (2006) and Lydersen et al. 

55 (2017) have shown clear relationships between fuels and fire severity, others, such as 

56 Bessie and Johnson (1995) and Estes et al. (2017), suggested that fuels have a less 

57 important role on fire severity compared to other environmental factors (e.g., weather 

58 conditions and topography). 

59 Fuel characteristics, such as fuel amount or spatial structure, can be modified through 

60 management treatments (Lee et al. 2018). As a consequence, knowledge of the role 

61 played by fuel in fire severity is critical for prioritizing effective pre- and post-fire 

62 management strategies. Fire management strategies require, however, the development 

63 of reliable and accurate information that helps and supports decision-making processes 

64 (Chuvieco and Kasischke 2007). 

65 Recent advances in remote sensing techniques have provided major opportunities to 

66 obtain valuable information for scientists and decision-makers related to fuel 

67 characteristics for fire severity modelling in a cost-effective way. For example, satellite 

68 remote sensing offers great potential for (i) mapping fuel models (Riaño et al. 2002; van 

69 Wagtendonk and Root 2003); (ii) estimating live fuel moisture content from vegetation 

70 indices (Myoung et al. 2018); and (iii) measuring potential biomass production, the 

71 balance between moisture availability, fuel dryness and vegetation drought-stress from 

72 remotely sensed evapotranspiration products (Kane et al. 2015; Fang et al. 2018). 

73 Information from remote sensing systems offers several advantages as it is spatially 

74 comprehensive and can be periodically updated (Chuvieco and Kasischke 2007), thus 

75 enabling the assessment of spatial and temporal variation in fuel characteristics and their 

76 effect on fire severity. For example, Landsat satellite has been widely used for monitoring 
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77 and modelling fuel characteristics, since it provides one of the longest moderate spatial 

78 resolution imagery collections (Banskota et al. 2014). Moderate Resolution Imaging 

79 Spectroradiometer (MODIS) vegetation products have also been commonly used in fire 

80 studies across the globe, due to their near-global spatial coverage and high temporal 

81 resolution (Uyeda et al. 2015; Fang et al. 2018). Additionally, characteristics of newer 

82 satellites, such as the high temporal resolution of Meteosat Second Generation (MSG; 

83 (Amraoui et al. 2013), are incurring interest in the fire research field. Nevertheless, 

84 despite its advantages, the operational use of remote sensing data in assessing the role of 

85 fuels in fire severity still presents some challenges associated with the current status of 

86 satellite sensor technology (Chuvieco and Kasischke 2007) and the availability of the 

87 spectral, spatial or temporal resolution required for operational performance (Meng and 

88 Zhao 2017).

89 In this study, we aim to examine the suitability of different remote sensing sources 

90 (Landsat 7 ETM+, MODIS and Meteosat) to evaluate how biophysical properties are 

91 related to fuel conditions and how they can predict fire severity. Further, we provide 

92 recommendations at management level for defining actions to reduce fire effects. As a 

93 case study, we used a megafire that occurred in 2012 in NW Spain, which affected 11891 

94 ha of a Mediterranean ecosystem dominated by Pinus pinaster Aiton.

95

96 Methods

97

98 Study site

99 This study was conducted in the Sierra del Teleno mountain range (NW Spain; Fig. 1) 

100 where 11891 ha burned in August, 2012 (between 19th and 22nd). The orography is 
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101 heterogeneous with altitude ranging from 2188 to 840 m.a.s.l. and 10% average slope. 

102 Soils are acidic originated over siliceous lithology (i.e., quartzite, conglomerate, 

103 sandstone and slate) with low organic matter content (Fernández-García et al. 2018b). 

