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Abstract 
 

Actual and future technological progress demands the progressive introduction of po-

sitioning systems capable of providing more exact and more stable localization. Traditionally, 

Global Navigation Satellite Systems (GNSS) allowed to reach global coverage and the access 

to harsh environments with complex orography. 

However, GNSS navigation for high-demanded accuracy applications requires a deep 

error treatment of the positioning signals in order to reduce the uncertainties generated by 

noise, clock and ionospheric instabilities. Furthermore, adverse phenomena on signals such 

as multipath or Non-Line-of-Sight (NLOS) propagation can incapacitate the employment of 

GNSS in indoor applications, low-level flights or complex environments. 

Consequently, over the last few years, Local Positioning Systems (LPS), with an ad-

hoc adaptation to their environment of operation, are deployed allowing the reduction of the 

uncertainties in the position calculation of the GNSS and mitigating the adverse effects on 

the positioning signals thus attracting a relevant research interest. Nevertheless, the deploy-

ment of the LPS arises novel challenges which had been previously solved in the GNSS or 

that emerge as a consequence of the proximity among the target and the architecture sensor 

nodes. 

Among the different LPS configurations, those concerning temporal measurements -

Time-Based Positioning Systems (TBP)- stand out by reaching an optimal trade-off among 

accuracy, availability, robustness, easy-to-implement hardware configurations and system 

costs. Consequently, the local TBP architectures are analyzed in this dissertation as promising 

candidates for meeting the future technological demands. 

Thus, the most relevant specific problems of time LPS are addressed in this doctoral 

thesis such as the disambiguation in the position calculation with the minimum number of 

architecture nodes, the optimized deployment of sensors for reducing the architecture un-

certainties or the consideration of possible sensor failures in the architecture sensors of the 

positioning systems. 

Firstly, in Chapter 4, a methodology for the calculation of the position with the mini-

mum number of nodes of a TDOA LPS architecture is proposed. This methodology allows 

the solution of the mathematical ambiguity generated by the intersection of non-linear sur-

faces of possible target locations. The solution of this problem requires the maximization of 



 

 

the distance between solutions of the ambiguous case through an optimized sensor distribu-

tion which enables the application of an iterative positioning algorithm with total reliability. 

In Chapter 5, a procedure for the optimization of the sensor deployment in LPS ar-

chitectures considering not only their performance in nominal operating conditions but also 

their behavior in eventual failure conditions of some of the architecture sensor nodes is pro-

posed. The results indicated that this kind of optimization minimally reduces the system 

performance in nominal conditions but reaches a notable improvement in emergency oper-

ating conditions. 

Additionally, the emergence of novel asynchronous LPS architectures recommends 

the application of this methodology for treating an eventual failure in the Coordinator Sen-

sors (CS) of the positioning architecture. This enables the mitigation of the main disad-

vantage of asynchronous methods: the impossibility of accessing some of the system CS in 

any spatial region promoting the temporal unavailability of the asynchronous architecture in 

some locations. Thus, the principles of the optimization of the Chapter 5 are applied on 

Chapter 6 in order to reach the minimization of clock and noise uncertainties of the A-

TDOA architecture in both nominal and failure operating conditions. In addition, the opti-

mal combination of sensors in coverage for the determination of the target location is studied 

in this chapter for reducing the uncertainties in NLOS imbalanced signal-degradated scenar-

ios.  

Chapter 7 extends the methodology of Chapter 6 for the finding of optimal sensor 

placements for reaching acceptable accuracy, availability and robustness properties in the 

main temporal LPS architectures (TOA, TDOA and A-TDOA). This allows the definition 

of a common framework for the comparison of the temporal LPS architectures in their de-

ployment in complex urban scenarios. This framework is necessary due to the imbalanced 

clock and noise error distribution of the temporal LPS architectures which produces that 

there cannot be defined any suitable a priori configuration to be deployed in complex sce-

narios. 

Finally, in Chapter 8, a memetic algorithm for the Node Location Problem (NLP) in 

harsh NLOS scenarios in which there exist discontinuity in the fitness function evaluation 

among contiguous solutions is proposed. This requires the introduction of a procedure for 

the local search based on the exploration of variable contiguous neighborhoods of solutions 

which are unfavored by the evolutionary process traditionally introduced in the literature 

approaches of the NLP. The analysis of the suitability of the neighbors can be exclusively 



 

 

focused on the evaluation of the positioning signal paths since clock and geometric errors 

remain practically constant in neighborhood solutions which enables an efficient exploration 

during the local search procedure. The results indicate the preeminence of the memetic al-

gorithm performance with regards to the exclusive traditional genetic exploration of the lit-

erature of the NLP.   

 

 

 

 

 

  



 

 

Resumen 
 

El desarrollo tecnológico actual y futuro demanda de forma progresiva la introducción 

de sistemas de posicionamiento que sean capaces de proporcionar localizaciones más exactas 

y estables a lo largo del tiempo. Tradicionalmente, se han empleado los sistemas de navega-

ción satelital (GNSS) que permitían alcanzar cobertura global y el acceso a territorios con 

orografías especialmente complejas. 

Sin embargo, la navegación GNSS para aplicaciones de elevada precisión requiere de 

un profundo tratamiento de las señales de posicionamiento para reducir las incertidumbres 

generadas por el ruido, las mediciones temporales y las inestabilidades ionosféricas. Además, 

fenómenos adversos en las señales como el multicamino o la propagación en condiciones de 

falta de línea de visión (NLOS) pueden inhabilitar el uso de los GNSS en el interior de edi-

ficios, en navegación de baja cota o en entornos con profundas irregularidades. 

Como consecuencia, en los últimos años, aplicaciones de posicionamiento local (LPS), 

con especiales características adaptadas al entorno en el que son desplegados, permiten re-

ducir la incertidumbre en el cálculo de la posición de los GNSS y mitigar los efectos negativos 

en las señales de posicionamiento, alcanzando con ello un gran interés de investigación. No 

obstante, el despliegue de los LPS supone nuevos desafíos que ya se encontraban resueltos 

en los GNSS o que surgen como consecuencia de la proximidad entre el objetivo de posi-

cionamiento y los sensores del sistema. 

Entre los diferentes LPS, aquellos basados en mediciones temporales, son los que per-

miten lograr una mejor relación entre exactitud, estabilidad, robustez, sencillez de implemen-

tación y coste. Por ello, los LPS temporales son analizados en esta tesis doctoral como can-

didatos para satisfacer las futuras aplicaciones de precisión tecnológicas. 

Es por ello que, en esta disertación se abordan problemas específicos de los LPS tem-

porales como la desambiguación del cálculo de la posición con el mínimo número de senso-

res, el despliegue optimizado de los sensores de sus arquitecturas o la consideración de posi-

bles fallos de operación de los nodos de las arquitecturas de posicionamiento. 

En primer lugar, en el capítulo 4, se propone una metodología para el cálculo de la 

posición con el mínimo número de sensores de una arquitectura LPS TDOA logrando la 

resolución de la ambigüedad matemática que se genera por la intersección de superficies no 

lineales. Esta metodología requiere la maximización de la distancia entre las dos soluciones 

que se generan en el caso ambiguo mediante una distribución optimizada de los sensores en 



 

 

el espacio que permita la aplicación de un algoritmo de posicionamiento iterativo con total 

confianza. 

En el capítulo 5, se plantea un procedimiento de optimización de la distribución de los 

sensores de las arquitecturas LPS que no tiene únicamente en cuenta el funcionamiento del 

sistema en condiciones nominales sino también su funcionamiento estable en caso de fallo 

de alguno de sus sensores. Los resultados mostraron que este tipo de optimización reduce 

mínimamente las prestaciones del sistema en condiciones nominales, pero alcanza una me-

jora notoria de su funcionamiento en condiciones de emergencia. 

Por otra parte, el surgimiento de nuevas arquitecturas asíncronas LPS recomienda el 

uso de esta metodología del capítulo 5 para tratar el fallo eventual de los sensores coordina-

dores de posicionamiento asíncrono. Esto permite resolver la principal desventaja de estos 

sistemas: la imposibilidad de acceso a alguno de estos sensores coordinadores en alguna re-

gión del espacio produce la pérdida temporal de la disponibilidad de posicionamiento de las 

arquitecturas asíncronas en estos lugares. Por ello, se aplica el principio de optimización de 

las distribuciones de posicionamiento del capítulo 5 en el capítulo 6 para permitir la minimi-

zación de los errores de ruido y relojes de la arquitectura asíncrona A-TDOA en condiciones 

nominales y de emergencia. Además, se estudia en este capítulo la combinación óptima de 

sensores en cobertura para el cálculo de la posición en condiciones NLOS con degradación 

desbalanceada de la señal. 

En el capítulo 7 se extiende la metodología del capítulo 6 para encontrar despliegues 

de sensores optimizados que alcancen buenas propiedades de exactitud, disponibilidad y ro-

bustez en las principales arquitecturas LPS temporales (TOA, TDOA y A-TDOA). Esto 

permite la generación de un marco común de comparación de las arquitecturas temporales 

para su despliegue en escenarios urbanos complejos. Este marco es necesario ya que en las 

arquitecturas LPS temporales se produce una distribución desbalanceada entre los errores de 

reloj y de ruido de estos sistemas que hace que no se pueda definir a priori la idoneidad de 

una arquitectura sobre las demás en escenarios complejos. 

Por último, se presenta en el capítulo 8, un algoritmo memético para la resolución del 

problema de colocación de sensores de posicionamiento (NLP) en entornos complejos 

NLOS en los que se produzca discontinuidad en la función de evaluación de la calidad de 

una distribución de sensores entre soluciones contiguas. Esto requiere la introducción de un 

procedimiento de búsqueda local basado en la exploración de vecindades colindantes en es-

pacios de soluciones no favorecidos por la evolución genética presentada tradicionalmente 



 

 

en la literatura. El análisis de la idoneidad de los vecinos puede centrarse exclusivamente en 

la evaluación de los caminos de las señales de posicionamiento ya que los errores de relojes 

y geométricos son prácticamente constantes, lo que permite alcanzar una gran eficiencia en 

el proceso de búsqueda local. Los resultados demostraron la prevalencia de esta técnica con 

respecto a la exclusiva exploración genética tradicional. 
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Chapter 1 

Objectives and thesis organization 
 

1.1. Objectives 
This dissertation looks for a deep analysis on the deployment of Local Positioning 

Systems (LPS) for high-demanded accuracy applications. In this general framework, there 

are some general objectives of the thesis and particular specific aims in each of the research 

chapters. The general objectives of the dissertation are presented hereafter while the partic-

ular goals of each chapter are described in Chapter 3 and in each of the research items pre-

sented from Chapter 4 to Chapter 8: 

 Study of the performance of Local Positioning Systems with the minimum 

number of nodes for determining the target location. 

 Definition of a methodology for achieving the disambiguation of the calcula-

tion of the position with the minimum number of nodes in Time Local Posi-

tioning Systems. 

 Design of an enhanced procedure for the deployment of architecture sensor 

nodes in LPS considering eventual critical operating conditions by possible 

sensor failures in the positioning architecture. 

 Analysis of novel asynchronous methodologies for their application in Local 

Positioning Systems: design, implementation, deployment, availability and ro-

bustness studies. 

 Development of a novel cost-effective methodology for the reduction of clock 

and noise uncertainties in Time Local Positioning Systems. 

 Adequate selection of system nodes for the calculation of the position in the 

coverage area of Local Positioning Systems. 

 Analysis of the interaction between Worker and Coordinator Sensors in Asyn-

chronous Local Positioning Systems. 

 Definition of a common framework for the selection of the most appropriate 
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Time Local Positioning System in NLOS complex urban scenarios based on 

accuracy, availability, robustness and system costs. 

 Analysis of the metaheuristic techniques employed for solving the Node Lo-

cation Problem in Wireless Sensor Networks. 

 Study of the influence of the Genetic Algorithm operators and Local Search 

techniques in the Node Location Problem. 

 Proposition of a novel Hybrid Memetic methodology for addressing the Node 

Location Problem in NLOS complex scenarios in which there exist disconti-

nuity in the fitness function evaluation among contiguous solutions.  

1.2. Main contributions 
A synopsis of the major contributions of this dissertation is presented hereafter: 

I. Definition of a methodology for solving the ambiguity in the target location in 

3D with the minimum number of nodes through the definition of a conver-

gence sphere acting as a confidence interval for the definition of the starting 

point of an iterative method for the position calculation. 

II. A novel strategy for the deployment of architecture sensor nodes based on 

primary and emergency conditions which allows the system adequate function-

ing in failure conditions. 

III. The characterization of the system clock and noise uncertainties in LOS and 

NLOS conditions for the main Time Local Positioning Systems: TOA, TDOA 

and A-TDOA. 

IV. Definition of the most appropriate combination of sensors under coverage for 

the position calculation based on the reduction of the Cramér-Rao Bounds in 

each analyzed point under coverage. 

V. Solution of the potential coordinator sensor unavailability in failure conditions 

of asynchronous node deployments. 

VI. The proposition of a novel methodology for the coverage problem in localiza-

tion in nominal and emergency conditions. 

VII. Definition of a common framework for the comparison of the performance 

of Time Local Positioning Systems in NLOS complex urban scenarios. 

VIII. Adaptation of a flexible optimization of the sensor distribution to urban sce-

narios. 
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IX. Proposition of a Hybrid Memetic Algorithm for the solution of the Node Lo-

cation Problem based on an intelligent usage of the GA operators during the 

evolutionary process and a Variable Neighborhood-Descent Local Search 

Strategy for exploring potential unfavored spaces of solutions. 

1.3 Thesis Organization 
The structure of this dissertation is presented in this Section. Chapter 1 defines the 

main objectives of the dissertation, presents the contributions of the doctoral thesis, provides 

the organization of the document and introduces the research funding projects and the re-

search group in which the thesis has been developed.  

Chapter 2 provides a general introduction to the LPS including the state-of-art tech-

nologies, the definition of the areas in which the LPS are applied, the main LPS architectures, 

a particularization on the Time-Based systems and the positioning algorithms used in the 

literature.  

Later, the importance of the solution of the NLP in LPS is highlighted. The main 

heuristic techniques for addressing this NP-Hard complex problem are presented and the 

relevance of the GA due to their trade-off between diversification and intensification is men-

tioned.  

Then, the characterization of the system uncertainties for determining the quality of 

the node distributions through the Cramér-Rao Bounds is analyzed, finalizing the Chapter 

with the proposal of the main research lines of this dissertation along with some of the con-

tributions of the thesis. 

Chapter 3 introduces the connection among the research chapters of this dissertation 

and the general investigation performed in the localization field during the development of 

the doctoral thesis. 

Chapter 4 analyzes the mathematical ambiguity in the position calculation of TDOA 

systems with four architecture sensor nodes. A methodology for solving the 3D TDOA 

problem with the minimum number of nodes is proposed through the definition of a con-

vergence sphere from which any inside point can act as starting point for the determination 

of the target location with total reliability.  

Chapter 5 proposes a novel methodology for achieving the optimal performance of 

the TDOA architecture in cases of some sensor malfunction with a minimal reduction of the 

accuracy in nominal operating conditions. In addition, the solution of the 4-node 3D TDOA 
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problem is guaranteed in failure conditions of any of the architecture sensors. 

Chapter 6 presents a cost-effective strategy for the deployment of asynchronous sensor 

networks. It solves the coverage problem in cases of Coordinator Sensor failure by assuming 

the optimization for primary and secondary (emergency) conditions of the localization sys-

tem. In addition, a technique for calculating the position with the most beneficial nodes un-

der coverage is provided. 

Chapter 7 introduces a methodology for the comparison of the performance of the 

most relevant Time-Based Positioning Architectures (TOA, TDOA and A-TDOA) in NLOS 

complex urban scenarios. This comparison is provided once the sensor distribution of each 

architecture is optimized since a priori optimal configurations cannot be directly determined. 

The optimization criteria are accuracy, robustness, availability and cost of each architecture. 

Chapter 8 investigates the Node Location Problem in the localization field. It provides 

a definition of the complexity of the problem and analyzes the metaheuristic techniques that 

have been employed for addressing this NP-Hard problem. After this analysis, a Hybrid Me-

metic Algorithm, which combines the beneficial effects of the Genetic Algorithms in the 

Node Location Problem along with a Local Search Procedure for examining potential unfa-

vored regions of the space of solutions, is proposed. 

Finally, Chapter 9 provides the concluding remarks and the future investigations de-

rived from the results obtained in this dissertation. 

1.4 Research Framework 
This work has been developed in the SINFAB research group of the University of 

León under the supervision of the Dra. Hilde Pérez García. The group has been involved in 

two national research projects during the thesis development: DPI2016-79960-C3-2-P of the 

Spanish Ministry of Economy, Industry and Competitiveness and PID2019-108277GB-C21 

of the Spanish Ministry of Science and Innovation. These two research projects have funded 

the research activities of this doctoral thesis. 
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Chapter 2 

General Introduction
 

The development of mobile technologies requires user localization for multiple appli-

cations for proportionating personal and adapted services of high quality. These technologies 

often use the signals of the Global Navigation Satellite Systems (GNSS) for providing global 

coverage with reduced cost. 

However, other technological applications with heavy accuracy needs are suffering the 

limitations of the GNSS for supplying a stable and low-uncertainty position determination. 

These problems are boosted by complex orographic terrains [1], indoor environments [2], 

tunnel and low-level navigation [3,4] or underwater localization [5]. GNSS have traditionally 

mitigated their problems in this kind of activities through two different strategies: a deep 

signal error treatment for reducing clock [6], noise [7] and ionospheric uncertainties [8] and 

the terrestrial deployment of augmentation systems for reducing the global navigation un-

certainties. 

Nevertheless, GNSS were conceived for providing global coverage and although the 

increase of the satellites in space could partially mitigate their limitations, every new satellite 

in orbit supposes a notable increment of the system costs. This consideration has led the 

research interest over the last decades through the combination of the signals of the most 

important GNSS (GPS, Galileo, GLONASS or BeiDou) with multi-constellation techniques 

[9] for reducing the individual errors of the systems thanks to the liberation of the use of 

GNSS in the last few years. 

However, GNSS efforts for achieving better accuracy results are not applicable for 

reaching the accuracy needs of some application fields such as surveillance, rescue opera-

tions, precision farming or indoor and outdoor navigation of autonomous vehicles. Conse-

quently, Local Positioning Systems (LPS) [10] are being actually developed. LPS are based 

on the deployment of terrestrial sensor networks in which the proximity between target and 

sensors allows the reduction of the uncertainties in the position determination. LPS are clas-

sified through the physical property measured for determining the target location: time [11], 
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power [12], phase [13], frecuency [14], angle [15] and combinations of them [16,17]. 

Among the LPS, those based on temporal measurements provide the best trade-off 

among accuracy, stability, robustness, availability, easy-to-implement hardware configura-

tions and system costs. As a consequence, this dissertation delves into the analysis of time-

based LPS architectures for its application in high-demanded accuracy applications. 

Focusing on time-based LPS, three main architectures are distinguished: Time of Ar-

rival (TOA) [18], Time Difference of Arrival (TDOA) [19] and Asynchronous Time Differ-

ence of Arrival (A-TDOA) [20]. 

TOA systems measure the total time of flight of a positioning signal from an emitter 

to a receiver. This total time can be converted in a distance between emitter and receiver 

through the speed of flight of the positioning signals, usually the speed of the radioelectric 

waves (𝑐𝑐).  Since the emitter can be located in any spatial position whose difference to the 

receiver is this distance measurement, every positioning signal produces a sphere of possible 

target locations. Thus, the solution of the three-dimensional (3D) TOA problem requires at 

least three different receivers for generating three different spheres. However, the non-linear 

conditions of the spherical equations promote an ambiguity in the intersection of the three 

spheres that cannot be mathematically solved, thus inducing the introduction of one more 

receiver for totally solving the 3D TOA problem. 

TDOA systems are based on the measurement of the relative time of flight between 

the signal arrival to two different receivers. While TOA systems require the synchronism 

among the target and all the sensor clocks since the instant of the emission is needed for 

computing the time measurements, the relative time measurements of the TDOA systems 

induce the synchronization to be only mandatory among the system sensors clocks. In addi-

tion, TOA systems consider only the direct path between the emitter and the receiver while 

TDOA systems require a pair of positioning signals for computing the time measurements. 

This produces the 3D TDOA problem to require one more sensor for the position calcula-

tion. Furthermore, the relative time measurements generate hyperboloid equations instead 

of spheres but the ambiguity in the position calculation in this case with four nodes is still 

present. In Chapter 4, a methodology for addressing the disambiguation in TDOA systems 

which can be extended to any localization architecture in LPS is provided [21]. 

A-TDOA systems avoids the synchronism through a receive and retransmit strategy 

of the positioning signal using the collaboration of the target. This allows the computation 
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of the time measurements in a single clock of a coordinator sensor reducing the clock uncer-

tainties in the time measurements. This characteristic has supposed the A-TDOA architec-

ture to be especially promising in LPS applications since an important amount of the system 

uncertainties is due to the synchronism effect on LPS. A-TDOA architecture produces ellip-

soid equations [22] which unequivocal intersection requires four equations and five sensors 

from a mathematical point of view. 

The solution of non-linear equations in each of the architectures has led to multiple 

positioning algorithms in the literature. Generally, these algorithms are classified in closed-

form algorithms and iterative algorithms. Closed-form algorithms [23] provide a direct solu-

tion of the localization problem but they have shown to be more instable in the cases in 

which the temporary measurements are collected in noisy environments. Iterative algorithms 

[24] allow an error treatment but depend on the starting position from which the method is 

initialized. An incorrect selection of the starting point can cause algorithm convergence prob-

lems especially when the initial position is far away from the target location. 

However, regardless the positioning architecture used and the algorithm selected for 

the position determination, the spatial distribution of the architecture sensors in space is 

critical for achieving valid localization uncertainties in LPS. 

This problem requires the optimization of the sensor distribution and it is known as 

the Node Location Problem (NLP). It has been assigned as NP-hard [25], not allowing the 

solution in a polynomial time and suggesting the employment of metaheuristic techniques 

for finding optimal sensor placements. As a consequence, simulated annealing [26], the firefly 

algorithm [27], the dolphin swarm algorithm [28], the bacterial foraging algorithm [29], the 

elephant herding optimization [30], diversified local search [31] but especially Genetic Algo-

rithms (GA) in the localization NLP [32-34] have been employed for addressing this prob-

lem. The GA have stand out due to their trade-off between diversification and intensification 

in the space of solutions. However, in this dissertation a novel promising technique for the 

NLP is introduced in Chapter 8 (memetic algorithms). The memetic algorithm proposed 

highlights the necessity of addressing the difficulties in the exploration of potentially unfa-

vored spaces of solutions in imbalanced signal degradation environments in Non-Line-of-

Sight (NLOS) conditions. 

These essential optimizations of the sensor locations in the NLP require a fitness func-

tion for the determination of the quality of the sensor distributions in order to reduce the 
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system uncertainties thus boosting the accuracy, availability and robustness properties of 

each localization architecture.  For achieving a valid characterization of the system uncer-

tainties, LPS require the modeling of the covariance matrix of the Cramér-Rao Lower Bound 

(CRLB) [35,36]. This modeling is flexible to introduce the system uncertainties of LPS and 

finally allows the obtainment of the minimum achievable error by any positioning algorithm 

in a determined target location. The derivation of the CRLB cannot be jointly calculated in 

every possible target location under coverage [37] which also suggest the employment of 

heuristic algorithms for the NLP. 

The characterization of the noise and clock uncertainties of our recent works has al-

lowed the optimization of each of the time LPS architectures analyzed in this dissertation for 

extracting valid conclusions on the implementation and deployment of LPS in actual oper-

ating conditions in the next chapters.  
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Chapter 3 

Research evolution and chapters linkage
 

The research studies presented in this dissertation are part of the investigation devel-

oped in the SINFAB group of the University of León. The objective of this chapter is to 

clarify the linkage among the next chapters (4-8) and the general framework and evolution 

of the research activities performed over the last few years. 

The investigation started with the conception of analyzing the possible implementation 

of LPS to the guided navigation of emerging autonomous vehicles. The accuracy needs of 

these systems suggested the deployment of an ad-hoc sensor network for improving the 

accuracy results of the GNSS. 

The first step demanded the analysis of the particularities of the LPS with regards to 

GNSS. One of the first discoveries was that the position determination with the minimum 

number of sensor nodes presented an elevated complexity with regards to GNSS. While the 

ambiguity in the position determination with 3 satellites in TOA systems and with 4 satellites 

in TDOA systems had been traditionally solved through the avoidance of the incoherent 

solution (e.g. one of the two possible solutions was traditionally outside the earth`s surface, 

inside the ground surface or extremely separated from the last known target location), in LPS 

the reduced separation among solutions did not allow us to directly solve this adverse sce-

nario. 

As a consequence, a methodology based on the principles of an iterative positioning 

algorithm was developed to solve the minimum number of nodes-TDOA problem in Chap-

ter 4 [1]. This methodology showed that under optimized node distributions in which the 

distance between solutions is maximized, the 4-node 3D TDOA problem presented the 

properties of an analogous one with more sensors where the position disambiguation is 

achieved. Firstly, this optimal node distribution was searched by analyzing regular sensor 

network patterns where we found that the achievement of the best combination of sensors 

in space for solving this problem does not follow any design pattern. As a consequence, we 
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discovered the NLP in wireless sensor networks which was NP-Hard and suggested the us-

age of heuristics for addressing this complex problem. 

In this context, we conducted our research in order to discover the relation among the 

spatial distribution of the sensors with the main properties of the LPS: target position calcu-

lation uncertainties, system availability and robustness.  

Although, traditionally, the noise uncertainties related with the geometric disposition 

of the target and satellites in the GNSS had been modeled through the Position Dilution of 

Precision (PDOP), the PDOP is based on the homoscedastic error consideration since the 

signal travels similar paths from the satellite to the target in GNSS. This is not the case for 

LPS in which the positioning signal travel significantly differs among the architecture sen-

sors. As a consequence, we defined a heteroscedastic noise consideration for time LPS based 

on a Log-Normal path loss model which especially fits in LPS application scenarios. We later 

applied this model to the comparison of the noise uncertainties of two novel asynchronous 

architectures (Asynchronous Time Difference of Arrival and Difference-Time Difference of 

Arrival) which had shown an excellent adaptation for LPS applications [2]. 

 The two architectures were compared in five different node distributions showing the 

A-TDOA architecture a better accuracy and stability for LPS applications. 

The analysis of the asynchronous architectures was selected since the avoidance of the 

necessary synchronism of the target and system clocks in TOA systems and the system clocks 

in TDOA represented a key amount of the global error in LPS. 

However, this error analysis of the asynchronous architectures was performed in reg-

ular environments of simulations in which the best combination of sensors of each architec-

ture had not been achieved. As a consequence, we developed a heuristic methodology for 

finding optimal node deployments in irregular scenarios of simulations. We created a frame-

work for simulating any actual irregular scenario of application of an LPS. In this scenario, 

we distinguished between the zone for the navigation of the vehicles, Target Location Envi-

ronment (TLE), and the possible locations in which the architecture sensors can be deployed, 

Node Location Environment (NLE).  