104 The climate in this area is Mediterranean. Mean annual temperature is 10 ºC, with 2-3 

105 months of drought in summer and a mean annual precipitation rate of 650 to 900 mm 

106 (20 years averaged values covering period 1950-1999; Ninyerola et al. 2005). During 

107 the week preceding the fire and during the fire itself, there was a heatwave that 

108 increased the fire risk (Quintano et al. 2015). The Sierra del Teleno mountain range has 

109 frequently been affected by wildfires mainly associated to dry spring-summer lightning 

110 storms and anthropic causes (Santamaría 2015). Small fires have commonly burned the 

111 area during winter, spring and autumn, while large fires mainly occur during the 

112 summer season (July-September; Santamaría 2015). The area affected by the fire was 

113 dominated by a mature natural maritime pine (Pinus pinaster Ait.) forest, with a tree 

114 density in mature stands of 765 plants ha-1. The shrubby understory community is 

115 mostly dominated by Erica australis L. and Pterospartum tridentatum (L.) Willk. 

116 Maritime pine populations in this area are highly adapted to intense crown fires with 

117 more than 95% of mature trees bearing serotinous cones (Tapias et al. 2004). 

118 Nevertheless, short fire return intervals (the average fire free interval has been estimated 

119 at 15 years) might prevent P. pinaster from reaching reproductive maturity, thus 

120 undermining population resilience (Taboada et al. 2018). The fire under consideration 

121 was an extreme convective-crown-fire that completely destroyed the understory and 

122 consumed the majority of tree crowns (40% of the surface burned at high severity 

123 levels; Quintano et al. 2015). Such extreme fire severity characteristics justified the 

124 selection of this fire event as a case study.

125
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126 Fire severity

127 Fire severity data were estimated from two Landsat 7 ETM+ images obtained on 

128 September 20th, 2011 (pre-fire image) and September 20th, 2012 (post-fire image) from 

129 the United States Geological Survey (USGS) Earth Explorer server 

130 (http://earthexplorer.usgs.gov/). Image selection was conducted considering the 

131 availability of cloud-free images closest to the date of the fire, aiming to avoid 

132 phenological changes in the vegetation (Lecina-Díaz et al. 2014). We applied the 

133 FLAASH algorithm (Berk et al. 1999; Matthew et al. 2003) to conduct atmospheric 

134 correction of the images, which enabled us to obtain a Bottom of Atmosphere (BOA) 

135 reflectance product. 

136 Fire severity was calculated via the delta Normalized Burn Ratio (dNBR; Key and 

137 Benson 2006; Eq. 1), an index widely used for estimating fire severity in forest systems 

138 (Soverel et al. 2010; Whitman et al. 2018). 

139

140 (Eq. 1)𝑑𝑁𝐵𝑅 =  
𝑁𝐼𝑅 ― 𝑆𝑊𝐼𝑅
𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅

141

142 where the Near-Infrared (NIR) and the Short Wave Infrared (SWIR) bands used for 

143 calculation were the NIR (B4) and the SWIR-2 (B7) bands of Landsat 7 ETM +. dNBR 

144 values in unburned areas were normalized to zero by subtracting the average dNBR in 

145 unburned areas outside the fire from those within the fire perimeter to account for inter-

146 annual phenological differences between pre- and post-fire images (Miller et al. 2009). 

147 dNBR values were validated using the CBI index, which was estimated three months 

148 after fire following the protocol described by Fernández-García et al. (2018a), which is 

149 a modification of the CBI protocol developed by Key and Benson (2006). CBI values 

150 ranged between 0 (unburned) and 3 (high severity) according to the burn severity scale 
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151 by Key and Benson (2006). They were obtained averaging the scores assigned to several 

152 variables of five vertical strata, in 54 plots of 30 m x 30 m randomly distributed across 

153 the study area. The correlation value between the spectral index and CBI was 0.88. See 

154 Fernández-García et al. (2018a) for further details on the dNBR validation. 

155 In this study, we used continuous dNBR values as the response variable in further 

156 analysis. Nevertheless, for easier interpretation, we also show dNBR as classified fire 

157 severity using breakpoints defined based on the CBI values: low severity, 45.898 ≥ 

158 dNBR < 413.185; moderate severity, 413.185 ≥ dNBR < 732.565; high severity, ≥ 

159 732.565; by Fernández-García et al. (2018b) (Fig. 1).