This distinction must be applied in LPS which supposes the principal difference with 

literature optimizations of Wireless Sensor Networks since the possible locations of the tar-

get must be considered jointly in the optimization process. In addition, this particularity 
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makes that the error characterization of [2] cannot be derived in the entire TLE, thus rec-

ommending again the heuristic approach for the finding of optimal node distributions. 

As a consequence, we applied the noise error characterization introduced in [2] to the 

Cramér-Rao Lower Bound (CRLB) covariance matrix since it provides the minimum achiev-

able error by any positioning algorithm for characterizing the quality of a node distribution 

in a GA in which we included an irregular definition of the scenario of simulations of an A-

TDOA architecture [3]. 

Results showed that significant improvements on the accuracy of the LPS can be 

achieved by optimizing the node deployments in these irregular scenarios. However, these 

optimizations considered exclusively the performance of the LPS in nominal operating con-

ditions (i.e. all the architecture sensors correctly operating). This promoted that an eventual 

failure of some of the system elements could promote that the whole system could instantly 

increase the system errors thus promoting the useless of the LPS application. 

We proposed in [4] (Chapter 5), a methodology for an enhanced performance of the 

LPS in failure conditions by optimizing the system performance for every combination of 

sensors that exceeds the minimum number of sensor nodes in every analyzed TLE point. In 

addition, we guaranteed the system operation for the minimum number of nodes with the 

maximization of the sphere of convergence defined in [1] for every combination of four 

sensors under coverage. Results showed that optimizations considering emergency condi-

tions (i.e. possible sensor failures) perform similar to only nominal optimizations in primary 

conditions but significantly outperformed these nominal optimizations in failure conditions. 

[5].  

However, the uncertainties in the position determination are notably affected by the 

temporal architecture measurements in LPS in addition to the noise uncertainties previously 

defined. This led us to the characterization of the clock errors in the covariance matrix of 

the CRLB. We generated a model in which the clock drift, initial-time offset and the instru-

ment truncating errors are considered [6]. This model allows the comparison of the three 

main Time-Based Positioning Systems in LPS considering the noise characterization [2] and 

the proposed clock error definition [6] under optimized node deployments in irregular sce-

narios of simulations [3]. 

Results showed that asynchronous architectures are more stable in Line-of-Sight 
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(LOS) conditions than the synchronous time architectures due to the avoidance of the syn-

chronism necessity. However, the results were not conclusive since the asynchronous archi-

tecture demands the receive and retransmit strategy in the positioning signal which increases 

the signal paths. As a consequence, an increased in the noise uncertainties is produced which 

can affect the asynchronous performance in NLOS scenarios (significant signal degradations) 

and increases the probability of suffering adverse effects on signals such as multipath. 

Therefore, we included the NLOS paths in the noise characterization of the CRLB for 

the A-TDOA architecture provided in [2] by extending the Log-Normal Path Loss Model in 

[7]. This required the development of a novel algorithm for distinguishing the LOS and 

NLOS paths of the positioning signal. We also included an algorithm for the detection of 

the multipath phenomena based on the definition of the ellipsoid of the Fresnel Zone which 

produces destructive interferences on the communications channel and the ellipsoid con-

taining the 3D space around the emitter and the receiver of the positioning signal where an 

object can produce a signal which cannot be distinguished from the LOS path (i.e. the one 

used for the temporal measurement).  

The creation of these two algorithms promoted a multi-objective optimization looking 

for a minimization of the system uncertainties and the avoidance of the multipath phenom-

ena in irregular scenarios. 

 The results of [7] indicated that this is an optimal technique for determining the opti-

mal number of sensors required by the architecture for avoiding negative effects on signals 

and for minimizing the system uncertainties. However, this optimization showed the de-

pendence of the A-TDOA architecture on the Coordinator Sensor (CS) Nodes since they 

collect the signals of all the Worker Sensors (WS) for computing the time measurements. 

This promotes that a sub-optimal location of the CS increases in a greater extent the archi-

tecture uncertainties than the WS location. In addition, the optimization found problems for 

finding the optimal location of the CS and not every TLE point could access to at least two 

different CS which could potentially produce a temporal unavailability of the architecture in 

some points in case of a CS malfunction which is a consequence of the dependence of the 

architecture on the CS. 

As a consequence, we realized the importance of optimizing the asynchronous archi-

tectures for both primary and emergency conditions such as the procedure followed in Chap-

ter 5 [4] considering possible CS failures. In addition, in [7] we found that not the total 
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amount of sensors under coverage provides the better accuracy results since especially in 

NLOS environments there are imbalanced degradations of the positioning signals. This con-

clusion suggests the investigation on the best combination of sensors for calculating the tar-

get location. Moreover, the evolutionary process followed in [7] indicated that the conver-

gence of the GA for solving the coverage problem in asynchronous localization was difficult 

to achieve without inducing penalizations in fitness values of the optimization. As a conse-

quence, the sensor distributions in which not the minimum number of sensors reach the 

𝑆𝑆𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 are significantly penalized for guiding the evolutionary process to valid sensor com-

binations. 

Every of these considerations were later considered for building a methodology for 

the deployment of asynchronous Time LPS in Chapter 6 [8]. We proposed an enhanced 

optimization for primary and secondary conditions (i.e. possible CS failures) guaranteeing at 

least two CS available in each point of the TLE region. In addition, we found in [8] the 

optimal configuration of sensors for calculating the uncertainties in the TS location through 

a CRLB model which combines the LOS and NLOS conditions for the noise characteriza-

tion of [7] with the clock uncertainties of [6]. 

This methodology overcomes the principal problem of the asynchronous LPS since 

the unavailability of the CS produces the temporal discontinuity in the calculation of the 

position. In addition, results indicated the suitability of the asynchronous methodologies for 

LPS since the reduction of the clock errors avoiding the synchronism has a relevant impact 

in the reduction of the uncertainties. 

However, the effective reduction of the uncertainties requires in asynchronous LPS 

the deployment of an important amount of CS since at least two of them must be always 

under coverage and the location of these sensors is critical since they must avoid NLOS links 

with the positioning signals and reduce considerably the multipath phenomena. This conclu-

sion promotes that especially singular irregularities in the environment in which the asyn-

chronous LPS are deployed may suppose a relevant increase in the number of CS needed for 

achieving valid results, thus increasing the system costs. 

As a consequence, a deep study of the environment of application of the LPS is re-

quired for determining the optimal time architecture for particularly adapt to the environ-

ment conditions. This conclusion is also based on the different characteristics of the main 

time architectures (TOA, TDOA and A-TDOA).  
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TOA systems collect the higher clock errors since they require the synchronization 

among all the system elements but they cumulate the less noise uncertainties since each of 

the positioning signals only travels from emitter to receiver for producing a localization equa-

tion of possible target locations. 

TDOA systems have an equilibrated distribution of their uncertainties. They have a 

reduction in the clock errors since they avoid the synchronism with the target sensor clock 

like in the TOA systems but they do not reach the complete avoidance of the synchronism 

like in the A-TDOA system. However, TDOA systems increase the noise errors with regards 

to TOA systems since the collection of a time measurement requires two different signal 

paths from emitter to receiver thus cumulating the noise errors of the two signals. But these 

noise errors are reduced with regards to A-TDOA systems in which the receive and retrans-

mit strategy even increases the signal paths of TDOA systems. 

Therefore, A-TDOA systems provide the less clock uncertainties but the larger noise 

cumulated errors. In addition, the CS dependence must be also balanced by the correct node 

deployments and can suffer in particularly irregular scenarios. 

Consequently, we cannot define any a priori perfect architecture for LPS applications 

and there did not exist any approach to that problem in the literature before. Thus, we have 

created in Chapter 7 [9] a novel methodology for comparing the performance of the three 

main time LPS architectures (TOA, TDOA and A-TDOA). This methodology includes the 

system accuracy, robustness and availability performance of each system considering their 

architecture particularities during the optimization process of their node distributions. 

We apply the Log-Normal Path Loss Model with LOS [2] and NLOS conditions [7] 

and the clock uncertainties [6] onto the CRLB of each architecture and we use the method-

ology of [4,5] for considering possible CS failures for guaranteeing optimal performance of 

each architecture in [9]. 

We also make usage of the methodology of [8] for guiding the optimization process 

for finding optimal node distribution which provide accuracy, availability and robustness. 

This creates an optimal framework for comparing the time LPS for applications in complex 

urban scenarios [9]. This has required the modeling of obstacles (i.e. buildings) over the ter-

rain characterization provided in [3] which increases the TLE and NLE areas with a novel 

Obstacle Area (OA) where localization nodes and targets cannot be located. 

  On the other hand, the relevance of solving the NLP in LPS has been demonstrated 
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throughout the research presented in this Chapter. Consequently, the finding of optimal 

node distributions is critical for applying ad-hoc LPS applications. Since it is an NP-Hard 

problem, heuristic methodologies have stand out for providing optimized sensor locations. 

GA, as shown in [3], have highlighted the importance of a trade-off among diversification 

and intensification for the NLP and thus have prevailed in the literature. 

However, we have observed in [7-9] that optimizations in which NLOS conditions are 

considered, provide unstable performance of the evolutionary algorithms. This is due to the 

discontinuity in the fitness function evaluations among contiguous solutions (i.e. node de-

ployments that differ minimally in the coordinates of one architecture sensor) which com-

plicates the analysis of some regions of the space of solutions, not being enough with the 

mutation and crossing operators for exploring this unfavored regions. 

We first tried to avoid this problem through the consideration of hybrid configurations 

in the GA operators which changed along the evolutionary process [10]. This allowed us to 

create two different stages in the GA optimization: a deep - exploration phase followed by a 

heavy - intensification phase. Different configurations of crossover and selection techniques 

are analyzed for each particular scenario proving the preeminence of this technique for 

achieving better optimization results than individual configurations [3]. 

However, this methodology is limited to the scenario of simulations in which the op-

timization is being performed. Consequently, their results are not applicable to any LPS ap-

plication. Therefore, we considered a different optimization technique which could be ap-

plied in any scenario improving the results of the GA in NLOS discontinuity conditions in 

harsh environments. 

As a consequence, in Chapter 8, a Memetic Algorithm (MA) for the NLP in Localiza-

tion is proposed [11]. This MA combines the GA with a Local Search (LS) procedure for 

exploring potential unfavored regions of the space of solutions and for improving the char-

acteristics of the elitist individuals reaching an improvement of the evolutionary process. 

The variable neighborhood-descent (VND) LS is applied to the most different indi-

viduals of the population in order to explore different spaces of solutions. The selection of 

the most different individuals is based on dissimilarity metrics among population individuals.  

One of the most relevant contributions of the LS is the application of a pseudo-fitness 

function which relies on the minimal variation of the geometric and clock errors in the neigh-
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borhood of an individual. Therefore, the reduction of the NLOS links among the architec-

ture sensors and target concerns the LS procedure for improving the individuals of the MA. 

The finding of the most appropriate individual of the neighborhood following this process 

allows the intensification in these spaces such a way it could not be perform in the GA 

optimization. 

Results showed that the combination of an enhanced hybrid usage of the GA operators 

of [10] and the MA proposed in [11] outperforms each of the previous heuristic configura-

tions, reaching an improvement in the accuracy of the A-TDOA architecture of 14% with 

regards to only GA optimizations of [3]. 

More research is being performed nowadays for finding the optimal number of sensors 

directly in the evolutionary process, the application of different heuristic approaches to the 

NLP, the definition of patterns for the deployment of LPS in large-scale application, the 

consideration of new asynchronous architectures or actual implementations of the LPS 

which permits the validation of the CRLB models. This is particularly detailed in Chapter 9 

with the future investigations derived from this dissertation. 
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Abstract  
Time difference of arrival (TDOA) positioning methods have experienced growing 

importance over the last few years due to their multiple applications in local positioning 

systems (LPSs). While five sensors are needed to determine an unequivocal three-dimen-

sional position, systems with four nodes present two different solutions that cannot be dis-

carded according to mathematical standards. In this paper, a new methodology to solve the 

3D TDOA problems in a sensor network with four beacons is proposed. A confidence in-

terval, which is defined in this paper as a sphere, is defined to use positioning algorithms 

with four different nodes. It is proven that the separation between solutions in the four-

beacon TDOA problem allows the transformation of the problem into an analogous one in 

which more receivers are implied due to the geometric properties of the intersection of hy-

perboloids. The achievement of the distance between solutions needs the application of ge-

netic algorithms in order to find an optimized sensor distribution. Results show that posi-

tioning algorithms can be used 96.7% of the time with total security in cases where vehicles 

travel at less than 25 m/s. 

4.1 Introduction 
Positioning is an essential factor for the correct navigation and location of vehicles. 

The accuracy in the calculation of the position has commonly determined the fields where 

positioning has been applied. High technological levels have been achieved when uncertainty 

has been enough reduced. The usage of localization methods has evolved throughout the 
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last few years from a reference object to precision applications such as farming, indoor nav-

igation or manufacturing environment. 

Positioning systems can be divided into those based on time measurements and those 

that measure different properties such as the Angle of Arrival (AOA) [1] [2] or the Received 

Signal Strength Indicator (RSSI) [3] [4] [5]. Among them, time measurement systems are the 

most extended due to availability, accuracy, simplicity and robustness. In this category, TOA 

(Time of Arrival) systems [6] [7] as GPS, GLONASS or Galileo, and TDOA (Time Differ-

ence of Arrival) systems [8] [9] as LORAN, OMEGA or the WAM (Wide Area Multilatera-

tion) system [10]—highly widespread in aircraft environments—are considered. 

TOA systems measure the total time-of-flight of a signal between a transmitter and a 

receptor. They require time synchronization between transmitter and receptor and their ac-

curacy is highly dependent from the clock drift in this synchronization. These time-of-flight 

measurements lead to the equations of 3-dimentional spheres centred on the transmitter, 

with the possible locations of the vehicle in the space. 

In contrast, TDOA systems measure relative times between signal arrival to two dif-

ferent receivers. In this case synchronization is optional, differentiating Asynchronous (A-

TDOA) [11] and Synchronous (S-TDOA) [12] systems. This can lead to a reduction in the 

error levels. In such scenario, time difference measurements generate the equations of hy-

perboloids whose intersection determine the position of the vehicle. 

A number of n equations can be obtained from n different receivers in TOA systems 

due to global time measurements in each receptor. In contrast, relative measurements in 

TDOA systems must consider different combinations of time difference of arrival measure-

ments that are originated from every pair of receivers. These combinations do not allow 

repetitions in pairs 1-2 or 2-1, mainly due to the duplicity of results. However, it is proved 

that from a set of n different receiving sensors in a TDOA problem, only a number of (n-1) 

independent equations can be obtained. In addition, the biggest limitation in the equations 

of spheres and hyperboloids is that they are considered as non-linear equations. This pro-

duces a non-direct resolution of the positioning problem through these equations. This fact 

causes that intersection of spheres or hyperboloids do not have a unique solution in the 

space. Two different solutions can be obtained that cannot be distinguished through mathe-

matical criteria. 

According to rigidity theories in positioning systems [13], to completely determine the 
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unequivocal location of an object in the three-dimensional space, it is necessary a minimum 

of 4 receptors in TOA systems, and a minimum of 5 in the case of TDOA systems. This 

disposition would guarantee one single solution for the positioning problem. However, 

global positioning systems as GPS do not necessarily require an additional satellite for the 

calculation of the position, since the distances between emitter and receptor are so far-off, 

that the sphere equations generated allow to correctly discard the incorrect solution, for be-

ing incoherent or too separated from the previous position of the vehicle. 

This problem, apparently solved in global navigation systems, poses a great importance 

in Local Positioning Systems (LPS) [14] [15], as those used in precision applications such as 

indoor navigation or aircraft landings in nowadays airports. This is due to proximity between 

the two different solutions in these cases so that any solution can be discarded with a stable 

generalized criterion. In this article, a new criterion is proposed to solve this geometric prob-

lem based on the properties of some positioning algorithms. TDOA algorithms will be con-

sidered due to their great usage in LPS [16]. 

In section 4.2, TDOA positioning problem is described. In section 4.3, some different 

algorithms to solve in real-time the TDOA problem are presented while in section 4.4, ficti-

tious point studies based on TDOA algorithms are developed to guarantee a 4 receivers 

TDOA solution and the convergence sphere is defined. We show the great computer pro-

cessing difficulty of the convergence sphere in section 4.5 and a new parameter to process 

the convergence radius is proposed in section 4.6. Section 4.7 develops an optimized node 

localization to solve the 3D TDOA problem. The article concludes with the presentation 

and analysis of the results obtained extracting conclusions of the complete work. 

4.2 The TDOA Problem 
TDOA systems are based on difference time measurements between the signal arrival 

to different nodes or sensors in a network. These measurements can be converted on differ-

ence of distances by multiplying these times by speed emission of the radioelectric waves (c).  

This leads in Euclidean Geometry to the next equation: 

  

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝐼𝐼𝐼𝐼 − 𝑑𝑑𝐼𝐼𝑗𝑗

= �(𝑥𝑥𝐼𝐼 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝐼𝐼 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝐼𝐼 − 𝑧𝑧𝑖𝑖)2

− ��𝑥𝑥𝐼𝐼 − 𝑥𝑥𝑗𝑗�
2 + �𝑦𝑦𝐼𝐼 − 𝑦𝑦𝑗𝑗�

2 + �𝑧𝑧𝐼𝐼 − 𝑧𝑧𝑗𝑗�
2 + ℎ(0,𝜎𝜎) = 𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖 + ℎ(0,𝜎𝜎)           

 

(4.1) 
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where 𝑑𝑑𝐼𝐼𝐼𝐼 is the distance difference between receivers i,j —which is the result of multiplying 

the real time difference of arrival (𝑡𝑡𝑖𝑖𝑖𝑖) and adding a white noise, ℎ(0,𝜎𝜎), that considers at-

mospheric instabilities and time error measurements. This noise is related with signal trans-

mission and measurement of times which cannot be controlled by TDOA algorithms so that 

it is not considered in this paper. In addition, (𝑥𝑥𝐼𝐼 ,𝑦𝑦𝐼𝐼 , 𝑧𝑧𝐼𝐼) are space coordinates of the vehicle 

that is being positioned and (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖, 𝑧𝑧𝑖𝑖), (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 , 𝑧𝑧𝑗𝑗) the coordinates of the nodes i,j that re-

ceive the positioning signal. These equations correspond with hyperboloids that cannot be 

solved in an analytic direct process so that numerical methods must be used to determine 

the problem. 

 

4.3 Algorithms for TDOA problem resolution 
Non-linear equations of hyperboloids must be treated in order to address the TDOA 

problem resolution. Generally, two main methodologies have been considered: those based 

on hyperboloids intersection properties with closed-form solutions and those based on nu-

merical methods, which offer a progressively reduction on the error gradient derivation in 

successive approximations to the final solution. Although these methods could be consid-

ered as analogue, they use different properties and methodologies. However, both of them 

share that univocal TDOA problem resolution must use at least 5 different sensors. Hence, 

from now on, a combined study with a method of each case is proposed to solve TDOA 

problem with only four beacons. 

Bucher and Misra [17] proposed a method based on the properties of the intersection 

of hyperboloids. They show that hyperboloids intersection can always be contained in a 

plane. This process increases one degree of freedom to the problem since a number of n 

receivers generates a number of (n-1) independent hyperboloid equations and (n-2) inde-

pendent intersection planes are obtained using this methodology. That means that to solve 

linearly 3D TDOA problem, where 3 planes are needed, we still have to use 5 different re-

ceivers. Nevertheless, the contention of the intersection of two different hyperboloids in a 

plane is a process where plane equation is independent from hyperboloids equations. As 

consequence, the intersection of two planes (4 nodes) resulting in a line of possible vehicle 

localizations can be verified in any hyperboloid to finally get the two solutions that are 
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achieved in TDOA problems with 4 beacons (i, j, k, l). This methodology leads to two dif-

ferent solutions that for LPS cannot be discarded by any assumable criterion. 

The other method would be based on applying a Taylor approximation truncated on 

first order to linearize the equations and to allow a real-time solution of the problem. In this 

way, a point with enough proximity to the final solution (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) from which a process 

of sequential iterations will be started is selected. These steps will finally allow to obtain the 

vehicle localization through a matrix where the range differences are considered in the next 

way: 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑗𝑗0 +
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

∆𝑥𝑥 +
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

∆𝑦𝑦 +
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

∆𝑧𝑧  (4.2) 

being 𝑅𝑅𝑖𝑖𝑖𝑖 the value of the distance difference in the approximation point and 
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

,  
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

 and 

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

 the partial derivatives of the range differences, particularized for the values of the ap-

proximation point. 

Applying this same process to the other two nodes k and l with reference to the node 

i, 𝑅𝑅𝑖𝑖𝑖𝑖 and 𝑅𝑅𝑖𝑖𝑖𝑖 can be estimated. This leads to the following matrix system: 
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(4.3) 

 

where ∆R is the range differences matrix, H is the partial derivative matrix—commonly 

known as visibility matrix—and P is the position variance matrix. 

Therefore, we can express the matrix system as follows: 

 

H∆𝑃𝑃 = ∆𝑅𝑅 (4.4) 

 

This equation is usually solved through the Least Squares Method [18], as described 

below: 

 

∆𝑃𝑃 = (𝐻𝐻𝑡𝑡𝐻𝐻)−1𝐻𝐻𝑡𝑡∆𝑅𝑅 = �
∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧
� 

(4.5) 
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The coordinates of the solution point in the first iteration would be the result of adding 

all the approximation coordinates to the increments obtained. After several iterations the 

residual error is reduced, reaching the convergence to the real solution once it has become 

lower than the desired precision. However, the convergence of this method depends on the 

initial position chosen to start with the first iteration [19]. Regarding the resolution of the 

TDOA problem, 4 receiving sensors do not always guarantee the convergence of the 

method, and if produced, this can happen towards any of the two possible solutions—which 

prevent us from knowing whether the position calculation is correct. However, in contrast 

to the former method, the calculation of the position now guarantees a single solution instead 

of two possible answers. 

4.4 Fictitious Point Method 
Of all the methods proposed so far, it is not possible to conclude whether the TDOA 

System can be applied to LPS systems with 4 nodes with enough confidence to guarantee 

the correct calculation of the position. Nevertheless, it is possible to affirm that successive 

approximation method does guarantee the convergence—if produced—towards one of the 

possible of the solutions. 

This means that if there were any way to ensure the convergence to occur towards the 

correct solution, the method would allow to solve the problem with 4 sensors. In the case 

the process is convergent, and highly dependent upon the initial point of the iterations, it is 

safe to say that when this initial point is close enough to the solution—the previous solution 

of the vehicle, for instance— the convergence should always take place towards the correct 

solution. To prove this statement, the behaviour of any point located at the plane that con-

tains the two possible solutions is going to be proved for the TDOA problem. Applying the 

successive approximation method to these initial points, the intersection of planes is calcu-

lated. 
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Figure 4.1. Plane of convergence containing the two solutions of a 4 beacon TDOA problem 

As represented in the previous figure, the solutions (in yellow) are categorized between 

two regions (blue and green), which convergence produces towards the closest solution. Re-

gions in red show an absence of convergence with the successive approximation method. As 

it is a 3-D positioning system, it is necessary to extrapolate the same reliable zone—for the 

position calculation with 4 nodes—to a 3-D space, to find the solution to the problem. The 

resulting figure would necessarily be a sphere—since the vehicle can move in any direction—

with the solution as centre. 
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Figure 4.2. Analysis of a convergence radius of a sphere towards the solution. All the points in the sur-

face of the sphere are proved as initial points in the successive approximation method to calculate the 

position towards the center of the sphere. In this figure, the first not convergent radius is presented 

where instabilities are represented in red. 

Figure 4.2 shows the first non-convergent radius in a convergence analysis where in-

stabilities in convergence have appeared and represented in red. Therefore, we define the 

convergence sphere around the correct solution, as that the one that has the maximum radius 

which guarantees that all the points in the surface of the sphere are convergent towards the 

inner solution.  

Therefore, it is possible to conclude that a volume with four receiving sensors within 

coverage can be defined where the calculation of the position will be reliable if the distance 

from the initial point to the solution is inferior to the minimum radius of convergence, for 

all points of that volume. 

 

 

4.5 Convergence Parameter Modification 
Convergence radio is calculated from the evaluation of the points from the sphere 

centered on the desired solution. In the case that all these points of the sphere converge 

towards the inner solution, the value of the radius of convergence increases until there exists 
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any divergence in any point.  This gradual process of incrementing the radius, involves a 

higher number of calculation points for each iteration process, which cannot be assumed in 

a reasonable time. 

Taking this into account, a different way to determine convergence is proposed in this 

paper. The surrounding of the solutions finds a region in which convergence is not reached 

in the fictitious point method.  This region is considered to be the border between the two 

intervals of convergence when sequential approximations are used to find the solution. Thus, 

if the two solutions could be separated enough, the discontinuity region could be ousted 

from the solutions.  

This would increase the convergence radius in this case. This problem statement leads 

to associate the convergence radius with the distance between solutions. To show that, con-

vergence radius and distance between solutions are calculated in a representative number of 

points in the coverage area of a concrete node distribution. For this purpose, the spatial 

volume where positioning is going to be used to locate a target is divided in small steps in 

the three Cartesian coordinates in order to evaluate in each point the convergence radius and 

the distance between solutions to show the correlation between the parameters. 

 

Table 4.1. Correlation between radius of convergence and distance between solutions. 

Parameter  Convergence 
radius 

Solutions 
distance 

Convergence 
radius 

Pearson Correla-
tion Coefficient 

(PCC) 
1 

0.999 

S. (bilateral) - .000 
Samples 33306 33306 

Solutions dis-
tance 

Pearson Correla-
tion Coefficient 

(PCC) 
0.999 

1 

S. (bilateral) .000 - 
Samples 33306 33306 

 
 

 

The correlation between these two factors is shown in Table 4.1 and reaches a value 

of 0.999. This value allows to conclude that any variation of these two parameters will be 

strongly related with the other. 
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In this sense, the new parameter can be calculated leading us to a new conclusion: the 

maximization of the distances between solutions in every coverage point of a concrete node 

distribution, leads to the increase of the interval of confidence of the sequential approxima-

tion method to solve the 4 beacon TDOA problem. 

However, for a determined sensor distribution, the distances between solutions in the 

4 beacon TDOA problem are fixed. Hence, in order to maximize this parameter, a search 

for the optimum node distribution is needed. This will lead to maximize the convergence 

interval of the algorithm. 

4.6 Optimization of the node distribution for the 4 beacon TDOA prob-

lem 
The calculation of the distance between solutions allows us to process the radius of 

convergence in a reasonably period of time. Due to the geometric properties of the intersec-

tion of hyperboloids, some particularities should be considered when a maximization of this 

parameter is performed.  

 

 

Figure 4.3 Outliers of the correlation between radius of convergence and distance between solutions. 

A set of points with high distance between solutions values is shown in Figure 4.3. 

These points do not have a direct correlation with the radius of convergence but they repre-

sent less than 5% of the total points. This is due to near-tangent condition in the intersection 



 

 
31 

 

 

of two different branches of the hyperboloids. The effect of this condition is the distancing 

of the two solutions. 

A different circumstance is when it is observed a distance between solutions of 0—

which is the tangent case—and does not permit a correlation with the convergence radius in 

this context. The distancing of the solutions or the existence of only one of them modifies 

the convergence problem in a 4 beacon TDOA problem. The problem is converted into a 

different case of convergence where more receivers were concerned. 

However, these points imply great distortion for the comparison of statistical proper-

ties of the node distributions based on the distance between solutions in the 4 beacon TDOA 

problem. In order to remove this type of points, a filter is applied before performing an 

optimization. The filtering process is run in two different steps: 

1. Elimination of points where distance between solutions is equal to 0. 
 

2. Introduction of a parameter to remove the outliers where the distance between 
solutions is aberrant without losing the representativeness of the sample val-
ues. 

 
This second step is controlled with the parameter r which measures the correlation 

between the mean of the sample values of the distance between solutions and their both 

ends as a dispersion indicator. 

 

𝑟𝑟 =
𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠)
 

(4.6) 

 

It is concluded that node distributions with outliers show values of r above 2.5 so that 

an elimination of points must be performed until a value of r smaller than 2.5 is obtained. In 

this case, the methodology followed is based on the standard deviation. In the first steps of 

the filter, the standard deviation has high values as a consequence of the outliers. This cir-

cumstance allows us to define the limit of the points discarded as a sum of the media and 

the standard deviation.  

This process is performed iteratively until the r value is reduced. In the final step of 

the filter, more than 85% of the sample points are preserved and the representativeness is 

guaranteed, as is shown on Figure 4.4. 
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Figure 4.4 Sequential reduction of the r-correlation factor. The outliers are removed with this iteration 

process. The remaining distribution (r=1.92) does not present outliers. 

Previous studies show a clear relationship between the convergence radius towards the 

correct solution in the 4-sensor TDOA problem and the 3D-node distribution. In the case 

this hypothesis were right, a 3D space will have associated certain node distribution which 

optimize the convergence radius.  

This hypothesis was validated by means of optimization techniques. This problem pre-

sents two characteristics that dissuades resolution techniques based on exact algorithms: large 

solutions space size (related with the required resolution level in sensor location) and una-

vailability of applying recursive methodologies or separate the optimization in parts. Due to 

these circumstances, the optimization procedure is suitable to be performed by means of 

heuristic algorithms. Furthermore, Tekdas et al [20] demonstrated that the node distribution 

problem is considered as NP-hard and must be solved with the usage of heuristic techniques, 

where genetic algorithms are selected. 

Amongst heuristic algorithms, the main reason to use genetic algorithms lie on their 

robustness and flexibility, the possibility of using non-derivable functions and, above all, the 
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compromise solution they offer between diversification and intensification in the solution-

searching process of the problem. As an alternative to genetic algorithms, techniques such 

as randomized search, proposed by Bergstra and Bengio [21], are also suitable for approach-

ing this problem. The positioning problem can be seen as an optimization problem where 

the size of the convergence spheres plays the role of loss function while the position of the 

beacons can be considered as hyperparameters for the underlying positioning algorithms. 

This paper focuses on reporting the results obtained by using genetic algorithms. 

The starting point for the analysis is the definition of a 3-D experimental volume of 

dimensions 1000×400x100 meters, described with a spatial discretization of 100 meters in x 

coordinate, 50 meters in the y coordinate, and 10 meters in the z coordinate. Each of the 

discretization point represent a real solution to the 3D TDOA system of study. Additionally, 

the height of the nodes has been limited to 15 meters measured from the z=0 plane, similarly 

to the conditions found in a local, terrestrial positioning system. 

The genetic algorithm developed for the study is based on binary codification tech-

niques of the population, tournament-based selection, single-point crossover, 10% elitism 

and a mutation probability of 4%. The fitness function has been defined as the arithmetic 

mean of the distance between solutions for all points at the discretization, corrected accord-

ing to the parameter r. 

The stop criterion of the algorithm has been defined as the instant when the maximum 

of the fitness function stops improving at the same time as the solution is reached for at least 

half of the individuals of the population. The resolution of the genetic algorithm is shown 

by means of the fitness function of the problem, in relation with the number of generations. 
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Figure 4.5 Evolution of the fitness function through several generations. 

The final result of the process can be seen in figures 4.6 and 4.7. Figure 4.6 shows the 

evaluation of the convergence radius for the random distribution of points. Hereafter, the 

solution obtained after the maximization process is presented in Figure 4.7. 

 

 

Figure 4.6. Evaluation of the convergence radius in the coverage area for a random distribution. 
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Figure 4.7 Evaluation of the convergence radius in the coverage area for the optimized distribution. 

It is noteworthy to highlight the continuity presented by the convergence radius in all 

the domain, and the negative influence they have in those areas close to nodes. This is related 

to the geometry of the hyperboloids in these regions. In Table 4.2, a comparison between 

these distributions of nodes and the main statistical variables of the set of convergence radius 

is presented. 

Table 4.2. Statistical parameters of the optimized and random distribution. 

Convergence 
radius   

Optimized Dis-
tribution 

Random Distri-
bution 

Mean (m) 186.03 45.63 
Min (m) 10 2 
Max (m) 350 150 
Std (m) 87.06 30.58 

% Points con-
vergence radius > 

120  
74.10 %  1.56 % 

 

The results of the analysis lead to the conclusion that the initial hypothesis is correct, 

and hence a clear relationship exists between the node distribution and the convergence ra-

dius of the 4 node-3D-TDOA problem for the calculation of the position. Moreover, the 

whole procedure has been defined on the basis of genetic algorithms, being possible to max-

imize the convergence radius in any environment, optimizing the product speed x refreshing 
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rate.  

4.7 Discussion 
A new methodology based on convergence properties of the TDOA algorithms has 

been proposed in order to solve the 4-sensor TDOA problem. This approach considers the 

procedure to maximize the capabilities of the algorithms in a confidence interval without 

considering the existence of errors due to signal transmission, signal processing or the syn-

chronization of the system. For that reason, in future works it is necessary to consider this 

optimization in a context where an NLOS scenario was presented, clock synchronization 

was considered and other properties related with node distribution were also contemplated. 

However, this paper presents a new perspective which concludes that algorithm prop-

erties are strongly related with node distribution and that 4-node TDOA problem can be 

solved under certain conditions with complete security for the first time in Local Positioning 

Systems. With this optimization, convergence has also been maximized, one of the biggest 

problems of Least Squares algorithms is that they are deeply dependent from the initial iter-

ation point [19]. In practice, this point is the last estimated position. The last position can be 

far away from the new target localization if the vehicle is moving on at high speeds which 

can represent a convergence uncertainty. For this reason, a confidence region around the 

target localization has been defined to use the Least Squares algorithms under convergence 

conditions. The confidence region has been maximized through the radius of convergence 

and the calculation of the position has been guaranteed all over the domain in the optimized 

distribution which do not happens in the random distribution. This has important relevance 

in indoor positioning and precision landings in Wide Area Multilateration where sensor lo-

cation must be considered. The reduction of one receiver guarantees system availability in 

case of failure of any sensor and reduces the overall costs.  

4.8 Conclusions 
In this paper, it has been shown that TDOA problem can be solved with only four 

sensors within a confidence interval defined through the convergence radius. The great com-

putational processing time needed to calculate this parameter has led to the search of another 

indicator. This has been the distance between solutions which permits to explain the conver-

gence radius almost entirely. 
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This geometric factor must be filtered with the aim of allowing the statistical compar-

ison between different node distributions. The high number of possible solutions has pro-

moted the utilization of Artificial Intelligence through Genetic Algorithms, which have per-

mitted the improvement of the convergence radius through an optimized node distribution. 

A comparison between a random and an optimized distribution shows the suitability 

of the methodology proposed to solve the TDOA problem with four sensors. By applying 

the sequential approximation algorithm between the two distributions improves the confi-

dence level by over 400%. Furthermore, if a refresh rate of positioning signal is fixed in one 

second, the algorithm can be used with four beacons in the optimized distribution during 

the 96.7% of the time with total security if the vehicle has a maximum speed of 25 m/s. In 

contrast, it could be used only in a 31.2% of the cases in the random distribution. 

The geometric statement of the problem of intersection of hyperboloids has shown 

that an improvement in the space localization of the hyperboloids through node localization 

optimization allows to transform the 4-sensor TDOA problem into an analogous problem 

in which more receivers were used. This methodology ultimately involves a great improve-

ment in the positioning algorithm properties used throughout the article. 
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Abstract 
Local Positioning Systems are collecting high research interest over the last few years. 

Its accurate application in high-demanded difficult scenarios has revealed its stability and 

robustness for autonomous navigation. In this paper, we develop a new sensor deployment 

methodology to guarantee the system availability in case of a sensor failure of a five-node 

Time Difference of Arrival (TDOA) localization method. We solve the ambiguity of two 

possible solutions in the four-sensor TDOA problem in each combination of four nodes of 

the system by maximizing the distance between the two possible solutions in every target 

possible location. In addition, we perform a Genetic Algorithm Optimization in order to 

find an optimized node location with a trade-off between the system behavior under failure 

and its normal operating condition by means of the Cramer Rao Lower Bound derivation in 

each possible target location. Results show that the optimization considering sensor failure 

enhances the average values of the convergence region size and the location accuracy by 31% 

and 22%, respectively, in case of some malfunction sensors regarding to the non-failure op-

timization, only suffering a reduction in accuracy of less than 5% under normal operating 

conditions. 

5.1 Introduction 
Autonomous navigation has meant a challenge for scientific development over the last 

few years. The high accuracy required has entailed the interest in Local Positioning Systems 
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(LPS) where the positioning signal paths are reduced between targets and architecture sen-

sors. This fact significantly reduces noise and uncertainties by minimizing the global archi-

tecture errors with respect to Global Navigation Satellite Systems (GNSS).  

GNSS provide global coverage but the distortion of their signals in their travel affects 

the stability and the accuracy of the localization over time. In addition, GNSS navigation is 

denied in indoor environments, where Automatic Ground Vehicles (AGVs) mostly operate, 

as signals deteriorate crossing large buildings. This causes Non-Line-of-Sight (NLOS) con-

nections between satellites and targets which makes position determination impractical. The 

application of also GNSS has limitations in outdoor environments such as low-altitude flights 

in Unmanned Aerial Vehicles (UAVs) due to the higher uncertainty in the vertical coordinate 

of the global systems. It is a consequence of the similar altitude of the satellites in their con-

stellations. 

These reasons have promoted this new localization concept based on LPS especially 

for high accuracy automated navigation [1,2]. LPS require the deployment of architecture 

sensors in a defined and known space where the capabilities of the system are maximized. 

The characteristics of the LPS for a defined space rely on the measurement of the physical 

magnitude used for the determination of the target location: time [3], power [4], frequency 

[5], angle [6], phase [7] or combinations of them [8]. 

Among these systems, the most extended are time-based models due to their reliability, 

stability, robustness and easy-to-implement hardware architectures. Time-based positioning 

has two main systems that differ in time measurements computed: Time of Arrival (TOA) 

[9] and Time Difference of Arrival (TDOA) [10] systems. 

TOA systems measure the total time of flight of a positioning signal from an emitter 

to a receiver. It requires the synchronization of the clocks of all the system elements (i.e. 

targets and sensors). This leads to the generation of a sphere of possible locations in the 3-

D space for each received signal in a different architecture sensor. The intersection of spheres 

determines the target location. Mathematical standards show that the unequivocal target lo-

cation is achieved in TOA systems with at least four sensors. 

TDOA systems compute the relative time between the reception of the positioning 

signal in two different architecture sensors. The synchronization of these systems is optional 

considering asynchronous TDOA architectures in which the time differences are computed 

in a single clock of a coordinator sensor [11] and synchronous TDOA where all architecture 
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sensors must be synchronized. Time relative measurements lead to hyperboloid surfaces of 

possible location of targets. A hyperboloid equation is obtained every two architecture sen-

sors while only (n-1) independent equations can be processed from n different sensors [12]. 

The required number of sensors to determine unequivocally the target location is five sensors 

for 3-D positioning in these methodologies.  

However, the intersection of three different spheres -3 architecture sensors- in TOA 

systems and three different hyperboloids -4 architecture sensors- in TDOA systems leads to 

two different potential solutions. Nevertheless, these solutions are not able to be discarded 

from a mathematical point of view. 

In one of our previous works [13], we have demonstrated that a reliable unique solu-

tion to the intersection of three hyperboloids or spheres can be obtained through the maxi-

mization of the distance between the two potential solutions in a defined environment by 

means of Genetic Algorithms (GA). We achieve this result by applying Taylor-based algo-

rithms [14] from an initial iteration point which must be close enough to the final solution. 

Results show that the node deployment has a direct impact in this finding. 

The sensor distribution also has relation with the global accuracy of the LPS. Tradi-

tionally, the Position Dilution of Precision (PDOP) has been used to determine the achiev-

able accuracy of time-based positioning systems in GNSS [15] by considering satellite loca-

tion with respect to target nodes. This methodology considers the homoscedasticity of the 

satellite signals as they actually travel similar distances from satellites to target nodes. This 

consideration is impractical for LPS since the paths traveled can significantly differ from one 

architecture sensor to another producing the heteroscedasticity in the time measurements 

[16].  

This fact promotes the use of Cramer Rao Lower Bound (CRLB) [17,18] derivations 

to characterize the White Gaussian Noise (WGN) present in the time measurements. In 

practice, CRLB determines the minimum achievable error in positioning systems [19]. We 

have computed these derivations for asynchronous and synchronous TDOA positioning 

methodologies in our recent works [20,21] in order to define the beauty of a node deploy-

ment in terms of accuracy. This has allowed us to perform the node deployment optimization 

in TDOA systems by means of GA. The reason of the use of heuristic techniques relies on 

the NP-Hard problem solution of the 3D sensor deployment in LPS and it is widely consid-

ered in the literature [22–27]. 
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However, any of the approaches presented considers a possible sensor failure during 

the node distribution optimization addressed. This means that in these sensor deployments 

a sensor fault will cause the unavailability of TOA architectures with 4 sensors and TDOA 

architectures with 5 sensors. However, our finding in [13] has determined that an unequivo-

cal solution for these systems with a possible sensor failure -3 sensors in TOA and 4 sensors 

in TDOA- can be achieved under an optimized node localization. As a consequence, an 

optimized sensor distribution can guarantee the availability of the system in sensor failure 

conditions through the consideration of a methodology to enhance the system properties in 

these situations. 

In this paper, we propose for the first time a GA optimization for the 3D node de-

ployment in a TDOA system with five architecture sensors with failure consideration, max-

imizing the performance during regular operation and in any possible sensor malfunction. 

For that purpose, we performed a multi-objective optimization in which we looked for a 

trade-off between the global accuracy of the system with five sensors and every combination 

of four nodes in a defined environment of an LPS. Additionally, we ensured the unequivocal 

position determination for every distribution of four sensors by maximizing the distance 

between the two possible mathematical solutions of the target location [11]. Based on [19] a 

3D sensor distribution in irregular environments is provided, enabling the application of this 

failure-consideration approach to outdoor and indoor scenarios. This methodology will also 

ensure the availability of the system with acceptable accuracy in case of a sensor failure in 

any of the architecture nodes.  
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Figure 5.1 Graphical Abstract 

The remainder of the paper is organized as follows: the algorithm for the target une-

quivocal location determination is presented in Section 5.2, the CRLB modeling is introduced 

in Section 5.3, the GA and the fitness function are presented in Section 5.4 and Sections 5.5 

and 5.6 show the results and conclusions of the presented paper. 

5.2 Taylor-Based Positioning Algorithm in Time Difference of Arrival 

(TDOA) Systems. 
Relative time measurements in TDOA systems lead to hyperboloid equations of pos-

sible target locations. These equations are non-linear so numerical methods are required to 

solve the intersection of the hyperboloids. The algorithms used have been classified in two 

main categories: closed-form algorithms and iterative methods. 

Closed-form algorithms [28,29] provide a direct final solution by solving a linearization 

of the hyperboloid equations. Iterative methods perform a gradient descent to achieve the 

solution through Taylor-Based linearization. These methods start from an initial position 

which must be closed enough to the final solution [30] to iteratively converge to the target 

location. The convergence of the algorithm depends on the initial position -usually the last 

known position of the target- which promotes a constant updating of the target location.  

The position calculation with four architecture sensors in TDOA systems provides 
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two possible ambiguous target localizations. The achievement of an unequivocal position 

cannot be determined according to mathematical standards. As a consequence, the position 

determination by means of iterative methods provides a unique solution that it might not 

match with the real target location. Nevertheless, we have shown in [13] that the optimal 

solution can be achieved by maximizing the radius of convergence of the initial iteration 

point which forces the iterative method to converge to the real solution in a high confidence 

interval. It has been demonstrated that this fact coincides with the maximization of the dis-

tance between the two possible solutions in LPS. This allows us to solve the 3-D TDOA 

problem with 4 nodes through Taylor-Based positioning algorithms with enough confidence 

under the optimization proposed. 

This finding enables LPS architectures of 5 sensors -minimum number of sensors to 

supply unequivocal target location- to provide stable and accurate service in case of sensor 

failure or temporal unavailability of one of the architecture nodes. 

Taylor-Based algorithms in TDOA systems are linearizations of the equation of the 

time difference of arrival: 

 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝐸𝐸𝐸𝐸 − 𝑑𝑑𝐸𝐸𝐸𝐸 = 𝑐𝑐 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑐𝑐 �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗�

= �(𝑥𝑥𝐸𝐸 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝐸𝐸 − 𝑦𝑦𝑖𝑖)2 + (𝑧𝑧𝐸𝐸 − 𝑧𝑧𝑖𝑖)2

− ��𝑥𝑥𝐸𝐸 − 𝑥𝑥𝑗𝑗�
2

+ �𝑦𝑦𝐸𝐸 − 𝑦𝑦𝑗𝑗�
2

+ �𝑧𝑧𝐸𝐸 − 𝑧𝑧𝑗𝑗�
2
 

 

(5.1) 

 

where 𝑅𝑅𝑖𝑖𝑖𝑖  and 𝑑𝑑𝑖𝑖𝑖𝑖  represent the distance difference of the signal travel from the emitter to 

sensors 𝑖𝑖 and 𝑗𝑗, 𝑑𝑑𝐸𝐸𝐸𝐸 and 𝑑𝑑𝐸𝐸𝐸𝐸 are total distance from the emitter (E) to sensors i and j, c is the 

speed of the radioelectric waves, 𝑡𝑡𝑖𝑖𝑖𝑖 is the time difference of arrival measured in the archi-

tecture sensors, 𝑡𝑡𝑖𝑖  and 𝑡𝑡𝑗𝑗  is the total time of flight of the positioning signal from emitter to 

receivers 𝑖𝑖 and  𝑗𝑗 respectively and (𝑥𝑥𝐸𝐸  ,𝑦𝑦𝐸𝐸  , 𝑧𝑧𝐸𝐸), (𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) and (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗  , 𝑧𝑧𝑗𝑗) are the Carte-

sian coordinates of the target and the sensors 𝑖𝑖 and 𝑗𝑗. 

Taylor approximation truncated on first order is applied in equation 5.1 to linearize 

the equation from an initial iteration point (𝑥𝑥0 ,𝑦𝑦0 , 𝑧𝑧0): 
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𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑖𝑖𝑗𝑗0 +
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

∆𝑥𝑥 +
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

∆𝑦𝑦 +
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

∆𝑧𝑧 
(5.2) 

 

where 𝑅𝑅𝑖𝑖𝑖𝑖0 is the range difference of arrival in the initial iteration point,  
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

 and 
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

 

are the partial derivatives of the range differences measured in the i and j architecture sensors 

particularized in the initial iteration point. 

The application of this process to sensors 𝑘𝑘 and 𝑙𝑙 to complete the four-sensor 3D 

TDOA problem solution in [13] generates the range difference matrix (∆𝐑𝐑): 

 

∆𝐑𝐑 =

⎝

⎜
⎜
⎜
⎛
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕 ⎠

⎟
⎟
⎟
⎞
�
∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧
� = 𝐇𝐇∆𝐏𝐏 

 

 

(5.3) 

 

where 𝐇𝐇 is the partial derivative matrix, usually known as the visibility matrix, and ∆𝐏𝐏 repre-

sents the coordinate variances in each space direction which is the unknown of the equation. 

The previous equation is solved and iterated until no changes in coordinate variances 

are appreciated by means of the least squares method as follows: 

 

∆𝑷𝑷 = (𝑯𝑯𝒕𝒕𝑯𝑯)−𝟏𝟏𝑯𝑯𝒕𝒕∆𝑹𝑹 = �
∆𝑥𝑥
∆𝑦𝑦
∆𝑧𝑧
� 

(5.4) 

 

5.3 Cramer Rao Lower Bound (CRLB) Modeling in TDOA systems 
CRLB is an unbiased estimator of the lowest variance of a parameter. Its usage in the 

localization field is widespread [31–33] since it allows us to determine the minimum achiev-

able error by the system analyzed.  

It characterizes the WGN present in the time measurements of the time-based posi-

tioning systems. The uncertainties introduced in the measurements depend on the distance 

traveled by the positioning signal from the emitter to the architecture sensors in a heterosce-



 

 
47 

 

 

dastic noise consideration. Recent studies [18] developed a matrix form of the CRLB con-

sidering heteroscedasticity in time measurements: 

 

𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚 = �
𝜕𝜕ℎ(𝑇𝑇𝑇𝑇)
𝜕𝜕𝑇𝑇𝑇𝑇𝑚𝑚

�
𝑇𝑇

𝑹𝑹−𝟏𝟏(𝑻𝑻𝑻𝑻)�
𝜕𝜕ℎ(𝑇𝑇𝑇𝑇)
𝜕𝜕𝑇𝑇𝑇𝑇𝑛𝑛

�

+
1
2
𝑡𝑡𝑡𝑡 �𝑅𝑅−1(𝑇𝑇𝑇𝑇)�

𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇)
𝜕𝜕𝜕𝜕𝜕𝜕

�𝑹𝑹−𝟏𝟏(𝑻𝑻𝑻𝑻)�
𝜕𝜕𝜕𝜕(𝑇𝑇𝑇𝑇)
𝜕𝜕𝑇𝑇𝑇𝑇𝑛𝑛

�� 

 

 

 

(5.5) 

 

where 𝐅𝐅𝐅𝐅𝐅𝐅 indicates the Fisher Information Matrix, 𝑚𝑚 and 𝑛𝑛 are the sub-indexes of the 

estimated parameters in 𝐅𝐅𝐅𝐅𝐅𝐅, TS is the target sensor Cartesian coordinates, 𝐡𝐡(𝐓𝐓𝐓𝐓) is a vector 

that contains the travel of the signal in the TDOA architecture to compute a time measure-

ment: 

 

ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = ‖𝑇𝑇𝑇𝑇 − 𝐶𝐶𝐶𝐶𝑖𝑖‖ − �𝑇𝑇𝑇𝑇 − 𝐶𝐶𝐶𝐶𝑗𝑗� 

𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶𝐶𝐶 

𝑗𝑗 = 1, … ,𝑁𝑁𝐶𝐶𝐶𝐶 

 

(5.6) 

 

being 𝐶𝐶𝐶𝐶𝑖𝑖 and 𝐶𝐶𝐶𝐶𝑗𝑗 the coordinates of the architecture sensors i and j and 𝑁𝑁𝐶𝐶𝐶𝐶 the number of 

sensors involved in the position determination. 𝐑𝐑(𝐓𝐓𝐓𝐓) is the covariance matrix of the time 

measurements in the architecture sensors.  

The covariance matrix is built with a heteroscedastic noise consideration in the sensors 

modeled by a Log-normal path loss propagation model [21] obtaining the following vari-

ances: 

 

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
2 =

𝑐𝑐2

𝐵𝐵2 �𝑃𝑃𝑇𝑇 𝑃𝑃𝑛𝑛� �
𝑃𝑃𝑃𝑃(𝑑𝑑0) ��

𝑑𝑑𝐸𝐸𝐸𝐸
𝑑𝑑0
�
𝑛𝑛

+ �
𝑑𝑑𝐸𝐸𝐸𝐸
𝑑𝑑0
�
𝑛𝑛

� 

 

 𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶𝐶𝐶        𝑗𝑗 = 1, … ,𝑁𝑁𝐶𝐶𝐶𝐶   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 ≠ 𝑗𝑗 

 

 

(5.7) 
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where 𝐵𝐵 is the signal bandwidth, 𝑃𝑃𝑇𝑇 is the transmission power, 𝑃𝑃𝑛𝑛 is the mean noise level 

determined through the Johnson-Nyquist equation, 𝑛𝑛 is the path loss exponent, 𝑑𝑑0 is the 

reference distance from which the path loss propagation model is applied and 𝑃𝑃𝑃𝑃(𝑑𝑑0) is the 

path-loss in the reference distance. 

The inverse of the Fisher Information Matrix (𝐉𝐉) provides in its diagonal the uncer-

tainties associated with each variable to estimate, i.e. the three Cartesian coordinates of the 

target for a 3D positioning. The location accuracy is directly evaluated through the Root 

Mean Squared Error (RMSE), which is computed based on the trace of the 𝐉𝐉 matrix. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �𝐽𝐽11 + 𝐽𝐽22 + 𝐽𝐽33 = �𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝜎𝜎𝑧𝑧2  
(5.8) 

 

This model will be applied in the GA optimization with five sensors and each distri-

bution of four sensors in any possible target location in the defined scenario in order to 

compare the beauty of different node deployments. 

 

5.4 Genetic Algorithm 
The strong influence of the sensor placement in the LPS performance enables the 

maximization of their capabilities through the optimization of their sensor distribution. This 

approach is especially suitable in complex 3D environments, where the most important 

source of positioning error is promoted by the sensor distribution.  

In this work, we developed an optimization methodology to locate the positioning 

sensors of a five-sensor TDOA system with the consideration of an eventual failure in some 

of the system nodes. This procedure must guarantee the convergence of the iterative algo-

rithm with all the possible combinations of four nodes in every target location under cover-

age. Furthermore, the achievement of an optimized node distribution for the normal oper-

ating conditions with five system nodes must be accomplished. This leads to a multi-objec-

tive optimization which considers both normal and failure operating conditions. 

In our previous works [21], a GA for optimizing sensor distributions in 3D irregular 

environments is presented. The proposed methodology allows a free definition of the opti-

mization region and the reference surface for locating the sensors of the positioning archi-

tecture. In addition, the procedure is modular, allowing the election of different selection 
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techniques, percentage of elitism, crossover methodologies, mutation types, and convergence 

criteria.  

After the choice of the optimization method, the next step is the definition of the 

fitness function. In this case, a multi-objective optimization is carried out for maximizing the 

accuracy of the TDOA architecture when the minimum number of sensors for positioning 

is available, i.e. when some of the architecture sensors fail. Accordingly, the methodology 

proposed in [13] guarantees the attainment of a unique location in TDOA architectures with 

4 sensors by the Taylor-based positioning algorithm described in Section 5.2, based on an 

initial iteration point closed to the target estimation. The region where this procedure con-

verges to the final solution depends on the geometric properties of the target and the archi-

tecture sensors, i.e. the sensor placement in the environment. Based on this relation, the 

regions of convergence can be maximized through the optimization of the sensor distribu-

tion [13]. 