160

161 Biophysical properties related to fuel conditions

162 The biophysical properties related to fuel conditions were characterized by including 

163 metrics related to fuel loads and moisture content. We estimated the potential live fuel 

164 amount on the basis of two variables: (i) the Visible Atmospherically Resistant Index 

165 (VARI), and (ii) the mean actual evapotranspiration (AET). The VARI is an index 

166 based on the red, green and blue visible bands (Eq. 2; Gitelson et al. 2002), which is 

167 related to the live vegetation fraction and net primary production (Gitelson et al. 2002; 

168 Maguigan et al. 2016). It was derived from a Landsat 7 ETM+ image (30 m spatial 

169 resolution) obtained on September 20th, 2011 (the pre-fire image applied for calculating 

170 fire severity; see section 2.2 for further details on image pre-processing).

171 (Eq. 2)𝑉𝐴𝑅𝐼 =  
𝑅𝑔𝑟𝑒𝑒𝑛 ― 𝑅𝑟𝑒𝑑

𝑅𝑔𝑟𝑒𝑒𝑛 + 𝑅𝑟𝑒𝑑 ― 𝑅𝑏𝑙𝑢𝑒

172 where Rband, band=green, red and blue is the BOA reflectance for each band, respectively. 

173 AET is related to potential biomass production and thus, to fuel amount (Kane et al. 

174 2015). It was calculated by averaging information acquired between June and August, 

175 2012 from two different remote sensing data sources: (i) a MSG (Schmetz et al. 2002; 

Page 8 of 34

www.publish.csiro.au/journals/wf

International Journal of Wildland Fire



For Review Only

9

176 Romaguera et al. 2012) evapotranspiration product at 10-day intervals and 3 Km spatial 

177 resolution, provided by the EARS enterprise; (ii) the MOD16A2 global 

178 evapotranspiration product at 8-day intervals and 500 m spatial resolution from MODIS 

179 (https://modis.gsfc.nasa.gov/data/dataprod/mod16.php; Hantson et al. 2015). We 

180 selected summer months because it is the season when large fires mainly occurred in the 

181 area (Santamaría 2015), and it is well established that a main factor of fire ignition and 

182 propagation is the presence of fuel ready for burning (Gouveia et al. 2012; Russo et al. 

183 2017), especially in crown convective fires.

184 Variables accounting for fuel moisture content included the Land Surface Temperature 

185 (LST) and water deficit, which were derived from the MODIS satellite. We estimated 

186 these variables for the week prior to the fire because both the high temperatures and the 

187 low relative humidity of the heatwave episode during the week preceding the fire likely 

188 exacerbated the effects of summer drought and, thus, fuel desiccation and flammability 

189 (van Mantgem et al. 2013). The LST, which is expected to increase in drier vegetation 

190 (Dasgupta et al. 2005), was computed by averaging daily information from the MODIS 

191 1 Km LST product. Water deficit, at 500 m spatial resolution, was estimated as the 

192 difference between PET and the AET (Kane et al. 2015). PET and AET were obtained 

193 from the MOD16A2 global evapotranspiration product at 8-day intervals.

194
195 Statistical analysis

196 In order to explore the relationship between the response variable (fire severity) and the 

197 predictors (biophysical variables related to fuel conditions), we applied the Random 

198 Forest (RF) machine learning algorithm (Breiman 2001), using the ‘randomForest’ 

199 package (Liaw and Wiener 2002) for R (R Core Team 2017) and a random sampling set 

200 of 1000 pixels (1 % of pixels from the image) to build the models. 
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201 To avoid multicollinearity problems among the predictors, we previously checked 

202 Pearson’s bivariate correlations, the reached correlation values being lower than 0.60 

203 (Supplementary material, Table 1). 

204 The predictive power of RF was estimated through the internal out-of-bag error rates 

205 (Kane et al. 2015). Furthermore, in order to obtain stable results, the parameter of ntree 

206 (i.e., the number of trees to run) was set to 500 and the mtry parameter (i.e., the number 

207 of input predictors tested at each split) was established through initial tuning 

208 experiments. The decrease in the accuracy (% IncMSE) criterion was used to determine 

209 the relative importance of predictors in the variance explained in models. RF models 

210 were run 50 times and the average was provided as the final result, aiming to obtain 

211 stable model outputs and to minimize stochastic errors. Additionally, we obtained 

212 partial dependence plots for each predictor.