Consequently, the goal of the multi-objective optimization is the combined maximiza-

tion of the TDOA system accuracy in 3D environments when the whole architecture is avail-

able and when only four sensors are accessible, limited by the size of the convergence regions 

that allow the correct execution of the Taylor-based positioning algorithm. The fulfillment 

of these objectives guarantees the robustness of the TDOA architectures in adverse condi-

tions of operation. The fitness function is detailed hereafter: 

 

𝑓𝑓𝑓𝑓 = �

⎩
⎪
⎨

⎪
⎧
𝐶𝐶1
𝑁𝑁𝑁𝑁
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where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the number of groups of four sensors which are obtainable based on the 

total number of architecture sensors, NT is the number of analyzed points, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 is the 

reference accuracy, 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 is the vector that contains the CRLB evaluation for each 

point at analysis with each combination of 4 sensors, 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 indicates the reference distance 

for the convergence criteria, 𝐃𝐃 represents the vector that specifies the convergence evalua-

tion in terms of the distance between the two possible solutions (combinations of 4 sensors) 

for each point at study, 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵 is the vector that contains the CRLB analysis for each 

point at study when all architecture sensors are available, 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3 and 𝐶𝐶4, are coefficients 

for calibration of the individual summands of the fitness function, and 𝐵𝐵𝐵𝐵𝑖𝑖 is the penalization 

factor associated with the existence of sensors in banned regions (if they exist). 

The implemented fitness function presents two important characteristics: the individ-

ual summands of the function are confined in the interval (0,1], enabling different pondera-

tions for the optimization; and the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 magnitudes are adaptive to the prob-

lem characteristics, facilitating the diversification and intensification phases of the GA in 

complex environments. 

 

5.5 Results 
In this section, the results of the optimization for sensor failure in TDOA architectures 

are presented. Initially, a 3D complex scenario was designed for carrying out the optimiza-

tion, proving the adaptability of the proposed methodology in any environment. For this 

purpose, an irregular scenario of simulation was designed by considering any possible target 

location and extensive available zones for positioning the architecture sensors in the envi-

ronment of simulations. This fact ensures the versatility of the procedure for its application 

to indoor and outdoor environments. 

In Figure 5.2, the term TLE represents the Target Location Environment which de-

fines the region where targets are possible to be located. For this simulation, the TLE region 

extends from 0.5 to 15 meters of elevation from the base surface, emulating the operating 

conditions for a positioning system in the proximity of the ground. TLE region is spatially 

discretized based on a division of 20 meters in x and y coordinates, and 2 meters in z coor-

dinate. This ensures the correct evaluation and continuity of the accuracy and convergence 

analysis, and the restriction in the total number of the studied points. 
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Figure 5.2 The scenario of simulations. The reference surface is depicted in grey tones. Node Location 

Environment (NLE) and Target Location Environment (TLE) regions are respectively shown in orange 

and purple colors. The discretized points of the TLE zone are the points employed for the optimization 

of the Time Difference of Arrival (TDOA) architecture performance. In the case of the NLE area, the 

points shown are only a representation of the area where every sensor can be located. 

The NLE area expresses the Node Location Environment, which indicates all possible 

sensor locations. In the case of the NLE region, the height of the sensors is limited in the 

range of 3 to 10 meters from the base surface, depicting for a typical outdoor LPS imple-

mentation. The discretization of the NLE region depends on the codification of the individ-

uals of the GA, precisely on the longitude of the chromosomes implemented. In this way, 

the resolution of the NLE area varies in the three Cartesian coordinates from 0.5 to 1 meter, 

alluring a fine setting in the optimization of each sensor. 

Tables 5.1 and 5.2 show the principal parameters of configuration for the positioning 

system and the GA characteristics applied for the optimization. 
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Table 5.1. Parameters of configuration for the positioning system operation. Their selection is 
based on [19,34]. 

Parameter Value 
Transmission power  100 W 
Mean noise power -94 dBm 

Frequency of emission 1090 MHz 
Bandwidth 100 MHz 

Path loss exponent 2.05 
Antennae gains Unity 

Time-Frequency product 1 
 

Table 5.2. Configuration of the principal elements of the Genetic Algorithm (GA). 

GA Selection 
Population size  90 

Selection technique Tournament 2 
% Elitism 5 

Crossover technique Single-point 
% Mutation 3 

Convergence criteria 80% individuals equals 
 

Values presented in Table 5.1 were chosen in an attempt to stand for a generic posi-

tioning technology, expressed by the typical parameters of transmission power, frequency of 

emission and bandwidth. The configuration of the GA shown in Table 5.2 has been the 

subject of deep analysis, looking for the trade-off between the fitness function maximization 

and convergence speed. 

In the following paragraphs and figures, the results after the optimization process are 

shown for distributions of 5 sensors. Firstly, in order to highlight the importance of the 

sensor distribution, a random sensor placement is evaluated in terms of accuracy and con-

vergence under a sensor failure in Figures 5.3 and 5.4.  
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Figure 5.3 Accuracy analysis in terms of Crámer Rao Lower Bound (CRLB) in meters for a random 

sensor distribution of five sensors, under the assumption of one randomly malfunction sensor. Black 

spheres indicate the location of active sensors and red spheres highlights the sensor which is not available. 

Red tones in the color bar indicate bad accuracy evaluations, while green tones imply acceptable accuracy 

values. 

 

Figure 5.4 Convergence radius analysis in meters for a random sensor distribution of 5 sensors, under 

the assumption of one randomly malfunction sensor. The convergence radius represents the maximum 
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radius of the sphere of convergence in which every inside point used as initial iterating point of the posi-

tioning algorithm guarantees the unequivocal position determination by using the four available sensors. 

It represents the same operating condition than Figure 5.3. Red tones in the color bar indicate bad con-

vergence radius values, while green tones imply acceptable convergence magnitudes. 

As it is shown, the performance of this sensor distribution is not acceptable for any 

positioning service. The results for the optimized sensor placement with failure considera-

tion, 5 sensors nominal operating conditions and convergence maximization (Case I) are 

provided in Figures 5.5 and 5.6 when one of the sensors is not available. 

 

Figure 5.5. Accuracy analysis in terms of CRLB in meters for the optimized distribution of 5 sensors 

under possible failure. The condition represented corresponds with the Case I -Sensor Failure 1 of Table 

5.3-. Red tones in the color bar indicate badly accuracy evaluations, while green tones imply acceptable 

accuracy values. 
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Figure 5.6. Convergence radius analysis in meters for the optimized distribution of 5 sensors under pos-

sible sensor failure. The condition represented corresponds with the Case I -Sensor Failure 5 of Table 5.3-

. Red tones in the color bar indicate badly convergence radius values, while green tones imply acceptable 

convergence magnitudes. 

The benefits of the consideration of the sensor failure in the architecture design have 

been shown through the differences in accuracy and convergence from the Figures 5.3 to 

5.6. However, a comparison of the performance of the methodology proposed in this paper 

with a conventional optimized node distribution in which the failure conditions are not con-

sidered is needed to conclude the beauty of the technique. In Table 5.3, we set the parameters 

considered in each optimization considering nominal operation, failure conditions and con-

vergence (Case I) and only nominal operating conditions (Case II). Case II match up with 

the GA optimization that we previously proposed in [21]. 

Table 5.3. Definition of the parameters considered for optimization in Case I and Case II. 

Parameter Considered Case I Case II 
Nominal Operating Conditions 

(5 sensor distribution) 
Failure Conditions  

(4 sensor distributions) 
Convergence Maximization 

    
  

     X 

     X 
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In Table 5.4, a comparison between the optimized sensor distribution for sensor failure 

(Case I) and the optimized sensor placement of 5 sensors without malfunction consideration 

and convergence maximization (Case II) is supplied. It should be stressed that this last opti-

mization is carried out through a fitness function with the direct evaluation of the CRLB for 

5 sensors and the last term of the Eq. 5.8. 

Table 5.4. Comparative between the optimizations of Case I and II. 

Sensor 
Distribu-

tions 

Sensor 
Fail 

CRLB Evaluation TDOA (me-
ters) 

Convergence Evaluation (me-
ters) 

Max Mean Min Max Mean Min 

Case I 

Sensor 1 62.408 0.651 0.233 300 138.684 35 
Sensor 2 133.556 0.875 0.216 240 125.786 40 
Sensor 3 117.304 0.627 0.223 280 154.237 40 
Sensor 4 191.480 2.005 0.196 300 138.851 35 
Sensor 5 188.676 7.425 0.237 220 129.149 4 

None 0.795 0.326 0.154 300 140.229 40 

Case II 

Sensor 1 206.049 1.340 0.225 240 103.711 2 
Sensor 2 159.772 1.512 0.149 280 84.650 2 
Sensor 3 65.487 1.688 0.169 220 102.037 4 
Sensor 4 199.168 0.629 0.182 260 113.604 2 
Sensor 5 2340.42 9.674 0.181 240 70.850 2 

None 0.872 0.312 0.143 300 128.306 10 
 

Table 5.5. Comparative between the optimizations of Case I and II. Values presented show the 
comparison in relative terms of the failure consideration distribution regarding the optimization 
for normal operation of the system. 

Performance analysis Case I 
 

Case II 
Sensor Distribution: 

Case I vs Case II 

Mean CRLB Evaluation 
TDOA (meters) 

Failure condi-
tions 

2.316 2.969 -22.0 % 

Non-Failure 
conditions 

0.326 0.312 +4.3 % 

Mean Convergence Evalu-
ation (meters) 

Failure condi-
tions 

137.341 94.970 +30.9 % 

Non-Failure 
conditions 

140.229 128.306 +8.5 % 

 
Tables 5.4 and 5.5 show the importance of the optimization of the sensor distribution 

under possible sensor failure. This feature is especially remarkable in the analysis of the con-

vergence radius when some of the sensors are not available for positioning.  

The results of these tables reveal that the optimization carried out in Case I not only 
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minimizes the CRLB (i.e. maximum achievable accuracy based on the conditions of opera-

tion) when only 4 sensors are accessible, it also maximizes the region where the Taylor-based 

positioning algorithm is able to operate (together with alliterative methods). 

Optimizations with failure-consideration (Case I) increase the radius of convergence 

by 30.9 % in failure conditions while they also experience a boost of 8.5% in this confidence 

interval in the normal operating condition of five sensors availability. This is due to the con-

vergence radius maximization in the failure-consideration optimization which is not consid-

ered in conventional sensor deployment methodologies. This shows that an increase in this 

confidence interval in the distributions of four sensors has also a direct effect in the conver-

gence radius of the five-sensor normal operating distribution of the failure-consideration 

optimization.  

The beauty of this combined multi-objective optimization is that the accuracy of the 

four-sensor combinations in failure conditions has been increased by 22% while the accuracy 

of the normal operating five sensor distribution (Case I) has been reduced by less than 5% 

with regards to conventional node deployments (Case II) that only consider the five-sensor 

optimization.  

Furthermore, the achievement of higher values of the convergence radius in the fail-

ure-consideration optimization enhances availability and security in failure conditions by 

solving the ambiguity of two valid mathematical solutions and by increasing the confidence 

interval of applying Taylor-Based positioning algorithms in normal operating conditions with 

regards to conventional node deployment methodologies.  

This new optimization procedure considering sensor failures does guarantee the ro-

bustness of the positioning system in complex conditions of operations, and the design of 

architectures considering these situations. 

5.6 Discussion 
The location of sensors in LPS has been an active topic of research over the last few 

years [3,13,21–24]. This is a consequence of its direct relation with the accuracy, stability and 

robustness of wireless local sensor networks. Conventional approaches to the optimal node 

distributions have considered the best location of the sensors for nominal operating condi-

tions. 

Nevertheless, in actual implementations of the LPS, some sensors are possibly denied 
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for positioning due to the presence of obstacles that disturb signals introducing adverse ef-

fects such as multipath or signal deterioration. Furthermore, a possible sensor malfunction-

ing introducing noise in the measurements must be considered.  

These facts have not been studied in previous sensor distribution optimizations. In 

this work, we propose for the first time in the authors’ best knowledge a node deployment 

methodology that enhances position determination in case of a sensor failure. Additionally, 

we apply this process to the more restrictive TDOA system to unequivocally determine target 

location, i.e. five-sensor TDOA deployments. This leads to a sensor-failure configuration in 

which we first need to solve the position ambiguity determination in systems with only four 

nodes according to the finding that we proposed in [11]. 

For this purpose, we performed a multi-objective optimization in a defined 3D irreg-

ular scenario in order to extrapolate the results to normal LPS applications. This optimization 

reduces the CRLB while it is also maximizing the radius of convergence of the Taylor-Based 

algorithm that we use for the target location determination.  

Results show the beauty and importance of this new technique as it is able to enhance 

the system behavior in failure conditions with regards to only nominal optimizations. This is 

particularly remarkable since conventional optimization approaches are only focused in nom-

inal operating conditions of LPS and they can suffer from temporal unavailability that can 

motivate important drawbacks in autonomous navigation. 

5.7 Conclusions 
Local Positioning Systems have emerged over the last few years for high-demanded 

accurate applications. Among them, time-based positioning architectures become predomi-

nant for its robustness, stability and trade-off between accuracy and complexity. 

In this paper, we propose a method to guarantee system availability under sensor fail-

ure. This is a key factor for the real operation of LPS as a consequence of the possible inef-

fective link between target and sensors in complex environments and possible sensor mal-

functioning. 

In order to simulate an actual operation environment, we have defined a 3D irregular 

scenario consisting of a five-sensor deployment of a TDOA architecture. This configuration 

validates the methodology proposed for terrestrial and aerial applications in indoor and out-

door environments.  In TDOA architectures, an unequivocal target location can be deter-

mined with a minimum of five sensors according to mathematical standards. However, we 
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have proved that the ambiguity in the position determination with four sensors can be solved 

by the used of Taylor-Based positioning algorithms in a convergence region around the true 

target location which, in practice, corresponds with the maximization of the two possible 

solutions distance.  

The achievement of this disambiguation can be obtained through an optimized sensor 

distribution. The node deployment must also minimize the time measurement uncertainties 

which are characterized by means of the CRLB. For this reason, we implement a multi-ob-

jective optimization for the combined maximization of the accuracy and convergence under 

each possible sensor failure condition. In addition, the optimization needs to guarantee the 

reduction of the uncertainties for the nominal performance with five sensors. 

Results show that the proposed method can attain both accuracy and convergence 

requirements under every possible sensor failure condition. The global optimization with five 

sensors without sensor failure consideration overcomes the five-sensor deployment optimi-

zation with failure consideration in terms of medium accuracy during nominal operation by 

less than 5%. In contrast, in circumstances where some of the sensors are not available and 

only 4 sensors can be applied in the target position calculation, the optimization considering 

sensor failure increases the average values of convergence region size and accuracy by 30.9% 

and 22% respectively, regarding the non-failure optimization. These results show the im-

portance of considering the anomaly cases of sensor failure during the LPS node distribution 

optimization in order to guarantee availability and operation quality in high-demanding ac-

curacy applications. 
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Optimized Cost-Effective Node Deployments in Asynchro-

nous Time Local Positioning Systems 
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Abstract 
Asynchronous Time Local Positioning Systems are emerging as a decisive tool for 

high-demanded accuracy applications. Its relevance relies on the unnecessary synchronism 

of the system devices and the ad-hoc node deployment for fitting the design requirements in 

irregular scenarios. In this paper, we provide a new methodology for obtaining optimized 

cost-effective asynchronous node deployments based on system accuracy, enhanced primary 

and emergency operating conditions and security robustness. In addition, we perform a deep 

analysis of the NP-Hard node location problem and we propose a new Cramér-Rao Bound 

(CRB) error characterization considering Line-of-Sight (LOS) and Non-Line-of-Sight 

(NLOS) system connections and clock instabilities for evaluating the quality of a node de-

ployment. We apply a Genetic Algorithm optimization in an irregular scenario of simulations 

to display this innovative methodology with a trade-off between resolution in the search in 

the space of solutions and the achievement of time-effective results. Results show that de-

ployments with 4 and 5 coordinator sensors fulfill the design requirements in the proposed 

scenario in both primary and emergency conditions (1.14 and 1.70 meters and 0.89 and 1.47 

meters of mean errors respectively) while 5 coordinator sensor configurations outperform 4 

coordinator sensor configurations in system security robustness proving their preeminence 

in this study. 
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6.1 Introduction 
Global Navigation Satellite Systems (GNSS) provide global coverage with a constella-

tion of satellites in the space. Their usage is widespread since they reach acceptable accuracy 

for localizing objects in the earth with the available number of satellites under coverage in a 

determined target location. However, their signals simply deteriorate by crossing large build-

ings [1], by facing obstacles in their paths [2], by suffering ionospheric adverse effects [3] or 

by unstable synchronization effects on GNSS devices [4]. 

Consequently, new deployments of sensors in local and defined spaces with the aim 

of enhancing accuracy have attracted research interest over the last few years. These deploy-

ments are known as Local Positioning Systems (LPS) which enable to locate targets for high 

demanded accuracy applications such as indoor localization [5], precision farming [6], preci-

sion landings [7], or autonomous navigation [8]. 

LPS conception allows the proximity between targets and sensors to reduce adverse 

effects on the physical properties measured to compute location. LPS are distinguished and 

classified by the physical property measured: time [9], angle [10], power [11], phase [12], 

frequency [13] or combinations of them [14, 15]. 

Among these systems, Time-Based Positioning Systems have the better combination 

between accuracy, stability, robustness and easy-to-implement hardware design. Time meas-

urements can be collected from two different strategies: total time-of-flight measurements 

and relative time-of-flight measurements.  

Total time-of-flight systems, usually known as Time of Arrival (TOA) [16], perform 

their target position determination through the distance traveled by the signal from the emit-

ter to the receivers. They require the complete synchronization among the clocks of the 

system (i.e. targets and sensors) to compute the time measurements. At least four receivers 

are required to unequivocally determine the 3D target cartesian coordinates in these systems.  

Relative time-of-flight systems, usually known as Time Difference of Arrival (TDOA) 

[17], measure the distance difference of the signal path traveled from the emitter to the ar-

chitecture sensors. These systems make use of at least five sensors to unequivocally deter-

mine 3D target position determination even though we have proven [18] that by optimizing 

the location of the sensors the problem can be solved with four receivers. 

Since the time differences are computed without considering the emission time in 

TDOA architectures, the synchronism of the clock of the receivers is enough to compute 
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the system measurements. Furthermore, the synchronism of the receivers is optional in asyn-

chronous TDOA configurations which have emerged over the last few years enabling the 

avoidance of the synchronization process among all the receivers by centralizing the time 

measurements in a single clock of a coordinator sensor (CS). This process reduces the un-

certainty and allows more stable target location calculations. 

Asynchronous Time Difference of Arrival (A-TDOA) [19] and Difference-Time Dif-

ference of Arrival (D-TDOA) [20] represent these elliptical asynchronous [21] methods and 

its accuracy was studied in [22] showing a better overall performance of the A-TDOA for 

LPS applications. 

Asynchronous systems reduce uncertainties but increase the paths traveled by their 

signals since the emission of the positioning signal from the worker sensors (WS) to the 

coordinator sensors (CS) must also be considered. Hence, noise errors are increased in the 

asynchronous systems and clock errors are reduced with regard to synchronous LPS. We 

studied this problem in [23] and determined that the overall error was greater in synchronous 

LPS applications. 

Therefore, asynchronous LPS provide greater accuracy and stability for high-de-

manded autonomous applications. This consideration relies on an optimized node deploy-

ment since bad sensor configurations in the space increase the global architecture errors due 

to the accumulated error of non-optimized paths and time measurements. 

This fact contributes to enhance the importance of the sensor locations in LPS. This 

is the main advantage of LPS since the designer can locate the sensors to maximize the sys-

tem properties in a defined space. However, the designer deals with a complex NP-Hard 

problem [24, 25] which has been widely studied in the literature [26-28]. Because of the di-

mensions of the space of solutions, heuristic methods are applied to find an appropriate and 

optimized solution in acceptable time [29-31]. 

The cost function of the problem is commonly the reduction of the uncertainties of 

the system errors. For this purpose, a characterization of the noise and clock errors is needed 

in each possible target location inside the coverage of the LPS.  

Firstly, Position Dilution of Precision (PDOP) was used as the tool to characterize the 

system errors [32]. However, it represents a homoscedastic noise consideration which do not 

deal with LPS applications since distances between targets and receivers may vary notably. 

Therefore, a heteroscedastic noise consideration is needed and Cramér-Rao Bound (CRB) 
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has been used to model it [33, 34]. CRB represents the minimum achievable error of a posi-

tioning system by any algorithm in a determined location. Traditionally, CRB models have 

considered path degradations on signals [35]. In one of our recent papers we completed this 

model by adding a characterization of the clock errors to the covariance matrix of the system 

[23].  

This model considers initial-time offset to compute the effect of the delay between the 

reference clock used for synchronization and the clocks of the rest of the coordinator sensors 

of the architecture -which has no effect in asynchronous LPS-, the clock drift which intro-

duces a cumulative error in the time measurements with the instability in the frequency of 

the clocks and the temporal resolution of the architecture sensor clocks. In addition, a path 

loss propagation model is introduced to characterize the White Gaussian Noise (WGN) pre-

sent in the communication channel. 

This combined model for the optimization of the node location has shown that asyn-

chronous LPS reach better accuracy performance in terms of stability and reduction of the 

system errors. Consequently, we use A-TDOA in this paper to fit the LPS high-demanded 

accuracy needs.  

Nevertheless, asynchronous architectures have a firm dependence on CS performance 

since all the time measurements are computed on it. This causes that a possible malfunction 

of the CS disables the complete system operation making the localization temporarily una-

vailable. This disadvantage is solved in this paper through an optimized node location which 

do guarantee at least two CS under coverage in each possible target location. 

We previously started this approach with the optimization of the node location in syn-

chronous LPS applications considering possible sensor failures in the architecture sensors 

[31] -each of them are CS, i.e. TOA or TDOA methodologies-. We later demonstrated [36] 

that a sub-optimal design of the nominal performance of the localization system can reach 

optimal behavior in failure conditions -temporal unavailability of an architecture sensor- with 

a minimal accuracy lost on the nominal conditions. 

However, each of our past studies have particularized in a small-scale positioning sys-

tem performance optimization. If the scenario becomes larger, a greater number of sensors 

are needed to reach the accuracy required for every possible target location [35]. However, 

the increased number of sensors employed also affect the global costs of the system. Partic-

ularly, the higher complexity of the CS in design, equipment and operation affects in a greater 
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extent to the A-TDOA architecture overall costs. For this reason, the usage of the minimum 

number of CS makes this asynchronous system cost-effective while the necessity of at least 

two CS under coverage makes it available in CS failure conditions. In addition, the best com-

bination of WS in each target location must be selected to reach the best operating conditions 

in each system coverage position.  

In this paper, we propose a methodology to deploy an optimized cost-effective distri-

bution of coordinator and worker sensors in large-scale asynchronous LPS applications (e.g. 

coverage of more than 1 km2 or required combinations of more than the minimum archi-

tecture sensors to cover the entire TLE with the accuracy bounds desired) by considering CS 

availability and accuracy in each target position under coverage. This includes the optimiza-

tion for nominal and eventual failure operating conditions of the system CS in each possible 

target location and the finding of the optimized location and the appropriate combination of 

WS for maximizing accuracy in the space of coverage of the system. 

The remainder of the paper is organized as follows: we introduce a detailed description 

of the A-TDOA architecture, the definition of the node distribution problem and the meth-

odology to reach a cost-effective node deployment in asynchronous architectures in Section 

6.2, the combined noise and clock CRB model for the optimization is presented in Section 

6.3, the Genetic Algorithm settings for this combined optimization and the results of the 

optimization are introduced in Section 6.4 while Section 6.5 discuss and conclude the paper. 

6.2 Problem Definition 
Asynchronous Positioning Systems (APS) provide a stable and cost-effective perfor-

mance of LPS in high-demanded accuracy applications. Its robustness is based on its capa-

bility of computing the time measurements in a single clock of a coordinator sensor. This 

fact reduces the overall error of the time local positioning systems [23] by decreasing the 

clock errors in optimized node locations. 

However, these systems require that their signals travel longer distances which may 

produce significant signal degradations. Therefore, not any sensor deployment configuration 

can be used for improving the performance of APS since an effective link between target-

CS and WS-CS must be assumed. This link is more effective if Line-of-Sight (LOS) connec-

tions between signal emitter and receivers are favoured and adverse phenomena on signals 

are avoided [35].  

Furthermore, in APS, all the time measurements are computed in the CS which makes 
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the system unavailable in case there is not a CS under coverage in a space location. As a 

consequence, if a CS is not available there is not possibility of determining the Target Sensor 

(TS) location in APS even if the number of sensors available exceeds the minimum number 

of receivers to provide a solution of the TDOA problem solved in APS (i.e. more than the 

required number of WS needed in the TDOA problem and unavailability of a CS to compute 

the time measurements). 

In this paper, we provide an enhanced genetic algorithm optimization of the node 

location of the A-TDOA architecture by guaranteeing the availability of the CS in all the 

space possible target locations and by reducing the overall errors and the costs of the system 

through a novel methodology in evaluating the beauty of the node distributions. In this sec-

tion, we present the A-TDOA architecture, the node location problem and the particularities 

of the novel evaluation method used for the optimization. 

6.2.1 A-TDOA architecture 

APS techniques have been proposed over the last few years [19, 20]. They reach great 

stability and accuracy since they reduce the number of clocks needed for the position deter-

mination by centralizing all the system measurements in a single clock of a CS. This approach 

is especially suitable for LPS applications since the incremental distance traveled by their 

signals do not affect the overall accuracy more than the effect of the clock errors in LPS. 

However, APS are not appropriate for GNSS since the signal travel longer paths than in 

synchronous configurations and the signal degradation would be higher than the benefits of 

the reduction of the clock errors in GNSS. 

 Therefore, the usage of APS fits with high accuracy demands in precision local appli-

cations. Among the APS architectures, we demonstrated [22] that A-TDOA provides less 

uncertainty in different sensor configurations. For this reason, we apply this architecture to 

reach a cost-effective accuracy APS. 

A-TDOA is a passive positioning system that uses the TS as a repeater of the position-

ing signals which are emitted by the WS. It requires at least four WS (3D positioning) to send 

different positioning signals that will be received, after TS retransmission, in the CS (tENDi). 

Furthermore, the same signal emitted by the WS arrives directly to the CS (tSTARTi). The time 

difference between the arrival of the two positioning signals is the time computed for each 

time difference of each pair WS-CS. The process finishes when each signal of each WS is 

processed in the CS and the time measurements are accomplished. 
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𝐴𝐴 − 𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑖𝑖 = 𝑐𝑐 �𝑡𝑡𝐸𝐸𝐸𝐸𝐷𝐷𝑖𝑖 − 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖� − ||𝑊𝑊𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶|| (6.1) 

 

 

where A-TDOAi represents the time measurement of the WSi, c is the speed of the radioe-

lectric waves and �|𝑊𝑊𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶|� is the distance between the WSi and the CS which is known 

since the position of the nodes is fixed. 

The procedure allows the usage of a single clock in the CS and its accuracy and robust-

ness is highly dependent on the sensor distribution in the space. In Figure 6.1, the increase 

in the path traveled by the positioning signal is shown. Therefore, the introduction of path 

loses on signals must be reduced through an optimized node location to make the A-TDOA 

architecture competitive. 

 

 

Figure 6.1 Asynchronous Time Difference of Arrival System (A-TDOA) communications scheme with 

m Coordinator Sensors (CS) and n Worker Sensors (WS) under coverage with the Target Sensor (TS). 
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6.2.2 Node location Problem and Definition of the Scenario of Simulations 

The node location problem has been widely studied in the localization field since the 

appropriate deployment of sensors has a direct impact in the performance of the Wireless 

Sensor Networks (WSN) [26, 28, 30-31]. One of the main advantages of WSN is the freedom 

to locate sensors in space in order to maximize system properties. 

The problem of the node distribution has proven to be NP-Hard [24, 25] in the com-

plexity of the space of possible solutions. Firstly, this node distribution was treated through 

linearizations of the problem in grid searches to reduce the overall complexity [39]. Then, 

non-linear approaches were considered through greedy-type algorithms [40]. However, these 

solutions do not estimate the complete combination of sensors in space and this problem is 

not suitable for using greedy algorithms since a deep exploration of the space of solutions is 

suggested to find acceptable solutions. 

Subsequently, the advancement in processing capability enabled the usage of heuristic 

methods to find more refined solutions to the node location problem. Simulated annealing 

[29, 41], particle swarm optimization [42], Tabu search methodologies [43] , firefly algorithm 

optimizations [44] but specially Genetic Algorithms (GA) [18, 26-27, 31, 35] have been used 

to determine suitable node locations. For this reason, we use in this paper a Genetic Algo-

rithm to solve the node location problem.  

However, regardless the heuristic method used for the optimization there is a task to 

particularly considering for enhancing the performance of localization networks: while com-

munication networks rely exclusively on the position of the nodes since they are the only 

active element of the system, LPS also require the interaction with the TS. Therefore, each 

possible TS location in the coverage region must be evaluated in the fitness function used 

for optimization. We defined in [31] the difference between the space available for the sen-

sors to be located, Node Location Environment (NLE), and the possible TS navigation en-

vironment, Target Location Environment (TLE). The existence of the NLE increases the 

overall optimization process complexity. The computational complexity of a problem is de-

fined through the order of the number of operations needed to explore all the space of so-

lutions [45] to reach a solution. 

Therefore, the complexity of the node location problem of k sensors in localization is: 
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𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁) = ��(𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑖𝑖)  
𝑘𝑘−1

𝑖𝑖=0

� 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇  𝑂𝑂(𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇) 
(6.2) 

 

where O(NLP) is the complexity order of the node location problem, k is the number of 

sensors of the problem, nNLE is the number of possible locations of each sensor in the space, 

nTLE the number of possible TS locations and O(ffTLE) is the complexity order of the fitness 

function evaluation in every possible TLE. 

Eq. 6.2 shows that the larger the number of possibilities for the sensors to be located 

in the space and the larger the number of sensors displayed, the greater the computational 

complexity of the global problem. In addition, this complexity increases with the number of 

operations in the fitness function of each possible TS location for each combination of sen-

sors. 

Each of these initial parameters must be selected to guarantee a sufficient exploration 

of the space of solutions and not overcomplicate the computational complexity of the prob-

lem. For this study, we define each of these parameters in Table 6.1: 

 

Table 6.1. Parameters to define the complexity of the node location LPS problem 

Parameter Value 
𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 1000 
𝑘𝑘 12/13/14 

𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇 1000 
Possible sen-
sor distribu-

tions 
9.36 ∗ 1035/9.25 ∗ 1038/9.13 ∗ 1041 

Overall Num-
ber of opera-

tions 
��(𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑖𝑖)  
𝑘𝑘−1

𝑖𝑖=0

� ∗ 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝑂𝑂(𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇) 

 

 

Table 6.1 shows the high complexity of the node location problem in LPS, suggesting 

the implementation of a heuristic approach to find an acceptable solution in a reasonable 

time, as it has been widespread in the literature. For this reason, the designer must select the 

parameters involved in the optimization process carefully, specially the number of evaluated 

target sensor positions in space (nTLE) and the possible space locations for the architecture 
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sensors (nNLE) since a trade-off between the resolution in the search of the space of solutions 

leading to improved results of the problem and the reduction of the overall complexity of 

this NP-Hard problem must be balanced. The designer must also control the complexity of 

the fitness function which will depend on the characteristics of the optimization. As a result 

of the diversity of the goals for the designer solving the node location problem, the number 

of operations is not quantified in this table favoring the generalization of the problem and 

will depend on the constraints and algorithms for determine the quality of the optimization 

selected. 

The selection of these parameters must be based on the scenario of simulations in 

which the node optimization is performed. Based on [31], we define a 3D scenario in an 

attempt to figure out the real-operating conditions of LPS (i.e. complex orographic scenarios 

with LOS/NLOS environments and subareas of target navigation such as roads for autono-

mous vehicles). This scenario is shown in Figure 6.2 with the definition of the TLE and 

NLE. 

TLE and NLE regions have been defined towards the objective of depicting any pos-

sible condition or complex scenario of application, which substantiates the flexibility and 

versatility of the proposed methodology, and allows the implementation of this procedure in 

difficult outdoor and indoor environments. In this case, the designed environment for sim-

ulations shows a terrestrial LPS application, where the TLE varies deeply in elevation and its 

projection over the reference surface is highly irregular. However, this modelling can be ap-

plied to characterize outdoor and indoor positioning, with terrestrial or aerial optimizations. 
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Figure 6.2 3D irregular scenario of simulations. Gray zones represent the base surface for the optimiza-

tion. Orange regions define the TLE zone, which extends in elevation from the base surface from 0.5 to 

5 meters. The rest of the base surface is intended to the NLE, with constraint in the minimum and maxi-

mum height regarding the reference surface from 3 to 10 meters respectively. 

The NLE and TLE regions are modeled following a discretization procedure, based 

on a trade-off between accuracy in the evaluation of sensor distributions and the number of 

analyzed points -which directly influences the overall number of operations (Table 6.1) and 

the algorithm complexity-. The best results for the TLE region are reached through a spatial 

discretization of 10 meters for x and y coordinates, and 1.5 meters for z coordinate. With 

this configuration, experiments revealed that the mean optimization metrics remain almost 

constant for higher spatial resolutions, saving processing time. Regarding the NLE, the spa-

tial discretization is variable, derived from the process of scaling proposed in [31], enabling 

resolutions for 0.5 to 1 meter for a high accuracy sensor deployment. 

The novelty of the optimization proposed in this paper is based on the consideration 

of the noise and clock errors, the additional path losses typical in NLOS environments, and 

the effective coverage of the sensors for the position determination through the CSs availa-

bility over the TLE. All these considerations constitute the fitness function evaluation in 

each TLE position and its definition is proposed in the next subsection. 
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6.2.3 Methodology for the cost-effective node deployment in A-TDOA systems 

Each heuristic optimization is based on a fitness function in which each parameter 

considered for reaching optimized solutions must be represented. In this subsection, we de-

fine each parameter and develop the final form of the fitness function to evaluate the beauty 

of the node distribution examined in all the TLE.  

The constraints for the cost-effective node deployment in the A-TDOA architecture 

are: 

• Optimization of the clock errors in the CS, through the combined minimization of 

the magnitudes of the time measurements in the CS for each A-TDOA sensor com-

bination. 

• Optimization of the path losses of the positioning signals in the travel from TS-CS 

and WS-CS, using the combined minimization of distances and NLOS disruptions 

in each A-TDOA signal path.  

• Selection of the adequate combination of sensors from all available for location de-

termination in each TLE area, ensuring the maximization of the performance of the 

A-TDOA architecture in terms of accuracy.  

• Optimization of the availability of the system under CS failures, i.e. guaranteeing 

two CS for positioning in each location of the TLE region, holding high-demanding 

requirements of accuracy in both configurations. 

• Elimination of sensor deployments that interferes or occupies some forbidden re-

gions, e.g. the TLE region or some specific zones. 

 

The attainment of these objectives is performed through a sequential TLE (seq-TLE) 

approach, where all optimization parameters are evaluated for each analysis point of the TLE, 

repeating the procedure throughout the remaining TLE region. This methodology avoids 

repeated calculations, becoming especially suitable for large and complex TLE areas, where 

high-density point representations are needed for accurate results. 

In this sense, the first step of the fitness function characterization is the selection of 

the most suitable CS for each A-TDOA sensor deployment (i.e. GA individuals). The elec-

tion is based on the following criteria: “the most suitable CSs selection (initially all sensors 

in the GA individual are candidates to be CS) for each sensor deployment in the environment 

is the one which maximizes the number of TLE points in coverage combining different CS 
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and ensuring at least four WS connected to each of them”. In fact, for attaining CS condition 

failures, this statement is modified for guaranteeing at least two CS available in each TLE 

analysis point. The obtainment of the coverage quantification for each CS-TLE point link is 

performed through the LOS/NLOS algorithm described in reference [35]. 

Once this process is finished, the best configuration of CS and WS for each sensor 

distribution of the GA is selected. Then, the seq-TLE process is performed for every indi-

vidual (i.e. A-TDOA different sensor deployment) of the GA.  

The optimization of noise and clock errors, together with the optimization of 

LOS/NLOS path losses of the positioning signals in the travel from TS-CS and WS-CS are 

assumed through the minimization of the CRB for each point of the TLE provided for each 

CS in the distribution. The CRB mixed model for combined positioning uncertainties is de-

rived from our previous works [23, 35], which is detailed in Section 3. This model is directly 

applied when at least one CS and a minimum of four WS are available for positioning, oth-

erwise a 300 meters’ accuracy error is fixed (this hyperparameter is adjustable according to 

accuracy requirements and stands out for a non-valid operating condition, where CRB model 

is not implementable). 

The quantification of uncertainties induced by noise and clock errors and NLOS signal 

propagation is performed for every combination of one CS and multiple WS in each point 

of analysis of the TLE region. This ensures the attainment of the best valid configuration for 

every block of CS with multiple CS available in each TLE point -e.g. if there are one CS and 

6 WS, the best configuration in terms of accuracy can be reached with all WS available or 

with some of them (if some of the deployed WS present NLOS conditions in this zone in 

particular)-. 

Concerning to the optimization of the system CS failure conditions, the fitness func-

tion provides a method for progressively penalizing those sensor distributions where the 

positioning cannot be provided by at least two different CS (although these CS can share 

multiple WS), which is mandatory for the availability of APS under failure conditions. The 

penalization is based on the quantification of available CS-WS groups for location in each 

TLE point, assigning a penalization –2nTLE to each TLE point where at least two CS are not 

available. This method guarantees the completion of the failure condition requirements since 

softer penalizations encourage the achieving of sensor distributions with zones with a high-

density of distinct CS coverage and regions with only one CS available. 
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The last parameter of the optimization is the penalization factor relative to the deploy-

ment of sensors in forbidden areas, and/or the enhancement sensor distributions in certain 

regions of interest. In this specific problem, sensors cannot be located inside the TLE region, 

as an actual representation of LPS terrestrial applications of positioning, where sensors must 

be outside the road/travel of vehicles. 

The above optimization approach leads to the following fitness function, where all 

summands are constrained in the interval [0-1], enabling a flexible optimization weighting 

and ensuring a correct characterization of the process. 

 

𝑓𝑓𝑓𝑓 =  𝐶𝐶1𝑓𝑓𝑓𝑓1 + 𝐶𝐶2𝑓𝑓𝑓𝑓2 − (𝐶𝐶1 + 𝐶𝐶2)(𝑓𝑓𝑓𝑓2𝐶𝐶𝐶𝐶 + 𝑓𝑓𝑓𝑓𝑅𝑅) 
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(6.3) 

 

where ff1 and ff2 are respectively the fitness function accuracy representation for the primary 

and secondary CS in each TLE point, coefficients C1 and C2 allow distinct ponderations of 

ff1 and ff2 for the optimization process, ff2CS is the penalization due to unavailability of CS in 

each analyzed region of the TLE, ffR represents the penalization factor proper of invalid sen-

sor placements, nTLE is the number of studied points that characterized the TLE, RMSEref is 

the reference Root Mean Square Error (RMSE) for normalizing the ff1 and ff2 (prefixed to 

300 meters, as the possible lower accuracy condition in the problem), RMSECS1 and 
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RMSECS2 are the vectors that contain the accuracy evaluation in terms of the RMSE–detailed 

in Section 3- for the primary and secondary CS in each TLE analysis point, C3 and C4 are the 

coefficients related to the weighting of the ponderations of the summands of the ff2CS func-

tion, EvalCS1 and EvalCS2 are respectively the vectors that quantifies the existence of one or 

two CS in each TLE analysis point–with their correspondent minimum of four WS (shared 

or not)-, assuming a value of -2KTLE when these conditions are not fulfilled since the analysis 

of each point of the TLE returns 0 in unavailability conditions and 1 in available configura-

tions, N is the number of sensors deployed (CS and WS), and R is the penalization for void 

sensor locations (0 for valid placement, 1 for forbidden colocation). 

 

6.3 Cramér-Rao Bound Model for the combined noise and clock error 

model 
Cramér-Rao Bound (CRB) is a maximum likelihood estimator based on the inverse of 

the Fisher Information Matrix (FIM). Its usage in the localization field has been widely con-

sidered for the characterization of the architecture errors in positioning systems [46-48]. This 

statistical operator provides the lowest error in localization regardless of the algorithm used 

for the position determination. Therefore, the analysis of this parameter allows us to charac-

terize the beauty of a node deployment since the better distribution of sensors in space allows 

the reduction of the CRB values in the TLE. 

For this purpose, a characterization of the WGN present in the communications chan-

nel must be considered. Particularly, in LPS, the heteroscedasticity of the noises resulted 

from different range of signal travels is essential to attain valuable results [33]. This fact is 

introduced in the covariance matrix of the system. Kaune et al [49] develop a matrix form of 

the FIM to generally compute the system architecture errors with distance-dependent noises: 
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where m and n are the parameters to be estimated -TS Cartesian coordinates-, h(TS) the 

vector containing the system path travel measured in the architecture at study through the 

time measurements in a CS and R(TS) the covariance matrix containing the uncertainties of 

the system -in this case clock and path errors-. 

Particularizing for the A-TDOA architecture, the h(TS) vector is constituted as fol-

lows: 

 

ℎ𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑖𝑖𝑖𝑖 = �|𝑇𝑇𝑇𝑇 −𝑊𝑊𝑆𝑆𝑖𝑖|� + ��𝑇𝑇𝑇𝑇 − 𝐶𝐶𝑆𝑆𝑗𝑗�� − �|𝑊𝑊𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶|� 

𝑖𝑖 = 1,2 … ,𝑁𝑁𝑊𝑊𝑊𝑊    𝑗𝑗 = 1,2, … ,𝑁𝑁𝐶𝐶𝐶𝐶 

 

(6.5) 

 

being 𝑁𝑁𝑊𝑊𝑊𝑊 the number of WS under coverage for each CS and 𝑁𝑁𝐶𝐶𝐶𝐶 the total number of CS 

under coverage. 

The construction of the covariance matrix, R(TS), depends on the error characteriza-

tion introduced. Traditional studies considered path degradation in signal propagation in 

LOS environments through path loss models [33]. We introduced in our recent articles a new 

model for quantifying the clock errors [23] and also the NLOS propagation errors in complex 

LPS scenarios [35] in the covariance matrix along with traditional noise uncertainties. 

In this paper, we combine these two models to provide a more accurate approximation 

of the actual errors of A-TDOA systems. According to Kaune et al. [49], the time measure-

ments in TDOA systems are assumed to be correlated but asynchronous architectures as-

sume uncorrelated time measurements since every measurement is produced in the CS. 

In this way, the covariance matrix is constructed for the A-TDOA architecture by 

considering LOS and NLOS propagation travels by the positioning signal on a Log-Normal 

Path Loss Model which especially fits LPS demands in complex environments [50] and clock 

error considerations [20] for a generic CS “m”: 
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(6.6) 

 

where c is the speed of the radioelectric waves, B the signal bandwidth, 𝑃𝑃𝑇𝑇 the transmission 

power of the positioning signal, 𝑃𝑃𝑛𝑛 the mean noise power level obtained through the John-

son-Nyquist relation, 𝑑𝑑0 the distance of reference from which the application of the Log-

Normal Path Loss Model can be used, 𝑃𝑃𝑃𝑃(𝑑𝑑0) the path-loss in the reference distance; 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 

and 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 the coefficients of the path loss exponents; 𝑑𝑑𝑖𝑖, 𝑑𝑑𝑇𝑇𝑇𝑇 and 𝑑𝑑𝐶𝐶𝑆𝑆𝑖𝑖 are the distances 

from the TS to the 𝑊𝑊𝑆𝑆𝑖𝑖, from the TS to the 𝐶𝐶𝑆𝑆𝑚𝑚 considered for the position determination 

and from the 𝑊𝑊𝑆𝑆𝑖𝑖 to the 𝐶𝐶𝑆𝑆𝑚𝑚 respectively; l the number of iterations of a Monte Carlo 

simulation to correctly estimate the temporal variance associated with the time system errors, 

𝑇𝑇𝑖𝑖 the total time of flight from the TS to the 𝑊𝑊𝑆𝑆𝑖𝑖, 𝑇𝑇𝑇𝑇𝑆𝑆𝑚𝑚  the time from the emission of the 

positioning signal in the TS and its arrival in the 𝐶𝐶𝑆𝑆𝑚𝑚, 𝑇𝑇𝐶𝐶𝑆𝑆𝑖𝑖𝑖𝑖the time of signal travel from 

the 𝑊𝑊𝑆𝑆𝑖𝑖 to the 𝐶𝐶𝑆𝑆𝑚𝑚, 𝜂𝜂𝑐𝑐𝑠𝑠𝑚𝑚  the clock drift of the 𝐶𝐶𝑆𝑆𝑚𝑚 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑇𝑇𝑇𝑇 the truncation of the error 

in the clock based on their resolution parameters. 

This variance model provides the uncertainties in a defined TS location based on the 

clock characteristics and the signal travel from the WS and the CS under coverage used for 

the position determination. The trace of the inverse of the FIM directly defines the RMSE 

of the TS location in the TLE considered [33]: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚
−1 

𝑚𝑚=𝑛𝑛

𝑚𝑚=1

 

(6.7) 
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being n the number of parameters to estimate, in this case each of the TS Cartesian Coordi-

nates (2 and 3 for 2D and 3D positioning respectively). 

 

6.4 Results 
The implementation of the previous optimization technique for locating A-TDOA 

sensors in the 3D scenario presented in Section 6.2, yields the following results. Firstly, the 

configuration parameters of the A-TDOA architecture, the characteristics of the CS clocks 

used in the system and the GA optimization hyperparameters are provided and justified. 

Subsequently, simulations for a distinct number of sensors are provided, enabling different 

comparisons in terms of availability and accuracy of sensor distributions with a variable num-

ber of CS and WS deployed. With this procedure, a methodology for cost-effective sensor 

optimizations of asynchronous LPS is granted, enabling trade-off solutions based on the 

design requirements for high-accuracy applications. 

6.4.1 Parameter and hyperparameter configuration for the simulations 

The operation setting of the A-TDOA architecture employed for all simulations is 

provided in Table 6.2. The handled selection criteria are based on a generic representation 

of positioning systems [50, 51], aiming a flexible characterization of technologies and high-

lighting the application of the described optimization technique in several circumstances. 

Table 6.2. A-TDOA parameter configuration for the simulations. Noise characterization is per-
formed based on [50], and clock error modeling is configured relying on [20]. 

Parameter Magnitude 
Frequency of emission 1090 MHz 
Transmission power  400 W 
Mean noise power - 94 dBm 

Receptor sensibility - 90 dBm 
Bandwidth 100 MHz 

Clock frequency 1 GHz 
Frequency-drift 𝑈𝑈{−15, 15} ppm 

Time-Frequency product 1 
LOS Path loss exponent 2.1 

NLOS Path loss exponent 4.5 
TLE Coverage Area 0.12 km2 

 
 

The GA and fitness function configuration are presented in Table 6.3. Similarly to the 
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spatial resolution selection for the TLE and NLE regions defined in Section 6.2, the setup 

of the GA hyperparameters is accomplished under the compromise between accuracy rep-

resentations and restrained algorithm complexity with controlled processing time. The selec-

tion process of these hyperparameters has been similar to the methodology followed in [31] 

but different results were obtained since any different scenario of simulations require a par-

ticular fine-tuning for achieve practical results. The following hyperparameters are the best-

founded configuration that allows the fulfillment of these factors. 

Table 6.3. Setup of the GA hyperparameters and fitness function coefficients for the simulations 

GA hyperparameter Setup 
Population size 120 

Selection technique Tournament 2 
Crossover technique Single-point 
Mutation technique Single-point 
Elitism percentage 2.5 % 

Mutation percentage 7 % 

Stop criteria 
300 generations or  
80 % of equals in-

dividuals 
𝐶𝐶1 - 𝐶𝐶2 coefficients value 1 
𝐶𝐶3 - 𝐶𝐶4 coefficients value 1 

 

The proposed GA and fitness function configuration search for an optimization where 

primary and secondary CS positioning would be practically homogenous, in other words, the 

importance of the accuracy of the normal operating conditions is comparable to the im-

portance of the failure operating conditions in the optimization. The importance of the con-

straints of the optimization can be modified through the variation of the fitness function 

coefficients value (𝐶𝐶1- 𝐶𝐶2- 𝐶𝐶3- 𝐶𝐶4). 

6.4.2 Accuracy and availability analysis 

In this section, A-TDOA sensor distributions with different number of CS are studied 

under the parameters of accuracy and availability of performance in CS failure conditions. 

The proposed scenario, together with the environment modeling presented in Table 6.2, 

represents a complex framework where the guarantee of two CS available – and at least four 

WS connected with these CS– for primary and secondary positioning in every TLE zone 

presents difficulties. Due to the complex orography and the challenging propagation of po-

sitioning signals between different side of the central hill with higher ground elevation, at 



 

 
82 

 

 

least three CS are theoretically needed for ensuring positioning services in CS failure condi-

tions and satisfy the availability requirement. Furthermore, experiments carried out show that 

at least nine WS are needed to deploy and establish a valid connection with CS and ensuring 

a minimum of four WS for primary and secondary positioning (shared or not). 

Based on these factors, in the following paragraphs, the results for the optimization of 

accuracy and the fulfillment of availability requirements are presented for three, four, and 

five CS. All of these optimizations are performed with nine additional WS. Figures and Ta-

bles are provided to capture all the information of the simulations. 

Firstly, the results of the optimization for three CS and nine WS are given. Figures 6.3 

and 6.4 present the accuracy evaluation, in terms of the RMSE, for the primary and secondary 

or emergency CS (sub-optimal configuration as a consequence of a temporal unavailability 

of the primary-the most accurate- CS) handled for positioning in each discretized TLE point. 

 

 

 

Figure 6.3 Accuracy evaluation in meters for the primary CS (i.e. normal operation) in each TLE point 

for the optimization with three CS. CS and WS are characterized by brown and purple spheres, respec-

tively. 
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Figure 6.4 Accuracy evaluation in meters for the secondary CS (i.e. emergency operation) in each TLE 

point for the optimization with three CS. 

Figure 6.4 reveals an important feature. The deployment of only three CS does not 

allow the guarantee of double CS availability in every point of the TLE for the designed 

environment. Even there are some regions where secondary positioning is possible, the fact 

that in some areas positioning service in emergency conditions cannot be provided can as-

sume a serious drawback for high-robustness applications (e.g. autonomous navigation). 

After analyzing previous outcomes, the optimized sensor distribution with four CS and 

nine WS is presented in Figures 6.5 and 6.6 for primary and secondary CS positioning. 
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Figure 6.5 Accuracy evaluation in meters for the primary CS (i.e. normal operation) in each TLE point 

for the optimization with four CS. 

 

 

Figure 6.6 Accuracy evaluation in meters for the secondary CS (i.e. emergency operation) in each TLE 

point for the optimization with four CS. 
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Conversely to the three CS optimization, Figures 6.5 and 6.6 show that the deployment 

of four A-TDOA CS with the corresponding nine WS allows high performance in accuracy 

for primary and secondary positioning. However, the system performance in normal an 

emergency can be improved with the increase of CS, as it is displayed in Figures 6.7 and 6.8.  

 

 

 

Figure 6.7 Accuracy evaluation in meters for the primary CS (i.e. normal operation) in each TLE point 

for the optimization with five CS. 
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Figure 6.8 Accuracy evaluation in meters for the secondary CS (i.e. emergency operation) in each TLE 

point for the optimization with five CS. 

As it can be inferred, an increase in the number of CS entails a boost in primary and 

secondary positioning accuracy, reaching the desired requirements for high-accuracy appli-

cations. In this sense, a cost-effective node deployment can be achieved with this optimiza-

tion methodology, through the trade-off between accuracy, availability, and the number of 

sensors deployed (which directly influences the total cost of the LPS).  

In addition to the accuracy evaluations, in Figures 6.9 and 6.10 the number of WS per 

TLE point is presented for the four and five CS configurations (those which enables a sec-

ondary positioning in all the environment). The importance of the WS location is crucial, 

both in accuracy and in positioning availability (not only double CS are required in each TLE 

zone, also a minimum of four WS linked to each CS).  

Here resides the complexity of the optimization since the cost-effective methodology 

for asynchronous node deployments presented in this paper for achieving valuable and stable 

accuracy results must not only deal with the location of the CSs in optimized positions but 

also consider the relative location of the WSs in space defining a combined optimization 

which is critical for obtainment the required accuracy needed for LPS applications. 
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Figure 6.9 The number of available WS for each TLE studied point for the optimized sensor distribution 

of four CS. 

 

Figure 6.10 The number of available WS for each TLE studied point for the optimized sensor distribution 

of five CS. 

 

Figures 6.9 and 6.10 show the variability of the number of WS in coverage for each 
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TLE area, as a result of the accuracy and availability optimizations in the 3D irregular envi-

ronment with deep land slopes. It can be observed that areas where the reference base and 

TLE regions experiment larger changes in geometry or orography, concentrate a higher den-

sity of WS in an attempt of maintaining the required accuracy and availability objectives of 

LPS applications since generally the more sensors in coverage the better accuracy achieved 

(especially if they reach LOS and proximity links with the TS).  

Lastly, in Table 6.4 a summary of the main performance results and characteristics of 

the analyzed sensor configurations is provided.  

Table 6.4. Accuracy and availability comparison between sensor configurations with three, four, 
and five CS (in meters). Primary conditions (P) are referred to as normal operation, while second-
ary conditions (S) represent emergency positioning service. 