213

214 Results

215 Random Forest models accounted for approximately 40% of the fire severity variance. 

216 Regarding the individual contribution of each predictor in explaining fire severity, 

217 biophysical properties associated with the potential amount of live fuel were relatively 

218 more important than those associated with fuel moisture content (Fig. 2). In detail, the 

219 VARI index emerged as the most important predictor influencing fire severity (Fig. 2). 

220 Overall, high values of the VARI index were related to an increment in fire severity levels, 

221 thus indicating higher fire severity in areas of great availability of live fuel (Fig. 3 a). 

222 Additionally, the importance of AET in Random Forest models changed between remote 

223 sensing data sources of different spatial resolution (Fig. 2). Particularly, AET obtained 

224 from MSG was the second most influential predictor explaining fire severity. 

225 Nevertheless, AET derived from MODIS had less influence on fire severity, even less 
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226 than biophysical properties related to fuel moisture content (i.e., water deficit) (Fig. 2). 

227 Regardless of the remote sensing data source, higher AET values were correlated with 

228 higher fire severity levels, but just towards a threshold (2.5 mm and 2.9 mm for AET from 

229 MSG and MODIS, respectively; Fig. 3 b, d). Increasing water deficit was generally 

230 associated with greater fire severity levels (Fig. 3 c). Furthermore, LST was weakly 

231 related to fire severity (Fig. 2) and exhibited a negative influence on fire severity (Fig. 3 

232 e). 

233

234 Discussion

235

236 Influence of fuel on fire severity

237 The results of this study confirm previous findings demonstrating the role of fuel 

238 conditions, obtained from different remote sensing data sources, as major 

239 controlling factors of fire severity patterns (Lentile et al. 2006; Gouveia et al. 

240 2012; Kraaij et al. 2018). Nevertheless, in Mediterranean pine forest dominated 

241 by P. pinaster, results showed that fuel characteristics were not equally related to 

242 fire severity. The amount of live fuel, measured through the VARI index, 

243 appeared to be the most important factor, positively affecting fire severity. 

244 Positive correlations between higher levels of fire severity and the presence of 

245 dense live vegetation loads has also been reported in other areas dominated by 

246 pine forests (Schoennagel et al. 2004; Arkle et al. 2012). In this context, 

247 chemical properties of P. pinaster, such as high resin content, together with the 

248 structural characteristics of needles, tend to increase live biomass flammability 

249 and the energy released during combustion (Calvo et al. 2003), therefore 

250 contributing to higher fire severity levels. Additionally, recurrent fires in some 
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251 zones of the study site have contributed to high post-fire regeneration stand 

252 densities (Calvo et al. 2013; Taboada et al. 2017), and resprouter shrub species 

253 [i.e., Erica australis L. and Pterospartum tridentatum (L.) Willk.] of high 

254 pyrogenicity (Calvo et al. 2008), which have been found to trigger high fire 

255 severity levels (García-Llamas et al. 2019).

256 The importance of live fuel on fire severity was also evinced by the overall 

257 positive effect of AET on fire severity, likely due to the association of this 

258 parameter with vegetation productivity and, thus, with mounts of live fuel (Kane 

259 et al. 2015). Nevertheless, the impact of AET on fire severity changed 

260 substantially depending on the remote sensing data source used for analyses. 

261 AET obtained from MSG was the second most important predictor of fire 

262 severity, but the AET product from MODIS showed less importance than fuel 

263 moisture predictors (i.e., water deficit). The difference in spatial resolution 

264 between remote sensing derived AET products might justify this inconsistency 

265 in AET importance, thus indicating that the resolution might affect the 

266 predictability of fire severity models (Harris and Taylor 2017; Fang et al. 2018). 