Sensor distribu-
tions 

3 CS 4 CS 5 CS 

Mean 
RMSE 

P 1.91 1.14 0.89 
S 81.67 1.70 1.47 

Mini-
mum 
RMSE 

P 11.73 3.89 3.66 

S 300 4.99 4.21 

Max CS 
use (%) 

P 41 % 40 % 32 % 
S - 39 % 35 % 

Max WS 
use (%) 

P 
39 % 

 (5 WS) 
47 % 

 (5 WS) 
47 % 

 (5 WS) 

S - 
46 %  

(5 WS) 
48 % 

 (5 WS) 
 

Table 6.4 highlights the superiority of the five CS optimization in terms of accuracy 

(both mean and minimum magnitude) for the primary and secondary positioning. Also, the 

maximum percentage of use of CS is reduced, i.e. this sensor deployment allows more ho-

mogeneity in the importance of the different CS involved (related to the security robustness 

of the system). Conversely, the three CS optimization cannot guarantee the positioning ser-

vice in emergency conditions, due to the inexistence of combined coverage of pairs of CS 

for every TLE zone. Finally, the four CS distribution represents the minimum number of 

deployed sensors (CS and WS) that can accomplish the high accuracy and availability de-

mands in this environment.  
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6.5 Conclusions 
Local Positioning Systems are attracting high research interest in high-demanded ac-

curacy applications such as indoor and outdoor autonomous navigation.  

Among these local systems, those based in time measurements allows the design of 

robust, accurate and easy to implement hardware architectures. The main system errors of 

these architectures are provided by ineffective links among target and sensors and inappro-

priate synchronism of the system devices. As a consequence, asynchronous time local posi-

tioning systems have emerged over the last few years. The asynchronous time systems are 

based on the collection of the time measurements in a single clock of a coordinator sensor 

avoiding the necessity for overall system synchronization but increasing the signal paths. 

Thus, the increase of the signal uncertainties must be offset by the reduction of the clock 

uncertainties in the system overall performance which can be achieved by optimizing the 

sensor distribution in space.  

The sensor location problem is deeply analyzed in this paper, showing the high-com-

plexity of the NP-Hard node deployment for which a trade-off between resolution in the 

search of the space of solutions and time-effective optimizations must be considered. 

However, the specificities of the asynchronous node deployment make this task even 

more complicated. For this purpose, we propose a new optimized cost-effective methodol-

ogy to deploy both coordinator sensors and worker sensors in space by entailing the overall 

system accurate performance in nominal and emergency conditions (i.e. primary coordinator 

sensor unavailability). We provide an optimization framework in search of at least two coor-

dinator sensors under coverage in every possible target location and the guarantee of at least 

four worker sensors under coverage for each coordinator sensor (which can be shared for 

the same target location).  

Furthermore, we apply an algorithm for the usage of the best combination of coordi-

nator sensors and worker sensors since not always the maximum number of available con-

nections among coordinator and worker sensors can provide the best accurate results (e.g. 

imbalanced signal degradations among nodes).  

The analysis of the combined effect of the clock and noise uncertainties in the time 

measurements is performed through the Cramér-Rao Bound which provides the minimum 

achievable error by any positioning algorithm in every possible target location. We propose 

a Cramér-Rao Bound model considering LOS and NLOS signal links through a Log-Normal 
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Path Loss model with the addition of the clock drift and truncation errors present in the 

coordinator sensor clock. This allows us to measure the architecture accuracy for a defined 

node distribution. 

The optimization of the node location is performed through a Genetic Algorithm ap-

proach by looking for an enhanced node deployment which focuses on accuracy, connection 

effectivity, emergency localization and security robustness for making the system cost-effec-

tive fulfilling the design requirements. 

In an attempt for representing real-operating conditions of a Local Positioning System 

we have defined a simulation scenario containing deep variances in elevation over the ground 

reference surface forcing NLOS connections over the different possible target locations.  

The optimization considers three different configurations with 3, 4 and 5 coordinator 

sensors and 9 worker sensors (i.e. minimum WS number for achieving full coverage in this 

scenario). The finding of the optimal number of coordinator sensors for the fulfillment of 

the cost-effective security-enhanced node deployment and its relation with the worker sen-

sors location is the main objective of this paper. 

Results show that deployments with 3 coordinator sensors are not able to reach full 

coverage increasing the overall errors of the system. Optimized four coordinator sensor de-

ployment can attain the design objective with an acceptable mean error of 1.14 meters and 

1.70 meters in primary and emergency conditions while optimized five coordinator sensor 

deployment can reach 0.89 meters and 1.47 meters mean errors respectively. Both conditions 

satisfy the design main objective but five coordinator sensor deployments show a less critical 

usage of the system coordinator sensors in both primary and emergency conditions which is 

crucial for the security robustness of the system making the five-coordinator sensor deploy-

ment have a superior cost-effective performance. 
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Abstract 
Autonomous navigation has meant a challenge for traditional positioning systems. As 

a consequence, ad-hoc deployments of sensors for addressing particular environment char-

acteristics have emerged known as Local Positioning Systems (LPS). Among LPS, those 

based on temporal measurements present an excellent trade-off among accuracy, availability, 

robustness and costs. However, the existence of different Time-Based Positioning architec-

tures - Time of Arrival (TOA), Time Difference of Arrival (TDOA) and Asynchronous Time 

Difference of Arrival (A-TDOA)- with different characteristics in clock and signal path noise 

uncertainties has supposed that it does not exist any preferred a priori architecture for urban 

NLOS complex scenarios. As a consequence, in this paper, we propose a general framework 

for the optimization of the node deployments of each architecture in urban scenarios based 

on accuracy, availability and robustness. This framework allows us to compare the perfor-

mance of the TBS architectures in the urban scenario proposed as a novel methodology for 

the deployment of LPS time architectures in urban environments. Results in the proposed 

scenario have shown the preeminence of the A-TDOA architecture in primary and emer-

gency conditions which supposes and outstanding remark for future high-demanded accu-

racy applications in urban environments. 
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 7.1 Introduction 
Localization accuracy has become a crucial task for high-demanded autonomous nav-

igation. Traditionally, Global Navigation Satellite Systems (GNSS) have provided global cov-

erage through a constellation of satellites in the space reaching acceptable accuracy for local-

izing objects in the earth’s surface. However, the signals emitted from satellites face different 

challenges for providing a stable link among targets and satellites such as ionospheric adverse 

effects [1], signal path noise degradation [2], multipath phenomena [3] or unstable synchro-

nism among system elements [4]. 

This creates error instabilities on GNSS signals that make them useless for indoor 

navigation [5], precision landings [6],  reconnaissance, and surveillance [7], search and rescue 

operations [8] or precision farming [9]. 

These applications have promoted the development of Local Positioning Systems 

(LPS) that are based on ad-hoc deployments of sensors that particularly adapt to complex 

environments reducing or avoiding adverse effects on signals. 

LPS and GNSS are categorized through the physical property measured for providing 

target location: time [10], power [11], phase [12], angle [13], frequency [14], or combinations 

of these methodologies [15,16]. 

Time-Based Positioning Systems (TBS) have particularly shown an outstanding trade-

off among accuracy, robustness, availability, stability, and easy-to-implement hardware con-

figurations. These time architectures are distinguished by the time-lapse computed in the 

system clocks for determining the target location.  

Time of Arrival (TOA) [17] models measure the time elapsed from the positioning 

signal emission until its reception in one of the architecture nodes. They require the synchro-

nization among all the system elements that cooperate actively in the target location deter-

mination and at least 4 different nodes are required to mathematically solve the 3-D position 

calculation.  

Time Difference of Arrival (TDOA) [18] computes the relative time-of-flight among 

the reception of a positioning signal in two different architecture nodes. 5 different receivers 

are required for the 3-D position determination but we have shown in [19] that under a node 

optimization only 4 receivers can unequivocally determine the target location. 

The synchronization of TDOA architectures is not necessary for the signal emitter and 

it is optional among the architecture nodes. This synchronization among the architecture 
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nodes can be avoided through the computation of the time measurements in a single clock 

of a Coordinator Sensor (CS). This can be reached through the receive and retransmit strat-

egy of the positioning signal from the system devices to the CS node.  

Among these asynchronous architectures, Asynchronous Time Difference of Arrival 

(A-TDOA) [20] and Difference-Time Difference of Arrival [21] stand out and we have 

proven [22] that A-TDOA systems provide better accuracy performance under different 

node configurations. 

GNSS such as GPS, GLONASS, or Galileo use TOA configurations since these ar-

chitectures provide the minimum signal travel, reducing the path noise uncertainties, that 

stand as the key error source of these systems. 

However, if there exists proximity among target and architecture nodes, the effects of 

the signal path degradation are reduced and synchronization instabilities among the system 

elements become more important. That is the reason why traditional ground-based area po-

sitioning systems such as Omega or Loran-C made use of TDOA hyperbolic positioning. 

But these systems have been shut down since the error treatment of GNSS signals has al-

lowed global navigation with less uncertainty. 

But, the global navigation is not the purpose of LPS where complex environments do 

not allow the use of GNSS devices for complex high-demanded accuracy tasks. LPS suppose 

the finding of the fittest system settings for these particular conditions in which the designer 

must deal with accuracy, stability, robustness security, availability, and costs [23]. 

In this sense, the usage of TOA systems reduces the costs and complexity (i.e. fewer 

system elements needed) but the synchronism error must be offset. TDOA systems reduce 

the clock errors (i.e. not necessary synchronism for the emitter) but combine the uncertain-

ties of two different paths for the positioning signal. Asynchronous TDOA configurations 

avoid the synchronism errors but increase the signal travel paths by retransmitting the posi-

tioning signals to the CS nodes [24], being the availability of a CS in each possible target 

location under coverage mandatory for computing the time measurements, making the sys-

tem dependent on these processing sensors. 

Consequently, there is no a priori perfect TBS architecture for a defined scenario, and 

a deep study of each configuration is needed for each different LPS application. 

However, regardless of the TBS architecture used, the optimization of the node loca-

tion is critical for achieving practical results reducing the system uncertainties.  
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This is known as the node location problem and has been assigned as NP-Hard [25,26]. 

Therefore, a heuristic methodology is required for finding optimal node deployments. Sim-

ulated annealing [27], firefly algorithm [28], dolphin swarm algorithm [29], bacterial foraging 

algorithm [30], elephant herding optimization [31], diversified local search [32] but especially 

genetic algorithms in localization node location problems [33-36] have been used to address 

this complex task. 

The node optimization in LPS requires favoring the Line-Of-Sight (LOS) paths among 

target and sensors, reducing the signal paths, avoiding multipath phenomena, considering 

possible sensor failure conditions, and finding the optimal combination of sensors under 

coverage for determining the target location. 

LPS accuracy must be evaluated in these optimizations through Cramér-Rao Bound 

(CRB) which is a maximum likelihood estimator that provides the minimum achievable un-

certainty granted by any algorithm used for the position determination. Its usage in localiza-

tion is widespread [37-39] and the characterization of the system errors are introduced in the 

covariance matrix of the system. The characterization of the signal path noise must deal with 

a heteroscedastic noise consideration in LPS [22,40] since the travel paths can notably differ 

among system receivers. 

In our previous works, we have modeled the path losses [22], the clock instabilities 

[24], and Non-Line-of-Sight links [35] into the covariance matrix of the CRB for character-

izing the architecture errors in LPS applications. We have later applied this model for con-

structing optimized cost-effective node deployments [23] considering sensor failures in the 

CS nodes [41]. 

In this paper, we study the time local positioning architectures (TOA, TDOA, A-

TDOA) for optimized node deployments in NLOS complex urban scenarios considering 

sensor failures in CS nodes and Worker Sensor (WS) nodes, while maximizing the achieved 

accuracy of each system.  

We particularly analyzed the characteristics of the time positioning architectures in ur-

ban environments where there is no a priori suitable architecture and the particularities of 

the environment must be considered. This study proposes the methodology for taking design 

decisions in LPS urban applications guaranteeing system accuracy, robustness, availability, 

and stability enhancements. 

The remainder of the paper is organized as follows: we introduce the TBS architectures 
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studied and their error model characterization into the CRB matrix in Section 7.2, we present 

the NLOS complex urban scenario of simulations in Section 7.3, the node location problem 

and the Genetic Algorithm optimization proposed with the characteristics of each architec-

ture at study are defined in Section 7.4, and the results and conclusions of the paper are 

analyzed in Sections 7.5 and 7.6. 

7.2 Problem Definition 
TBS have attracted research interest for LPS high-demanded accuracy applications. 

Their trade-off among system complexity, robustness, stability, and availability provide a re-

liable combination of factors for deploying ad-hoc sensor networks for autonomous guided 

navigation in outdoor and indoor environments. 

TBS are configured under synchronous (TOA and TDOA) and asynchronous (A-

TDOA) architectures which provide different alternatives for the attainment of the accuracy 

requirements defined by the particular tasks for which they are committed. 

However, there is no a priori suitable architecture for LPS applications. This is a con-

sequence of the different characteristics of the main TBS architectures. 

 TOA systems provide the least uncertainty in the signal noise since their travel path 

is the shortest among the TBS architectures. Nonetheless, their clock errors are the greatest 

since they require synchronism among all the sensors of the architecture including the Target 

Sensor (TS).  

TDOA systems combine the path degradation effects of two different signals, which 

are mandatory for computing the time difference measurements to determine the TS loca-

tion. But, they reduce the synchronism errors since these systems do not require the TS node 

synchronism with the CS nodes of the architecture. 

A-TDOA systems have the longest positioning signal paths as they rely on the receive 

and retransmit strategy of the signal through the CS node of the system in which all the time 

measurements are computed. As a consequence, these systems assume the greatest signal 

degradations but they avoid the synchronism adverse effects in the time measurements [23]. 

Besides, asynchronous architectures completely rely on the CS clock for computing the time 

measurements. This requirement may suppose potential system unavailability if a temporal 

malfunction of the CS node is occurring. Consequently, methodologies for ensuring the sys-

tem availability [23] in CS node failure conditions are required for easing this potential dis-

advantage. 
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Therefore, a deep study of the characteristics of the environment, the system clocks 

properties, and the goals of the LPS deployment must be performed for defining the most 

convenient TBS architecture for enhancing the localization accuracy and stability. 

This study requires the characterization of the system noise errors [22], the considera-

tion of the clock errors [24], the detection of LOS/NLOS paths in the positioning signal 

links of each architecture [35], the guarantee of the availability of the TBS under possible 

sensor failures [41] and a methodology that enables a cost-effective node deployment for 

each architecture [23]. 

 In this paper, we apply each of these considerations for the deployment of a TBS 

architecture for an LPS application in an urban scenario for the first time in the authors’ best 

knowledge. We define this scenario, characterize the system errors of each architecture and 

perform the optimization of the node deployment for each possible TBS architecture since 

the system errors are not comparable under random node deployments (e.g. signal noise is 

not minimized in these cases and beneficial geometric node deployments are not considered 

for achieving practical surfaces for the application of the positioning algorithms). 

As a consequence, we first minimize the uncertainties of each TBS architecture and 

then compare these architectures for the urban scenario selected as a methodology for the 

appropriate design of LPS for critical accuracy applications. 

In this section, we provide an analysis of each TBS architecture at the study and the 

modeling of the system uncertainties for each TBS (i.e. TOA, TDOA, and A-TDOA) into 

the CRB matrix which provides the minimum achievable error by any positioning algorithm 

in a defined TS location. This estimator is later used for characterizing the quality of a par-

ticular node deployment and for comparing the performance of each TBS architecture in the 

defined scenario. 

7.2.1 Crámer-Rao Bounds for the TBS Architectures 

The definition of the uncertainties in TBS is crucial for the design of LPS systems and 

the comparative performance of the different architectures. CRB allows us to determine the 

minimum variance value of any unbiased estimator. In localization, its usage is widespread 

[36-38, 41] since it provides the minimum achievable error in the estimation of the TS spatial 

coordinates (i.e. the minimum error reached by any positioning algorithm). 

Kaune et al. [39] provided a matrix form of the Fisher Information Matrix (FIM) which 

is a maximum likelihood estimator which inverse defines the CRB of each architecture at 
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(7.1) 

where 𝐽𝐽𝑚𝑚𝑚𝑚 represents the 𝐹𝐹𝐹𝐹𝑀𝑀𝑚𝑚𝑚𝑚 matrix element, 𝐑𝐑(𝐓𝐓𝐓𝐓) is the covariance matrix of the 

architecture at study in which the characterization of the uncertainties (i.e. noise in 

LOS/NLOS condition and clock errors) is provided, and 𝐡𝐡(𝐓𝐓𝐓𝐓) is the vector containing the 

information of the time measurement computed in each architecture. 

As a consequence, the 𝐡𝐡(𝐓𝐓𝐓𝐓) vector and the covariance matrix 𝐑𝐑(𝐓𝐓𝐓𝐓) must be char-

acterized for every TBS architecture in order to obtain the FIM. The derivations of the J 

terms referred to the TS spatial coordinates provide an expression of the maximum variance 

of the TS coordinates (i.e. the error in the position calculation). 

In LPS applications, the characterization of the noise in the covariance matrix must be 

introduced in an heteroscedastic consideration [40, 43-44] since the path of the positioning 

signal significantly differs among the architecture sensors. 

Following this consideration in LOS [22] and NLOS [35] conditions through a Log-

Normal path loss propagation model, and introducing a model for quantifying the uncertain-

ties of the CS clocks of the architectures through a Monte-Carlo simulation for estimating 

each temporal variance of the time measurements including the time resolution of the system 

clocks [21] [24], we characterize the error of each TBS architecture at study. This character-

ization is assuming uncorrelated errors between noise and clock uncertainties, since the error 

sources do not share any relation (i.e. noise errors are produced in the positioning signal path 

and clock errors in the CS time measurement). For a detailed consideration of each error 

characterization in LPS systems, please refer to [24] and [35].  

In TOA architectures, in which the time measurements are uncorrelated (i.e. non-di-

agonal elements of the covariance matrix are zero), 𝐡𝐡(𝐓𝐓𝐓𝐓) and R(TS) take the following 

expression: 
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where 𝑁𝑁𝑐𝑐𝑠𝑠 is the number of CS under coverage, 𝑐𝑐 the speed of the radioelectric waves in 

m/s, 𝐵𝐵 the signal bandwidth in Hz, 𝑃𝑃𝑇𝑇 the transmission power in W, 𝑃𝑃𝑛𝑛 the mean noise level 

in W obtained through the Johnson-Nyquist relation, 𝑃𝑃𝑃𝑃(𝑑𝑑0) the path-loss in the reference 

distance 𝑑𝑑0 from which the Log-Normal model is applied, 𝑑𝑑𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿  and 𝑑𝑑𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  represent the 

flight distance from each emitter/receiver pair in LOS and NLOS conditions respectively, 

𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 the LOS and NLOS path-loss exponents, 𝑙𝑙 is the number of iterations of 

the Monte-Carlo model for estimating the temporal variances, 𝑇𝑇𝑖𝑖 is the time of flight of the 

positioning signal from emitter to receiver in TOA architecture, 𝑈𝑈𝑖𝑖 and 𝑈𝑈0 is the initial-time 

offset of the CS and TS clocks respectively and 𝜂𝜂𝑖𝑖 and 𝜂𝜂0 represent the clock drift of CS and 

TS clocks, and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑇𝑇𝑇𝑇 is the truncation function that represents the temporal resolution of 

the deployed sensors. 

TDOA architectures assume the correlation among the time measurements [45] which 

produces non-zero elements in the non-diagonal terms of the covariance matrix. The vector 

𝐡𝐡(𝐓𝐓𝐓𝐓) and R(TS) are obtained as follows: 
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where sub-index 𝑗𝑗 is used for referring to the second positioning signal in the TDOA archi-

tecture (i.e. the emission in which the 𝐶𝐶𝑆𝑆𝑗𝑗 is operated). 

A-TDOA architecture also assume uncorrelated time measurements since a unique CS 

is employed for collecting the time measurements. 𝐡𝐡(𝐓𝐓𝐓𝐓) and 𝐑𝐑(𝐓𝐓𝐓𝐓) are particularized: 

 

ℎ𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑖𝑖 = ‖𝑇𝑇𝑇𝑇 −𝑊𝑊𝑆𝑆𝑖𝑖‖ + ‖𝑇𝑇𝑇𝑇 − 𝐶𝐶𝐶𝐶‖ − ‖𝑊𝑊𝑆𝑆𝑖𝑖 − 𝐶𝐶𝐶𝐶‖ 

𝑖𝑖 = 1, … ,𝑁𝑁𝑤𝑤𝑤𝑤 
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(7.15) 

 

 

(7.16) 

 

(7.17) 

 

Substituting the corresponding 𝐡𝐡(𝐓𝐓𝐓𝐓) and 𝐑𝐑(𝐓𝐓𝐓𝐓) for each TBS architecture in the 

FIM matrix (Eq. 7.1), the accuracy of each architecture can be evaluated through the Root 

Mean Squared Error (RMSE), expressed by the following relation: 

 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐉𝐉−1) (7.18) 
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7.2.2 Configuration of the environment of simulations 

The comparison between TBS architectures should take place in an environment 

where systems capabilities can be tested. In detail, specific scenarios for each application 

must be characterized to estimate the accuracy, cost, and robustness of the implemented 

system before its deployment. Even more interesting, with CRB models [23], the designer 

can compare different architectures, sensor placements, and environments conditions find-

ing the best solution to its particular location problem.  

This last approach is presented in this paper, where a 3D generic urban scenario has 

been conceived to compare TOA, TDOA, and A-TDOA characteristics (Figure 7.1). This 

scenario has been designed for testing TBS architectures throughput in harsh environments, 

where positioning signals are degraded by obstacles, buildings, which are typical operating 

conditions for future autonomous vehicles and other high-demanding applications in urban 

areas. 

 

Figure 7.1 3D urban scenario of simulations. Grey tones represent the reference surface and buildings, 

while brown colors indicate the Target Location Environment (TLE). 

Based on the terminology detailed in [33], the Target Location Environment (TLE) is 

defined as the allowed TS navigation area, and the Node Location Environment is identified 

as the possible zone where architecture sensors can be located.  

In the scenario depicted in Figure 1, the TLE region is located in the proximity of the 
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reference surface, simulating a terrestrial positioning application (however it can model also 

aerial configurations). It extends from 0.5 to 5 meters in elevation from the ground, avoiding 

multipath phenomena that blurred the representativeness of the accuracy results reached 

through the CRB models.  

The NLE zone extends over all the reference surface and buildings, except for the 

TLE region. This ensures that architecture sensors do not disturb the traffic of possible ve-

hicles. The NLE region is contained in height from 3 to 10 meters, minimizing disruptive 

phenomena due to multipath in the sensors, and limiting the maximum size of sensors, es-

pecially critical in urban environments. 

Once TLE and NLE regions are determined, a discretization process based on a re-

quired spatial resolution must be performed. This procedure is extremely important to obtain 

accurate results, without over-dimension the processing time of the optimization.  

For the TLE area, spatial resolutions of 1 meter in x and y, and 1.5 in z Cartesian 

coordinates are defined. The discretization of the NLE region is directly determined by the 

scaling process of the implemented GA [33] for the optimization. Based on this, a grid res-

olution contained in the interval [0.5-1] meter is employed. 

These settings are founded when the optimization variables vary less from the 1 % 

when increasing the spatial resolution of NLE and TLE zones, reaching a trade-off between 

representativeness and processing time. This analysis should be performed for every envi-

ronment of application. 

 

7.3 Genetic Algorithm Optimization 
In this manuscript, a TBS performance comparison in terms of accuracy, availability, 

and robustness is carried out for high-demanding applications in 3D urban environments. 

Comparative results must be acquired through optimized sensor distributions for each TBS 

in the Scenario presented in Figure 7.1. In this section, the characteristics of this optimization 

problem and the implemented methodology to solve are submitted, together with the opti-

mization functions for locating TOA, TDOA, and A-TDOA architectures sensors. 

7.3.1 Node Location Problem 

The finding of the optimized sensor distribution for the reduction of the architecture 

uncertainties is known as the node location problem (NLP).  
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It is a crucial task in WSN since the system performance is notably dependent on 

finding an optimized node deployment. The definition of the necessary nodes for covering 

the target area (i.e. coverage problem[46]), the consideration of possible sensor failures in the 

deployment [40], the reduction of the energy consumption [47] or the minimization of the 

clock [24] and noise [35] uncertainties are some of the most important issues in WSN that 

require an optimized sensor location for achieving acceptable results. 

The NLP is a combinatorial optimization problem which has been assigned as NP-

Hard [25,26]. Therefore, a heuristic solution is recommended for finding an optimized sensor 

placement in polynomial time.  Simulated annealing [27], firefly algorithm [28], dolphin 

swarm algorithm [29], bacterial foraging algorithm [30], elephant herding optimization [31], 

diversified local search [32] have been used for addressing the NLP.  

However, the huge dimension of the space of solutions of the NLP - highly dependent 

on the number of sensor nodes and the resolution of the NLE and TLE [23]- has suggested 

the usage of metaheuristics which reach an optimal trade-off among the intensification and 

diversification phases in the combinatorial search. Among them, GA [33-36] have particu-

larly stand out in the literature.  

In the localization field, the usage of heuristics for the NLP is also justified since the 

derivation of the quality metric (CRB) cannot be extended to the entire TLE [43]. Therefore, 

it is impossible to define a path in the optimization process in which an ascent tendency in 

the fitness value can be attained. This produces that the NLP designer must particularly per-

form a hyperparameter tuning in order to guarantee the population diversity for achieving a 

balanced examination of the space of solutions and avoiding the premature convergence of 

the algorithm. 

As a consequence, in this paper, we propose a GA optimization to the NLP of the 

three main localization architectures in urban scenarios with the methodology for the hy-

perparameter tuning described in [33]. 

7.3.2 Optimization functions for TBS Architectures 

The optimization objectives of the TBS comparison are represented through specific 

fitness functions for TOA, TDOA, and A-TDOA architectures. Precisely, the optimization 

must maximize the accuracy, availability, and robustness of each architecture in the environ-

ment of simulations, while penalizing all sensor distributions with an invalid configuration. 

The maximization of the accuracy is completed through the minimization of temporal 
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uncertainties induced by noise, clock errors, and NLOS conditions in the positioning signals 

of TBS. The accuracy magnitude for each TBS sensor distributions is estimated through the 

RMSE characterized based on the corresponding CRB system model (Section 7.2). 

The maximization of the availability is performed through the assurance of the 

throughput requirements when some sensors of the TBS are not accessible to the operation. 

Accordingly, the optimization should provide sensor distributions that maximize the accu-

racy performance of TOA, TDOA and A-TDOA architectures when Coordinate Sensors 

(CS) –those with the capacity to perform temporal measurements– and/or Worker Sensors 

(WS) –sensors without the time measuring ability, typical of A-TDOA systems–fail or are 

unavailable. Based on their configuration, the maximization of the availability is represented 

differently for each TBS. 

Concerning to the maximization of robustness, high-demanding applications demand 

not only accuracy in the TS positioning, but also stability in the location service. The optimi-

zation of TBS must penalize sensor deployments with high contrast in the accuracy values 

of all the TLE region of the system. 

Finally, penalizations for forbidden sensor distributions, such as devices located inside 

the TLE zone, are performed for ensuring correct TBS implementations. Similarly, designers 

can encourage distributions in certain pre-determined areas. 

Gathering previous requirements, a global fitness function for the cost-effective node 

deployment of TBS in urban environments can be characterized through the next relation: 

 

𝑓𝑓𝑓𝑓 =  𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 − (𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟)𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 (7.19) 

 

where 𝑓𝑓𝑓𝑓 stands for the value of the global fitness function, 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 represents the accuracy 

component of the 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 relates the availability compound of the 𝑓𝑓𝑓𝑓, 𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 expresses 

the robustness part of the 𝑓𝑓𝑓𝑓 function, and finally 𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 quantifies all penalizations applied 

to the TBS sensor distribution. Each of these components is linked to their correspondent 

coefficient (𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎, 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎, 𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟) for weighting its influence according to the optimization pre-

requisites. 

As it can be observed, the optimization process is based on the maximization of 

Eq.7.19, searching for a trade-off between accuracy, availability, robustness, and avoiding 

forbidden sensor distributions.  
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TOA architectures are optimized based on the relations submitted in Eq. 7.20. Accu-

racy estimation is obtained through the CRB calculation based on the environment simula-

tion detailed in Eq.7.3, ensuring that at least 4 TOA sensors are usable. Availability require-

ments are studied of the system performance when the minimum number of sensors is ac-

cessible to TS location (for TOA architectures, when only 3 sensors in coverage). Respecting 

robustness, the fitness function incrementally penalizes TLE zones where performance is 

non-adequate, avoiding sensors distributions without consistency in the system throughput 

over the entire TLE. Finally, architecture sensors that are located inside the TLE zone are 

also penalized. 
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where 𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 is the number of points in the TLE region, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 is the reference RMSE for 

normalizing 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 , assuming a maximum error of 300 meters when positioning cannot be 

provided (worst accuracy condition in the problem), 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 is the vector that contains the 

accuracy evaluation for all TLE zone, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the number of possible combinations of 3 

available sensors in each zone of the TLE region,  𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝟑𝟑,𝐂𝐂 represents the accuracy estima-

tion for each point of the TLE region for each combination of 3 possible TOA sensors in 

coverage, 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 is the vector that stores the existence of the required architecture sensors in 

each point of the TLE –assuming a value of -2KTLE when these conditions are not fulfilled 

[23], 𝑁𝑁 is the total number of sensors deployed, and 𝐑𝐑 represents the vector for penalizing 

wrong sensors distributions (0 for valid and 1 invalid allocation).  

TDOA architectures optimization is founded on the same basis as TOA systems. 

Based on CRB evaluation for TDOA architectures with temporal uncertainties induced by 

noise, clock errors, and NLOS conditions (Eq. 7.7), accuracy in each of the TLE points is 

estimated for sensor distributions (assuming that at least 4 TDOA sensors are accessible for 

3D positioning). Availability is addressed through the accuracy analysis of sensor distribu-

tions when the minimum number of sensors is available for positioning (4 in the case of 3D 

location with TDOA systems [19]). Also, in TDOA architectures one pre-determined CS is 

used to refer time measurements of the surroundings TDOA sensors and compute pairs of 

time difference of arrival from TS.  For this reason, availability is also affected by malfunc-

tions in this pre-defined CS in each TLE zone, so at least 2 eligible CS must be in coverage 

and connected with 3 more (shared or not) CS in order to perform positioning in failure 

conditions. As in the TOA case, robustness is maximized based on a progressive fitness 

function for evaluation accuracy and availability, which gradually penalizes sensor distribu-

tions with non-uniformity in the performance for every TLE region. Also, TDOA sensors 

placed inside TLE zones led to hard penalizations in the global fitness function for this sen-

sor distribution. 
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(7.21) 

 

where 𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 and 𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝐬𝐬𝐬𝐬𝐬𝐬 represents the location accuracy obtained with the primary 

and secondary eligible CS for all TLE points, 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝟒𝟒,𝐂𝐂 represents the accuracy estimation 

for each point of the TLE region for each combination of 4 possible TDOA sensors in 

coverage, and the rest of the variables are defined as previously but for the TOA architecture. 

A-TDOA architectures are optimized based on the criteria presented in Eq. 7.19, but 

the methodology for analyzing accuracy and availability requirements are slightly different 

than the purposed for TOA and TDOA systems. This alteration is induced by the existence 

of two different types of sensors (CS and WS) characteristics of A-TDOA architectures. 

Accuracy estimation is carried out from the assumption that 1 CS and at least 4 WS 
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are available to connect with the TS location. Consequently, temporal measurement uncer-

tainties in systems sensors motivated by noise, clock errors, and NLOS conditions, are in-

troduced in Eq.11 and postponing accuracy (RMSE) is calculated based on CRB. Availability 

evaluation is performed based on the capacity of the system to provide high-accuracy post-

poning service when some of the CS or WS present malfunctions. Conversely to previous 

TBS systems, in A-TDOA architectures there exists two types of sensors with different ca-

pabilities and functions, so the availability study must distinguish their impacts. Precisely, WS 

availability is approached as in TOA and TDOA systems, where the accuracy is evaluated 

for each possible combination with the minimum number of sensors needed for positioning 

(3 WS [19] and 1 CS for A-TDOA systems). Concerning CS availability, the optimization 

must guarantee that a minimum of 2 CS –with the correspondent WS connected (shared or 

not) between them– is accessible in each zone of the TLE region, alluring the positioning 

service in the event of CS malfunctions [23]. Robustness and undesirable sensor distributions 

are feed into the optimization using the same methodology that the rest of the TBS treated.  
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𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎|𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =

=
∑ �

�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝐬𝐬𝐬𝐬𝐬𝐬�
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟

�
2

𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇
𝑘𝑘=1

𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 �
�

𝐴𝐴−𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷

+

∑ �
�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 − ∑ 𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝟒𝟒,𝐂𝐂

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
1 �

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟
�

2

𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇
𝑘𝑘=1

𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇
�

�

�

𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

 

𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟|𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �
𝑎𝑎𝑎𝑎𝑎𝑎�𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑠𝑠𝑠𝑠𝑠𝑠�𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩��

𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇(𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 + 1)
�
2

+ �
𝑎𝑎𝑎𝑎𝑎𝑎[𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐬𝐬𝐬𝐬)]

𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇(𝐾𝐾𝑇𝑇𝑇𝑇𝑇𝑇 + 1)
�
2

�
𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

 

𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝�𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
∑ 𝐑𝐑𝑁𝑁
1

𝑁𝑁
�
𝐴𝐴−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 

 

 

 

 

 

(7.22) 

where 𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 and 𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌𝐬𝐬𝐬𝐬𝐬𝐬 indicate the accuracy evaluation for all TLE based on the 

primary CS associated and the second one, respectively, for each TLE point, 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝟒𝟒,𝐂𝐂 rep-

resents the accuracy estimation for each point of the TLE region for each combination of 3 

possible A-TDOA WS and 1CS in coverage, and 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 and 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐬𝐬𝐬𝐬 are respectively the 

vectors that quantify the existence of one or two CS –with their correspondent minimum or 

four WS (shared or not)-, assuming a value of -2KTLE when these conditions are not fulfilled 

[23].  

7.4 Results 
The results of the TBS node optimization in the 3D urban environment detailed in 

Figure 7.1 are submitted in this section. Firstly, descriptions about the positioning systems 

configuration and the GA hyper-parameters are provided. Secondly, performance evalua-
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tions for TOA, TDOA, and A-TDOA architectures in the urban scenario are supplied. Fi-

nally, an analysis of the results is submitted, highlighting the benefits of each architecture and 

how their characteristics influence their implementation to high-demanding positioning ap-

plications 

7.4.1 Parameter selection for simulations 

TBS nodes optimizations are subjected to the definition of location technology and 

optimization strategy to properly compare the positioning architectures. 

Relating TBS technologies, the objective of this manuscript is to provide a detailed 

methodology to estimate architectures a priori throughputs and compare positioning systems 

based on real applications in complex urban environments. Based on this, a generic config-

uration of communications and positioning devices is selected, aiming the most representa-

tiveness with urban restrictions and limitations [48]. Positioning signals characteristics, clocks 

uncertainties models, and path loss estimations are shown in Table 7.1. 

 

Table 7.1. TBS configuration parameters relative to positioning technology, time measure-

ment devices [21], and environment characterization [49]. 

Parameter Value 

Transmission power  1 W 

Frequency of emission 5465 MHz 

Bandwidth 100 MHz 

Mean noise power - 94 dBm 

Receptor sensibility - 90 dBm 

Clock frequency 1 GHz 

Frequency-drift 𝑈𝑈{−10, 10} ppm 

Initial-time offset 𝑈𝑈{15, 30} ns 

Time from synchronization 1 µs 

LOS Path loss exponent 2.1 

NLOS Path loss exponent 4.1 

 

The hyper-parameter selection for the GA optimization is conditioned to the trade-

off between the obtainment of near-global maximum solutions with high representativeness 

and spatial resolution, and the processing time and the complexity of the method. Table 7.2 
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displays the optimization parameters chosen for the simulations with the TBS. 

 

Table 7.2. Settings for GA optimization for TOA, TDOA, and A-TDOA architectures. 

GA Settings 

Population size 80 

Selection technique Tournament 2 

Crossover technique Single-point 

Mutation technique Single-point 

Elitism percentage 3 % 

Mutation percentage 8 % 

Stop criteria 
300 generations or  

75 % of equals individuals 

Fitness function coefficients 1 

 

 

Regarding the GA configuration of Table 7.2, two settings should be highlighted. The 

mutation percentage is slightly larger than usual to overcome local optimizations induced by 

the discontinuities in the global fitness function caused by NLOS conditions. Lastly, the 

fitness function coefficients (Eq. 7.19) are determined as unitary to perform a standard op-

timization where normal operating conditions are considered to a greater extent than emer-

gency (failure) conditions. However, this layout can be adapted based on optimization de-

mands and application requirements.  

7.4.2 TBS Optimizations 

The large urban scenario of simulations selected has promoted the employment of 16 

architecture sensors for achieving the coverage of the entire analyzed TLE points. 

We have performed the optimizations described throughout the past chapters for each 

of the TBS architectures (TOA, TDOA and A-TDOA) looking for enhanced node distribu-

tions in accuracy, availability and robustness reaching the following results displayed from 

Figure 4.2 to Figure 4.4: 
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Figure 7.2 Accuracy representation in meters of the TOA architecture with 16 nodes in the proposed 

urban scenario. 

 

Figure 7.3 Accuracy representation in meters of the TDOA architecture with 16 nodes in the proposed 

urban scenario. 
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Figure 7.4 Accuracy representation in meters of the A-TDOA architecture with 16 nodes in the proposed 

urban scenario. 

The previous figures have shown the accuracy of each architecture in the TLE. Then, 

in Table 7.3, the results of the accuracy and availability of the optimizations are presented: 

 

Table 7.3. Accuracy analysis for TOA, TDOA, and A-TDOA architectures in nominal con-

ditions. 

RMSE (m) TOA TDOA A-TDOA 

Mean 11.46 6.14 2.69 

Max 25.45 13.82 9.91 

Min 0.12 0.09 0.13 

 

As it is shown, A-TDOA outperforms the synchronous architectures in accuracy, in-

dicating the relevance of the synchronism errors in LPS.  

Its behavior in emergency conditions is also controlled through the optimization pro-

cess. In Figures 5 and 6, the accuracy performance of the A-TDOA and the TDOA archi-

tecture under failure conditions of one of the CS is presented: 
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Figure 7.5 TDOA architecture accuracy performance in meters in failure conditions. 

 

Figure 7.6 A-TDOA architecture accuracy performance in meters in failure conditions. 

Results show the preeminence of the A-TDOA in this urban scenario. This supposes 

an outstanding remark to be considered for future high-demanded applications in urban con-

texts.  

However, the dependence of the A-TDOA architecture on finding specially enhanced 

locations for the CS in order to avoid NLOS links in the architecture connections among the 



 

 
120 

 

 

CS and WS nodes makes this architecture deployment be critical in especially irregular urban 

scenarios with the difficulty of finding LOS paths among the architecture sensors. As a con-

sequence, the employment of the TOA and TDOA architectures is desirable in these espe-

cially harsh urban environments of operations since the independence of their nodes enables 

the possibility of having some sensors dedicated for the especially harsh TLE zones, thus 

achieving optimal accuracy in these locations. 

 

7.5 Conclusions 
Local Positioning Systems (LPS) have shown an excellent adaptation for high de-

manded accuracy applications in complex environments. The development of autonomous 

navigation with high navigation accuracy needs has supposed a challenge in NLOS urban 

scenarios. 

In this paper, we propose a methodology for the deployment of Time-Based Position-

ing Systems (TBS) in urban environments. This methodology relies on the exploration and 

analysis of the three main temporal localization architectures: Time of Arrival (TOA), Time 

Difference of Arrival (TDOA) and Asynchronous Time Difference of Arrival (A-TDOA). 

Every architecture must be considered for every different scenario since the clock er-

rors and noise path uncertainties are imbalanced among them. TOA cumulates the less noise 

uncertainties since the positioning signal travels the shortest path of these architectures but 

requires the synchronism of all the system elements, while A-TDOA avoid synchronism er-

rors but increases the signal paths by its receive and retransmit strategy. 

Consequently, we define a general framework for the optimization of the node distri-

bution of these TBS architectures in order to compare their performance in the proposed 

urban scenario. This optimization requires the solution of the node location problem for 

each architecture which has been assigned as NP-Hard.  

We propose a GA optimization for addressing this complex problem focusing on the 

reduction of the clock and noise architecture uncertainties in a combined LOS and NLOS 

urban scenario, on guaranteeing the system accuracy and on system availability in case of 

some Coordinator or Worker Sensor malfunction and penalizing invalid node deployments. 

Results show the preeminence of the A-TDOA architecture in the proposed scenario. 

The influence of the synchronization effects makes A-TDOA to be promising for urban 

Local Positioning System applications due to the achieved reduction of the system clock 
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errors. However, the simulations have shown the importance of the location of the CS nodes 

in the A-TDOA in desirable special positions that are reached in this scenario but can sup-

pose a challenge in some environments, promoting the implementation of the TOA and 

TDOA system in especially irregular urban scenarios.   
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Chapter 8 

Memetic Algorithm for the Node Location Problem in Local 

Positioning Systems  
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Abstract 
Local Positioning Systems (LPS) have shown an excellent performance for high de-

manded accuracy applications. They rely on ad-hoc node deployments which fit the environ-

ment characteristics in order to reduce the system uncertainties. The obtainment of compet-

itive results through these systems require the solution of the Node Location Problem (find-

ing the optimal cartesian coordinates of the architecture sensors). This problem has been 

assigned as NP-Hard, therefore, a heuristic solution is recommended for addressing this 

complex problem. Genetic Algorithms (GA) have shown an excellent trade-off between di-

versification and intensification in the literature. However, in NLOS environments in which 

there is not continuity in the fitness function evaluation of a particular node distribution 

among contiguous solutions, challenges arise for the GA during the exploration of new po-

tential regions of the space of solutions. Consequently, in this paper, we first propose a Hy-

brid GA with a combination of the GA operators in the evolutionary process for the Node 

Location Problem. Later, we introduce a Memetic Algorithm (MA) with a Local Search (LS) 

strategy for exploring the most different individuals of the population in search of improving 

the previous results. Finally, we combine the HGA and MA designing an enhanced novel 

methodology for solving the Node Location Problem, a Hybrid Memetic Algorithm (HMA). 

Results show that the HMA proposed in this article outperforms all of the individual config-

urations presented and attains an improvement of 14.2% in accuracy for the Node Location 
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Problem solution in the scenario of simulations with regards to the previous GA optimiza-

tions of the literature. 

8.1 Introduction 
The definition of the location of a target is an essential fact for performing complex 

tasks. Traditionally, Global Navigation Satellite Systems (GNSS) have been used for provid-

ing a stable signal for many different applications such as navigation, earth observation, emer-

gency and rescue operations or surveillance. However, their signals are notably affected in 

their paths from satellites to targets and the accuracy achieved by these systems can be com-

promised by ionospheric instabilities [1], synchronization effects among the system devices 

[2], multipath phenomena [3] or signal path noise degradation [4] 

However, the uncertainty in the position determination using GNSS may preclude 

their usage for high-demanded accuracy applications (e.g. autonomous navigation, indoor 

localization, low-level UAV flights or precision agriculture). Therefore, new localization 

schemes based on the terrestrial deployment of sensors with target proximity are collecting 

notable research interest over the last few years [5,6]. These deployments, known as Local 

Positioning Systems (LPS), require an ad-hoc distribution of the sensors in space adapting 

the sensor location to the characteristics of the environment of operation, thus reducing the 

system uncertainties in the position determination. The knowledge of the environment and 

the optimal deployment of the sensors enables mitigating or avoiding the main system error 

sources thus producing competitive and cost-effective systems for high-demanded accuracy 

applications [7]. 

LPS are categorized through the physical property measured for calculating the target 

location: power [8], angle [9], phase [10], frequency [11] , time [12] and hybridizations of 

them [13, 14]. 

Among them, time-based positioning (TBP) shows the best trade-off considering ac-

curacy, reliability, robustness, stability and easy-to-implement hardware configurations. TBP 

is based on the measurement of the positioning signal time travel from an emitter to a re-

ceiver. There exist different architectures for computing the time measurements which pro-

duces different target determination calculations. 

Time of Arrival (TOA) architectures measure the total time-of-flight of the positioning 

signal from an emitter to a receiver [15]. It requires the synchronism of the clock of all the 
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system elements since every reception of the signal produces a different equation of a sphere 

for the target location determination. Generally, 3-D positioning needs 4 receivers for une-

quivocally determine the target spatial coordinates. 

Time Difference of Arrival (TDOA) architecture measures the relative time lapse 

among the reception of the positioning signal in two different receivers [16]. Relative-time 

measurements generate hyperboloid surfaces of possible target locations in 3D. The neces-

sity of using two different receivers for obtaining a hyperboloid equation, produces that 5 

sensors are required for unequivocally determine the target location. However, we have 

proven [17] that under optimized sensor distributions this problem may be solved with 4 

receivers. 

TDOA architectures do not require the synchronism of the target with the system 

clocks. Even, completely asynchronous architectures are recently being proposed [18, 19] 

and are attracting high research interest since they collect all the time measurements in a 

single clock of a Coordinator Sensor (CS). This allows us to avoid synchronism among the 

system receivers, consequently reducing the architecture clock errors [20]  but increasing the 

signal paths and noise errors [21], since they rely on a receive-and-retransmit strategy of the 

positioning signals in the Target Sensor (TS) producing longer path signals. In addition, a 

possible CS malfunction may produce temporal system unavailability [22] due to the partic-

ular architecture dependence on the CS. 

These facts make the usage of synchronous and asynchronous TDOA deployments 

dependent on the environment characteristics. In this paper, we will analyze the asynchro-

nous TDOA architecture since it supposes a promising technology in LPS that requires the 

solution of the Node Location Problem (NLP) to any application scenario and due to the 

extent usage of TDOA positioning in terrestrial localization [23, 24]. 

However, regardless the architecture used in local TBP, the optimal performance of 

the positioning system is achieved through the minimization of the system uncertainties in 

every possible TS location. This optimization demands an enhanced node distribution (i.e. 

an ad-hoc sensor location for the operating environment) in which noise uncertainties in 

Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) conditions and clock errors are reduced 

favoring the optimal performance of the LPS. 

The uncertainties are usually modeled in the Cramér-Rao Lower Bound (CRLB) since 

it provides the minimum achievable error by any positioning system in a defined TS location 
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[25] and its usage is widespread in the field [26 − 28]. Kaune et al. [25] provided a matrix 

form of the Fisher Information Matrix (FIM), which is a maximum likelihood estimator 

which inverse is the CRLB. This FIM matrix includes the covariance matrix of the system in 

which the definition of the uncertainties is introduced.  

The signal path noise degradation must deal with heteroscedastic noises [29] since the 

signal paths notably differ among sensors in LPS. For the characterization of the clock errors 

we have recently introduced [20] a model in which the initial-time offset, clock drift and the 

instrument truncating error are considered. The minimization of this combined CRLB model 

enables the optimal performance of any LPS architecture for a defined TS location.     

The finding of an optimized sensor location for high-demanded LPS applications, 

known as the Node Location Problem, must assume the overall minimization of the CRLB 

for each possible TS location, the Target Location Environment (TLE) [30]. This process 

is not derivable for all the TLE jointly [27, 31] and it has been categorized as NP-Hard 

[32, 33]. 

Therefore, a heuristic solution is recommended for addressing the optimization. Many 

different metaheuristic techniques such as simulated annealing [34], dolphin swarm algo-

rithm [35], bat algorithm [36], elephant herding optimization [37] or diversified local search 

[38] have been used for approaching the node location problem but specially Genetic Algo-

rithms (GA) have been used in the node location problem [39 − 41] due to the excellent 

trade-off of the GA between diversification (i.e. the capacity to explore the space of solu-

tions) and intensification (i.e. the finding of the optimal solution in a reduced part of the 

space of solutions) [42]. 

In our previous research we have applied GA to the NLP in LPS [7, 20 − 22, 30]. In 

these papers, we have observed that the dimensions of the space of solutions which increases 

with the number of sensors, the resolution of the pre-defined possible space locations for 

them and the complexity of the fitness function evaluation, significantly affect the stable 

performance of the GA. This is due to the difficulty of exploring the huge space of solutions 

generated in the NLP.  

In addition, the analysis of contiguous solutions (i.e. node distributions that differ only 

in a cartesian coordinate of a particular node) may suppose notable changes in the fitness 

function evaluation. These conditions especially occur in NLOS scenarios in which the signal 

quality may be significantly distorted if a node is located just behind an obstacle. This fact 
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has promoted the usage of pre-defined populations of the GA for obtaining practical results 

in the GA evolution [21]. 

Thus, the observance of these facts has shown the necessity of introducing some 

knowledge in the optimization process of the node location problem in localization. In this 

paper, we first address the problem by constructing a Hybrid Genetic Algorithm (HGA) 

affecting the diversification and intensification phases through an ad-hoc usage of the GA 

operators for favoring the obtainment of practical results.  

We later introduce a Memetic Algorithm (MA) for the node location problem in the 

localization field for the first time in the authors’ best knowledge with the characterization 

of time and noise uncertainties for LOS and NLOS conditions. There exist some previous 

studies of the application of the MA to the optimization of Wireless Sensor Networks (WSN) 

[43 − 46] but these studies are focused on the coverage among the system nodes. 

In this paper, we are not only considering the effective coverage among the sensors 

but also enhancing the performance of the LPS through the characterization of the system 

time and noise errors for designing competitive LPS for high-demanded accuracy applica-

tions.   

In this sense, the MA allows us to introduce knowledge in the optimization process 

through the concept of meme. A meme is the unit of cultural information of the Dawkins 

theory of transmittable knowledge [47]which has ability to replicate, evolve and capacity to 

affect the human fitness (i.e. reproduction and survival). This idea later inspired Moscato 

[48] for generating an impact in the evolutionary computation. MA combine a local search 

strategy with the GA evolution for avoiding premature convergence. In addition, local search 

techniques are built to introduce knowledge in the optimization process for finding promis-

ing individuals in a reduced space of solutions, which may be difficult to be found in the GA 

evolution. However, a beneficial balancing among Global Search (i.e. GA performance) and 

Local Search (LS) is critical for achieving acceptable results in time and optimization [49]. 

We apply these ideas through a MA to the NLP with a variable neighborhood-descent 

LS in which the movement of the nodes for finding optimal sensor configurations is consid-

ered. The LS is applied to the most different individuals of the quantiles in which we divide 

the GA individuals through the fitness function evaluation. This allows us to explore new 

spaces of solutions not favored by the evolutionary process [50]. 

The variable neighborhood-descent LS implements a new pseudo-fitness function for 
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characterizing promising node distributions in the reduced space of solutions of the LS in 

order to diminish the time complexity of the search. This is possible since geometric and 

clock errors are minority affected among contiguous solutions, and the notable increase of 

the fitness functions is produced by reducing NLOS links among the system elements. 

Finally, we combine the beneficial effects of an enhanced GA operator selection during 

the evolutionary process in the HGA with the introduction of knowledge through the MA, 

obtaining a Hybrid Memetic Algorithm for the Node Location Problem which outperforms 

all the previous configurations. 

The remainder of the paper is organized as follows: we define the category and com-

plexity of the NLP, the definition of the scenario of simulations and the CRLB model for 

the fitness evaluation in Section 8.2, the GA solution, its implementation and its weaknesses 

in the achievement of practical results in NLOS scenarios in Section 8.3, the HGA for intro-

ducing the ad-hoc usage of the GA operators for diversification and intensification phases 

in Section 8.4, the MA for the node location problem is introduced in Section 8.5, the results 

are shown in Section 8.6, while the conclusions of the paper are presented in Section 8.7. 

8.2 Localization Node Location Problem 

Let 〈𝑥𝑥𝑖𝑖〉 = (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) be the spatial coordinates of a sensor node used for the locali-

zation in LPS, 𝑆𝑆 the set of possible sensor locations in the environment (NLE region), 𝑆𝑆𝑗𝑗 a 

subset containing a possible combination of the defined 𝑁𝑁 sensors used in the LPS located 

in different positions, 𝑆𝑆𝑙𝑙 the rest of the subsets of 𝑆𝑆 excluding 𝑆𝑆𝑗𝑗 , 𝑇𝑇 the total possible target 

locations (𝑡𝑡𝑘𝑘) covered (TLE region), 𝑓𝑓𝑆𝑆𝑗𝑗(𝑡𝑡𝑘𝑘) the value of the fitness function of the optimi-

zation for the subset 𝑆𝑆𝑗𝑗 of sensors in a defined target location (𝑡𝑡𝑘𝑘), the node location problem 

is defined as finding the: 

 

�〈𝑥𝑥𝑖𝑖〉  (𝑖𝑖 ∈ 1, … ,𝑁𝑁) = 𝑆𝑆𝑗𝑗� ⊂ 𝑆𝑆 ∶
∑ 𝑓𝑓𝑆𝑆𝑇𝑇
𝑘𝑘=1 𝑗𝑗 (𝑡𝑡𝑘𝑘)

𝑇𝑇
≥ max�

∑ 𝑓𝑓𝑆𝑆𝑇𝑇
𝑘𝑘=1 𝑙𝑙 (𝑡𝑡𝑘𝑘)

𝑇𝑇
� 

 

 

(8.1) 

Therefore, the node location problem in localization entails the definition of the three 

Cartesian coordinates of the sensors used for localizing a TS such a way that the fitness 

function of the quality of the system performance is maximized. This implies the combina-

tion of sensors that enables the reduction of the system uncertainties in the TS calculation 
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for every analyzed point of the TLE in the optimization discretization. In this section, we 

address the category and complexity of the node location problem, the definition of the 

scenario of simulation in which the GA, HGA and MA are applied and the model for the 

determination of the quality of a particular node distribution. 

8.2.1 Category and complexity of the NLP 

The NLP has been categorized as NP-Hard [32, 33, 51, 52] which shows the impos-

sibility of finding the optimal solution of the problem in polynomial time without considering 

simplifications in the definition. 