267 In this context, it is well known that different spatial processes could operate at 

268 different scales and, hence, conclusions at one scale might not be enforceable at 

269 another (Suárez-Seoane and Baudry 2002; Wu and Li 2009). Consequently, 

270 spatial resolution discrepancies between data sources may constrain the accuracy 

271 of models and lead to conflicting conclusions, thus limiting the development of 

272 remote sensing applications (Wu and Li 2009; García-Llamas et al. 2016). As a 

273 result, although the capacity of remote sensing techniques to provide information 

274 at multiple resolutions might be advantageous (Lentile et al. 2006), their utility 

275 for assessing the role of fuel on fire severity might be hampered by mismatches 
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276 between the resolution of the data source and the scale at which fuel 

277 characteristics and fire severity correlate.

278 High fire severity levels have proven to be largely determined by fuel moisture 

279 content (Ferguson et al. 2002). Our results indicated that high-severity fires were 

280 more likely under greater hydric stress conditions (i.e., higher water deficit and 

281 LST values). This result might be explained by the fact that dry conditions tend 

282 to favour the consumption of greater amounts of fuel, as well as higher levels of 

283 energy released during combustion (Dillon et al. 2011). Nevertheless, although 

284 summers in the Mediterranean Iberian Peninsula are typically dry enough to 

285 promote fuel desiccation that permits ignition, the abundance of live biomass 

286 loads for combustion, rather than fuel moisture, has been noted as the primary 

287 limiting factor of fire severity (Pausas and Paula 2009; Lecina-Diaz et al. 2014), 

288 as also observed in our study. One reason could be that dry conditions limit 

289 vegetation growth and, thus, fuel accumulation and continuity, leading to a 

290 decrease in the risk of crown fire spread (Alvarez et al. 2012) and fire severity. 

291 Additionally, these results could also be related to scale issues, in a way that the 

292 spatial resolution of moisture predictors may not properly match the scale at 

293 which fire severity patterns and fuel moisture content characteristics correlate. 

294

295 Management recommendations

296 Our findings evinced how high live fuel accumulations may increase 

297 susceptibility to high-severity fire events in Mediterranean P. pinaster forest 

298 ecosystems. Under this assumption, pre-fire management strategies aiming at 

299 reducing high live fuel loads would be essential to reduce the likelihood of 

300 severe fires. Effective pre-fire fuel treatments should prioritize the reduction of 
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301 canopy bulk density through silvicultural treatments, aiming at hampering crown 

302 fire spread, and dismissing fire intensity, as well as convective heat transfer into 

303 the canopy, thus reducing fire severity (Lininger 2006). Additionally, creating 

304 open and sparse stands and retaining large trees, which reduce fuel continuity, 

305 would also be recommended, aiming to increase the resilience of the system 

306 (Agee and Skinner 2005). In this way, studies by Gallegos et al. (2003) and Kim 

307 et al. (2016) showed how a relatively open forest structure was correlated with a 

308 decrease in fire severity. Nevertheless, it is necessary to consider that fuel 

309 reduction treatments need to be balanced against the development of fire-prone 

310 understory vegetation. In this context, stand opening might enhance the 

311 development of fire-prone shrubby understory (Fernandes and Rigolot 2007) and 

312 the desiccation of live and dead fuels (Peterson et al. 2003), which would make 

313 periodic surface fuel treatments necessary.

314

315 Conclusions

316 The results of this study highlight that, in severe crown-convective fires in P. pinaster 

317 Mediterranean forest, the accumulation of live vegetation available to be burned plays a 

318 relatively more important role in determining high levels of fire severity than fuel 

319 moisture conditions. In addressing the role of fuel characteristics in fire severity, the 

320 VARI index from Landsat 7 ETM+ and the AET product from MSG might be valuable 

321 tools for determining the amount of live fuel susceptible to influencing fire severity. 

322 However, we further highlight the importance of a proper selection of the remote data 

323 sources at the operational spatial resolution which might affect the predictability of fire 

324 severity models. Our analysis provides information that can be helpful for 

325 environmental managers when defining strategies aimed at reducing severity and its 
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326 ecological effects during the pre- and post-fire decision-making process. These 

327 strategies should prioritize the reduction of live fuel accumulations and the 

328 enhancement of a more open canopy through the modification of forest stands and 

329 structure.
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548 Figures

549

550 Fig. 1 Location map of the study area (Sierra del Teleno, NW Spain) including a 

551 pre-fire vegetation map of the burned area produced using: a) an 

552 orthophotograph (year 2011) from the Spanish National Plan for Aerial 

553 Orthophotography 

554 (http://centrodedescargas.cnig.es/CentroDescargas/index.jsp#); b) the CORINE 

555 Land Cover data base available for 2012; and c) a fire severity map obtained 

556 using classified dNBR values derived from Landsat 7 ETM+ post-burned 

557 imagery (20th September 2012) with breakpoints defined based on the CBI 

558 values: low severity, 45.898 ≥ dNBR < 413.185; moderate severity, 413.185 ≥ 

559 dNBR < 732.565; high severity, ≥ 732.565 from Fernández-García et al. 

560 (2018b); b) 

561 Fig. 2 Relative importance, measured as % IncMSE, of variables from Random 

562 Forest models explaining fire severity. Abbreviations are Actual 

563 Evapotranspiration from Meteosat Second Generation satellite (AETMSG) and 

564 from MODIS satellite (AETMODIS); and Land Surface Temperature (LST).

565 Fig. 3 Partial dependence plots showing the relationship between fire severity 

566 and each of the predictors included in Random Forest models: a) VARI index; b) 

567 Actual Evapotranspiration from Meteosat Second Generation satellite (AETMSG); 

568 c) Water deficit; d) Actual Evapotranspiration from the MODIS satellite 

569 (AETMODIS); e) Land Surface Temperature (LST).
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Potential live fuel amount had more influence on fire severity than fuel moisture content 

on pine forest ecosystems. The Visible Atmospherically Resistant Index, as a proxy of 

live fuel amount, showed the strongest association with fire severity. Remote sensing 

has high potential for determining fuel characteristics susceptible to influencing fire 

severity, although spatial resolution might constrain the utility of fire severity models.
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Fig. 1 Location map of the study area (Sierra del Teleno, NW Spain) including a pre-fire vegetation map of 
the burned area produced using: a) an orthophotograph (year 2011) from the Spanish National Plan for 

Aerial Orthophotography (http://centrodedescargas.cnig.es/CentroDescargas/index.jsp#); b) the CORINE 
Land Cover data base available for 2012; and c) a fire severity map obtained using classified dNBR values 

derived from Landsat 7 ETM+ post-burned imagery (20th September 2012) with breakpoints defined based 
on the CBI values: low severity, 45.898 ≥ dNBR < 413.185; moderate severity, 413.185 ≥ dNBR < 

732.565; high severity, ≥ 732.565 from Fernández-García et al. (2018b); b) 
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Fig. 2 Relative importance, measured as % IncMSE, of variables from Random Forest models explaining fire 
severity. Abbreviations are Actual Evapotranspiration from Meteosat Second Generation satellite (AETMSG) 

and from MODIS satellite (AETMODIS); and Land Surface Temperature (LST). 
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Fig. 3 Partial dependence plots showing the relationship between fire severity and each of the predictors 
included in Random Forest models: a) VARI index; b) Actual Evapotranspiration from Meteosat Second 
Generation satellite (AETMSG); c) Water deficit; d) Actual Evapotranspiration from from MODIS satellite 

(AETMODIS); e) Land Surface Temperature (LST). 
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Table 1. Pearson’s correlation coefficients (r) between pairs of predictors (biophysical 

variables related to fuel conditions)

AETMODIS (Actual Evapotranspiration obtained from the MOD16A2 global evapotranspiration product); AETMSG 
(Actual Evapotranspiration obtained from the Meteosat Second Generation).

VARI index AETMODIS AETMSG Water deficit LST

VARI index 1.00 0.00 -0.01 0.00 -0.11

AETMODIS 0.00 1.00 -0.60 0.53 -0.21

AETMSG -0.01 -0.60 1.00 -0.61 0.35

Water deficit 0.00 0.53 -0.61 1.00 -0.43

LST -0.11 -0.21 0.35 -0.43 1.00
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