First attempts to address this problem were based on linear models applied on grid 

divisions of the NLE [53] which turned to be very complex and required problem simplifi-

cations. As a consequence, non-linear models were proposed for finding valuable solutions 

without previous considerations through greedy algorithms [54]. 

However, the dimensions of the space of solutions did not allow us to solve the NLP 

with these methodologies achieving valid results specially in discontinuous optimization 

spaces (e.g. NLOS system links considerations). Therefore, a heuristic solution to the NLP 

is recommended.  

The main reasons are the non-derivability of the quality indicators for the complete 

TLE [27, 31], the discontinuity of the space of solutions, the dimensions of the problem 

which depend on the resolution of the NLE and TLE regions and the complexity of the 

fitness function evaluation. 

Simulated annealing [34], dolphin swarm [35], bat algorithm [36], elephant herding 

optimization [37], diversified local search [38], firefly algorithm [55], bacterial foraging al-

gorithm [56] but especially genetic algorithms [39 − 41, 57,58] have been used for solving 

the NLP.  

GA have shown an excellent trade-off among diversification and intensification for 

this problem. Thus, they suppose the most extended methodology for the NLP in the liter-

ature, but we have found some problems of the exclusive evolutionary computation of the 

NLP that we will discuss in Section 8.3 and that recommend the introduction of some 

knowledge in the optimization process through a HGA and a MA. 

However, regardless the methodology used for the optimization, the complexity of the 

NLP must be considered for taking beneficial design decisions. We define computational 
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complexity of an algorithm as the amount of resources used for finding the optimal solution 

of a problem [59]. Considering the impossibility of solving the unconstrained problem (i.e. 

considering every possible sensor location), the complexity of the NLP depends on the char-

acteristics of the resolution of the NLE [30]. The number of possible sensor distributions 

is defined as follows: 

 

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = ��(𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑖𝑖)
𝑁𝑁−1

𝑖𝑖=0

� 
 

(8.2) 

 

where 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 is the total number of discretized points of the Node Location Environment 

which can hold an architecture sensor and 𝑁𝑁 the total number of architecture sensors used 

in the LPS architecture. 

Therefore, an increase in the number of architecture sensors used and a reduction in 

the resolution of the NLE induces the growth of the space of solutions. The order of the 

problem, as defined in Equation 8.2 is factorial. 

In addition, localization NLP supposes the consideration of the analysis of the quality 

of a node distribution in every point of the TLE since the optimal performance of the LPS 

must produce competitive results in the entire target coverage area. As a consequence, the 

total number of operations for considering the exhaustive analysis of every possible combi-

nation of sensors is: 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  ��(𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑖𝑖)
𝑁𝑁−1

𝑖𝑖=0

� 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇  𝑓𝑓𝑓𝑓(𝑡𝑡𝑘𝑘) 
 

(8.3) 

 

where 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇 is the total number of possible target locations analyzed for every possible sensor 

distribution and 𝑓𝑓𝑓𝑓(𝑡𝑡𝑘𝑘) is the function of the quality of a node distribution in a defined 

target location (𝑡𝑡𝑘𝑘). 

Therefore, the time required for finding an optimized node distribution increases with 

the number of TLE analyzed points and it is dependent on the fitness function defined for 

the sensor distribution quality. This function will contain in this paper the combined uncer-

tainties of noise in LOS and NLOS environments [21] and clock errors [20]. These effects 
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are introduced in the covariance matrix of the FIM of the A-TDOA architecture.  

FIM matrix, which inverse is the CRLB of the system, is a maximum likelihood esti-

mator in which the effect of optimal geometric deployments for the intersection of hyper-

boloid surfaces in TDOA localization is also considered. In this paper, we are also consider-

ing a pseudo-fitness function in the LS of the memetic algorithm since a reduction in the 

time complexity is achieved through the exclusive consideration of the LOS/NLOS links of 

the positioning signal paths. This can be used as an indicator of the quality in local spaces of 

solutions since the clock and geometric uncertainties remain practically constant among con-

tiguous solutions. 

The definition of these hyperparameters (NLE and TLE regions) for solving efficiently 

the NLP is discussed in the next subsection. 

8.2.2 Definition of the scenario of simulations 

The proposed optimization technique for complex NLOS environments provides a 

potential way for a priori estimating the capabilities of positioning architectures deployed 

regardless the conditions and the scenarios of application of the location systems. Under this 

assumption, this new optimization methodology should be tested in pre-defined 3D complex 

scenarios where NLOS discontinuities are induced, searching all the weaknesses and finding 

those variables that limit the future implementation of the procedure in other environments. 

In this aspect, a 3D scenario with harsh operating conditions and a base surface with obsta-

cles and elevate ground slopes is presented in Figure 8.1.  
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Figure 8.1 The scenario of simulations. Grey colors indicate the reference surface, blue colors represent 

the TLE region and brown zones show the NLE region. 

Figure 8.1 shows the NLE and TLE regions of the designed scenario for all the simu-

lations performed in the manuscript. This environment is unrealistic in terms of operating 

conditions and orography of the reference surface for the optimization, becoming a rough 

benchmark, and challenging the obtainment of adequate solutions for the deployment of 

sensors. 

The TLE region extends in height from 0.5 to 3 meters respects the base surface. TLE 

area is discretized under a spatial resolution of 10, 5, 1.5 meters in the Cartesian coordinates 

𝑥𝑥,𝑦𝑦 and 𝑧𝑧 respectively. With this configuration, the number of operations and thus the com-

plexity of the problem is contained, maintaining higher consistencies and representativeness 

of the scenario. This is accomplished when the principal statistical variables of the accuracy 

evaluation of the positioning systems are slightly modified when increasing the spatial reso-

lution of the TLE and NLE regions. 

 For the NLE zone, the architecture sensors are allowed in elevations from the local-

based surface from 3 to 10 meters, in an attempt of maximizing the conditions of adequate 
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application of the CRLB model (avoiding multipath and other disruptive phenomena in-

duced near the reference surface). The resolution in the NLE area is directly dependent on 

the codification of the sensor distributions in the individuals of the GA technique [30]. In 

this instance, a representation with binary chains of length 10,10,6 chromosomes for the 

respecting 𝑥𝑥,𝑦𝑦 and 𝑧𝑧. Cartesian coordinates are selected, leading to resolutions of approxi-

mately 2 meters. As in the TLE region, this ensures a trade-off between representativeness 

of the results and the number of operations of the procedure. 

8.2.3 Evaluation of the quality of a node distribution 

Localization NLP assumes an optimal sensor distribution for reducing the uncertain-

ties in the determination of the TS location. The main system uncertainties in TBP are the 

noise degradation of the positioning signal in LOS and NLOS environments [21], the clock 

errors in the time measurements which are generated by synchronization of the system de-

vices, drift and truncation errors in the CS clocks [20] and the geometric deployment of the 

sensors in space which affects the positioning algorithm performance [60]. 

The signal paths followed by the positioning signal vary notably in LPS. This fact rec-

ommends the usage of distance-dependent path-loss models for characterizing the signal 

path noises and for achieving practical results [29, 31]. These models can be introduced in 

the covariance matrix of the FIM for characterizing the architecture errors. In addition, we 

proposed [20] a clock error model for considering the time uncertainties in the FIM covar-

iance matrix which is used in this paper for achieving practical optimization results.  

The definition of the FIM for a time localization architecture was first proposed by 

Kaune et al. [25]: 
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where 𝐑𝐑(𝐓𝐓𝐓𝐓) is the covariance matrix of the architecture at study in which the 

characterization of the uncertainties (i.e. noise in LOS/NLOS condition and clock 

errors) is provided and 𝐡𝐡(𝐓𝐓𝐓𝐓) is the vector containing the information of the time 
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measurement computed in the A-TDOA architecture.   

Particularizing 𝐡𝐡(𝐓𝐓𝐓𝐓) and 𝐑𝐑(𝐓𝐓𝐓𝐓) for the A-TDOA architecture [20, 21] and as-

suming uncorrelated time measurements in the A-TDOA architecture [7]: 
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where sub-index 𝑖𝑖 represent the measurements and signal paths linked with architecture sen-

sor 𝑖𝑖, while 𝑁𝑁𝑊𝑊𝑊𝑊 represents the number of Worker Sensors (WS); c is the speed of the radi-

oelectric waves in m/s, 𝐵𝐵 the signal bandwith in Hz, 𝑃𝑃𝑇𝑇 the transmission power in W, 𝑃𝑃𝑛𝑛 the 

mean noise level in W calculated through the Johnson-Nyquist relation, 𝑃𝑃𝑃𝑃(𝑑𝑑0) the path-

loss in the reference distance 𝑑𝑑0 from which the Log-Normal model is considered; 

𝑑𝑑𝑊𝑊𝑆𝑆𝑖𝑖−𝑇𝑇𝑇𝑇, 𝑑𝑑𝑇𝑇𝑇𝑇−𝐶𝐶𝐶𝐶, 𝑑𝑑𝑊𝑊𝑆𝑆𝑖𝑖−𝐶𝐶𝐶𝐶 the LOS and NLOS distances travelled from the WS to the TS, 

from the TS to the CS and from the WS to the CS respectively calculated with the algorithm 

described in [21]; 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 the path-loss exponents used in the Log-Normal model, 

𝑙𝑙 is the number of iterations of the Monte-Carlo simulation performed for estimating the 

temporal variances, 𝑇𝑇𝑖𝑖, 𝑇𝑇𝑇𝑇𝑆𝑆 and 𝑇𝑇𝐶𝐶𝐶𝐶 the time of flight of the positioning signal from the TS 

to the system WSs, the duration of the flight from TS to the CS and the period of time from 

the emission of the signal from the WS to the TS respectively; 𝜂𝜂𝑐𝑐𝑐𝑐 define the clock drift of 

the CS clock.       

This FIM characterization allows us to consider the main architecture uncertainties in the 

optimization process of the NLP and finally obtain a measurement of the minimum achiev-

able error achieved by any positioning algorithm through the trace of the inverse of the FIM, 

expressed through the Root Mean Squared Error (RMSE) as the most spread accuracy met-

ric: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �� 𝐹𝐹𝐹𝐹𝑀𝑀𝑚𝑚𝑚𝑚
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8.3 Genetic Algorithm for the NLP in localization 
Genetic Algorithms have shown an excellent trade-off between diversification and in-

tensification for the NLP. These GA were proposed by Holland [61] and later refined by 

Goldberg [62]. They are built on the theory of evolution and rely on the characteristics of 

the descendants of a population which present a better adaptation than their parents by re-

ceiving the adapted genes from the previous generation. The usage of the GA operators 

allows the recombination of the individuals, the selection of the best candidates for finding 

an optimal offspring, the mutation of some genes for exploring new spaces of solutions 
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avoiding local optima and the elitism for preserving the best adapted individuals from gen-

eration to generation. 

 We provide in Figures 8.2 and 8.3 a general framework of the GA performance and 

based on the binary codification proposed in the original work of Holland [61] (i.e. a candi-

date node distribution for the NLP). 

 

 

 

Figure 8.2 Flux Diagram of a GA 
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Figure 8.3 Binary codification of the GA for the NLP. 

As it is shown in Figure 8.3 the variables to optimize in the NLP are the Cartesian 

coordinates of each architecture sensor node (i.e. the chromosomes of the codification) and 

the definition of the resolution of the optimization allows us to transfer the binary coding of 

the potential solution to decimal numbers through the escalation process defined in [49]. 

The definition of the quality of every individual of the GA is based on a fitness func-

tion considering the CRLB described in Section 2.3 which enables the application of pressure 

selection for allowing the evolutionary process find an optimal sensor configuration. The 

achievement of valid solutions in the GA performance requires an exhaustive definition of 

the hyperparameters of the optimization [62]. In this section, we analyze the potential prob-

lems of the NLP optimization through GA and propose two potential solutions through 

HGA and MA. 

8.3.1 Implementation of the GA 

Therefore, we have implemented a GA configuration that aims to find the best possi-

ble distribution of sensors. For the scenario proposed, shown in Figure 8.1, in Table 8.1 a 

set of generic technology parameters have been selected for performing simulations. Reason 

of this selection rely on the main objective of this research, that is the generation of a new 

optimization technique to the NLP, not the resolution of the NLP for a particular positioning 

technology. 
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Table 8.1. A-TDOA parameter configuration for the simulations, whose selection is based 

on [7,64,65] 

Parameter                      Magnitude 

Frequency of emission                      1090 MHz 

Transmission power                      400 W 

Mean noise power                      -94 dBm 

Receptor sensibility                      -90 dBm 

Bandwidth                       100 MHz 

Clock frequency                       1 GHz 

Frequency – drift                       U {-15,15} ppm 

Time – frequency product                       1 

LOS Path loss exponent                       3.1 

NLOS Path loss exponent                       4.5 

 

Once established the initial conditions of the optimization, the number of sensors to 

achieve the desirable accuracy of the LPS is studied. This is a critical aspect in the NLP since 

an insufficient number of sensors may lead to coverage issues and unacceptable RMSE val-

ues in some TLE analyzed points. On the other hand, an unnecessary number of nodes shall 

incur in a considerable increase on the system implementation and maintenance cost. 

Therefore, we have designed a genetic algorithm that obtains through the evaluation 

of a fitness function the optimal node distribution and performance for multiple numbers of 

sensors. The genetic algorithm, whose hyperparameters are shown in Table 8.2, is instructed 

by the following fitness function. 

 

𝑓𝑓𝑓𝑓 =   1 − �
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��������
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

�
2

 
(8.14) 

 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�������� is the mean value of the RMSE of a certain individual or node distribution for 

every possible target location (i.e. each of the TLE analyzed points). On the other hand, 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 is a defined hyperparameter of the GA and serves as an accuracy reference [7,21]. 

This control parameter represents the maximum RMSE value that can be reached for the 
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TLE by an individual node distribution. Reducing the 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 shall introduce pressure 

selection in the optimization process, improving the overall result. However, a dispropor-

tionate value may compromise the convergence of the GA to any solution, therefore, it is 

critical to obtain an adequate value for each particular scenario.  

      Furthermore, due to the construction of the fitness function in Equation 8.14, all fitness 

values should be represented in the interval [0, 1]. Therefore, the value selected for the 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 must ensure that every fitness evaluation remains in the desired region 

 

Table 8.2. GA hyperparameters selected [30]. The resulting number of possible combina-

tions 𝑃𝑃, obtained from Equation 2 shows the magnitude of the solution environment for the 

scenario proposed. Due to the number of possible solutions, the applications of heuristic 

methodologies are in order. 

GA Hyperparameters Value 

Population size 160 

Convergence criteria 
160 Generations or 

80% population equal 

Elitism 18% 

Mutation  3% 

Selection Technique Tournament 2 
Crossover Technique Single-point 
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟  50 
TLE points analyzed 1500 
NLE points analyzed 24000 
Number of sensors 𝑁𝑁 5 / 8 / 11 / 14 
Number of possible combinations 𝑃𝑃 7.95 1021 / 1.09 · 1035 / 1.51 · 1048 / 2.09 · 1061  

 

Hence, in Table 8.3 we study the performance of the GA under different node distri-

butions in search of the most adequate configuration respecting performance and costs of 

the system. From these results, it is concluded that the best compromise solution regarding 

the systems performance and costs is an 11-node distribution. A lower number of sensors 

shall incur un greater and unfeasible positioning errors, furthermore, a higher number of 

nodes does not accomplish an improvement worth the investment. 

For these simulations, we have employed a tournament 2 selection criteria [66] as well 
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as a single point crossover technique. We will analyze the performance of the possible genetic 

operators in Section 8.4.  

 

Table 8.3. Comparison of multiple node distributions for the scenario proposed 

Node Distri-

butions 

Max 

RMSE (m) 

Mean RMSE (m) Min RMSE 

(m) 

5 Nodes 23.02 5.32          0.63 

8 Nodes 17.37 3.91          0.43 

11 Nodes 10.28 2.31          0.29 

14 Nodes 9.85 1.99          0.02 

 

8.3.2 Weaknesses of the GA optimization in the NLP 

GA evolution is a heuristic process in which randomness allows us to explore potential 

regions of the space of solutions for finding an optimized solution but the results achieved 

may vary among different runs since the introduction of the same inputs do not produce the 

same results. This is a consequence of the evolutionary process in which two phases can be 

defined: diversification and intensification. 

In the first stage, the GA looks for promising regions in which an optimal solution can 

be found (i.e. diversification). Later, an exhaustive search in the promising regions (i.e. inten-

sification) is promoted for finding the best adapted individual of these regions. 

The mutation of some individuals is required for exploring new regions and avoiding 

local optima. However, the new individuals produced in the mutation operation must be 

good enough to hold the pressure selection. Otherwise, these individuals will disappear even 

if they belong to really promising regions. Even, the finding of new promising regions can 

be affected in especially discontinuous fitness function regions since the evolutionary process 

may suffer problems to reach the local optima if a deep increase in the fitness function can 

be produced among contiguous solutions (e.g. NLOS environments by the avoidance of 

obstacles in the positioning signal links). Therefore, we can affirm that the mutation process 

depends also on randomness and the exploration of new potential regions in discontinuous 

optimizations may be limited by the evolutionary pressure selection. 

Thus, GA optimization in especially huge spaces of solutions such as in NLP optimi-

zations in which NLOS links are considered may suppose a challenge in which the results 



 

 
144 

 

 

can notably vary among different runs and the exploration of the space of solutions supposes 

an actual threat. 

As a consequence, we propose the introduction of knowledge in the optimization for 

solving these potential weaknesses in the GA optimization in the NLP. 

Firstly, we introduce a HGA for taking advantage of the usage of the GA operators in 

Section 8.4. We generate diversity in the generation of the new individuals in the diversifica-

tion and intensification phases for achieving better optimization results. We later propose a 

memetic algorithm with a variable neighborhood-descent LS in which we introduce a meth-

odology for detecting the most different individuals (i.e. new potential spaces of solutions) 

and we analyze its local region of potential solutions for allowing the finding of promising 

solution in discontinuous spaces in Section 8.5. 

8.4 Implementation of Hybrid Genetic Algorithm in the NLP 
The performance of every GA optimization is heavily dependent on the balance be-

tween the diversification and intensification capabilities of the GA. These values are estab-

lished by the genetic operators utilized in the GA configuration, such as the selection and 

crossover operators, along the hyperparameters selected. An adequate equilibrium between 

these two competences is essential in favor of obtaining the optimal solution to the NLP. 

An excessive focus on the intensification aspect, despite facilitating the convergence 

to the solution, may diminish the results obtained since relatively none exploration of the 

solution environment has been made. On the other hand, a disproportional commitment on 

the diversification capability shall boost the entropy of the optimization to a point where the 

convergence to a solution is compromised or even unfeasible. 

Therefore, the balance between these two capabilities is crucial for the optimization 

performance, hence the configuration of genetic operators must be selected accordingly. 

 HGA have received a growing interest throughout the GA literature, being utilized 

for solving real-word problems [36]. HGA open up new possibilities as they support multi-

ple configurations of genetic operators and hyperparameters.  

Thus, HGA are suitable for applications where the solution environment is notably 

unfavorable. Scenarios that contain a consequential number of local maximums, such as the 

one studied in this paper, require both diversification, towards locating the global maximum 

region, and intensification, in order to obtain the optimal value of that region.  

Therefore, for these particular scenarios, the approach of utilizing a HGA composed 
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of multiple phases of diversification and intensification of the solution may exceed any 

achievable solution obtainable by any individual combinations of genetic operators. 

Accordingly, in Table 8.4 we analyze the performance of multiple combinations of 

genetic operators in search of the most appropriate configuration for this particular scenario.  

 

Table 8.4. Analysis of multiple combinations of genetic operators for the scenario proposed 

 Crossover 

Operator 

       Tournament 2 Tournament 3   Roulette 

 Min Mean Min Mean Min Mean 

Single 

point 

2.31  2.67 2.55 2.67 2.66 2.9 

Two-

point 

2.74  2.77 2.90 2.97 2.527 2.76 

Three

-point 

2.22  2.43 2.83 3.00 2.35 2.57 

Uni-

form 

2.70  3.18 4.65 5.82 2.82 2.87 

 

Results in Table 8.4 show that the most appropriate techniques are the combination 

of tournament 2 (T2) selection criteria and multi-point crossover with 3 crossover points 

(MP3), along the roulette (R) selection methodology with also the MP3, exceeding these two 

combinations any other configuration. 

T2 and especially Roulette are particularly elitist techniques [66], hence, we can con-

clude that for the scenario proposed, a heavy approach on intensification is far more advan-

tageous than a diversification focused methodology. 

However, the T2-MP3 combination achieves a greater exploration of the solution en-

vironment. Thus, it is possible to elaborate a HGA that utilizes both methodologies in search 

of a greater solution.  

 Consequently, in this paper we propose the configuration of a HGA that relies in 

two different phases, a deep - exploration phase followed by a heavy - intensification phase. 

The first phase incorporates a tournament 2 selection criteria along a three-point crossover 

and aims to explore the depth of the solution environment in search of the global maximum. 
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Afterward, a second combination of roulette selection methodology and also three-point 

crossover seeks to obtain the value of the global maximum.  

 

 

Figure 8.4 HGA optimization for the node location problem. 

 

Results in Table 8.5 prove that indeed a HGA approach that combines two different 

phases may exceed the results obtained by any individual combination of genetic operators. 

  

Table 8.5. RMSE comparison between the different methodologies analyzed 

HGA Configuration Min RMSE Mean RMSE 

GA - T2 / MP3 2.224 2.431 

GA - R / MP3 2.354 2.575 

HGA  2.163 2.294 

 

 

Although it is true that HGA can exceed GA configurations, especially in adverse sce-

narios, the implementation of a HGA require the adjustment of a considerable amount of 

hyperparameters in addition to a profound analysis on the methodologies and genetic oper-

ators selected, which can only be done experimentally. Moreover, these parameters depend 

on the particular problem and scenario studied, hence, a subtle modification of the initial 

conditions may modify the performance of each configuration substantially. Therefore, it is 

critical to analyze each particular situation, as to determine if the implementation of an ad-

hoc HGA configuration is in order. 
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In conclusion, HGA are a promising alternative to GA, and may surpass the results 

traditionally obtained by these algorithms, especially for adverse scenarios. However, the 

performance of the HGA is susceptible to the adequate selection of the genetic operators 

and the values of the hyperparameters inherent to this algorithm, depending this selection 

on each particular situation.  

However, it is possible to elaborate a different strain of heuristic algorithm that pro-

vides both intensification and diversification capabilities along a solid versatility between dif-

ferent scenarios. In the next section we will study and analyze the implementation of a MA 

to the NLP. 

8.5 Implementation of Memetic Algorithms and Local Search to the NLP 
Within the compendium of metaheuristic methodologies, Memetic Algorithms are 

characterized by their inclusion of the problem’s knowledge into the solution optimization. 

Consequently, the incorporation of particular information of the problem may achieve 

greater results than the previous methodologies introduced.  

Moreover, once studied and particularized the optimization process for the NLP, the 

resulting MA achieves a higher versatility than GA or HGA. Even though it is possible to 

modify the initial conditions or the current scenario of study, all these applications share the 

foundations of the NLP whose knowledge is integrated into the MA optimization. The foun-

dations of the MA are discussed in the next subsection and the implementation to the NLP 

subsequently. 

8.5.2 Fundamentals of Memetic Algorithms 

In this paper we have introduced the complexity of the NLP, consequently, a GA 

optimization was proposed in virtue of its diversification capabilities, which result vital in the 

optimization process, especially for adverse scenarios (e.g the one studied in this paper). 

Nonetheless it is possible to implement a different heuristic methodology that allows 

a higher versatility along achieving possibly greater results, such is the case of Memetic Al-

gorithms (MA) which we will analyze forthwith. 

 MA introduce the knowledge of the problem into the optimization process, improv-

ing the convergence to the solution along achieving greater results consequently. This 

knowledge is introduced through the concept of meme, the unit of cultural information of 
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the Dawkins theory of transmittable knowledge [47]. Therefore, a meme is capable of evolv-

ing, along replicating itself and affect the human fitness (i.e reproduction and survival). Mos-

cato [48] was subsequently inspired by this idea, who took these concepts into the evolu-

tionary computation. 

 MA combine the optimization process of a GA along a LS technique. Through the 

LS methodology we introduce the knowledge of the problem, in search of the most promis-

ing individuals within a reduced solution environment, which may pass unsighted in the GA 

evolution. 

 Although there exists some former studies of MA optimization for Wireless Sensor 

Networks [43 − 46], these studies take only into account the coverage among the sensors. 

In this paper we will implement a MA for the NLP for the first time in the author’s best 

knowledge with time and noise uncertainties characterization in the localization field. 

8.5.2 Memetic Algorithm Structure 

Memetic Algorithm combines both Global Search (i.e GA optimization) and Local 

Search in pursuit in exceed the results obtained by any of these methodologies individually. 

Therefore, we propose the following codification of a MA for the NLP. 

Figure 8.5 shows the structure of the MA implemented for the NLP. The MA is com-

posed of a GA optimization and the corresponding genetic operators along the LS method-

ology. For the NLP we propose a variable neighborhood-descent LS technique where the 

position of the nodes above the terrain is considered, thus introducing some knowledge of 

the problem into the optimization process. 

Once mutated the population, the algorithm determines whether to proceed with the 

LS methodology for each generation. This depends on the LS frequency [49] which must 

be balanced in the combination of Global and Local Search for achieving the optimal opti-

mization results in MA. It is vital to execute the LS after the mutation have finished, on the 

contrary, the progress made in the LS may be lost by the mutation of the population. Both 

the possibility of executing a LS and the number of individuals examined are hyperparame-

ters that must be studied.  

If the MA proceed with the LS technique, the first step through this algorithm is the 

selection of the most diverse individuals. The LS methodology pretends to explore and in-

tensify undiscovered regions by the GA where a local or global maximum may be located, 

therefore, it is vital to select a certain number of individuals that are distant within each other 
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in order to explore the maximum space of solutions possible. 

Hence, we have developed a branch and bound algorithm that analyzes the population 

in search of the individual whose dissimilarity within each other are the greatest, thus opti-

mizing the results obtained, which we will discuss in Subsection 5.3. Once evaluated the 

dissimilarity of each individual, the most diverse are transferred into the variable neighbor-

hood-descent LS technique.  

The variable neighborhood-descent LS evaluates reduced movements of the node po-

sitions for each individual (i.e. contiguous solutions in the neighborhood of the individual) 

in a new pseudo-fitness function in order to reduce the time complexity of the analysis. This 

procedure does not compromise the optimization since reduced movements of the sensors 

shall not incur in considerable deviation of geometric or clock errors. On the contrary, the 

pseudo-fitness function proposed is adequate for detecting NLOS trajectories that diminish 

the fitness value of the localization architecture. Therefore, this LS methodology excels in 

particularly adverse scenarios, where NLOS trajectories are considerable (e.g the one studied 

in this paper). In these scenarios, minimal changes in the node locations may result in con-

siderable deviations of the fitness function since the avoidance of an obstacle may suppose 

a significantly increase in the localization accuracy. 

 

 

Figure 8.5 MA Structure Pseudo Code 
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Consequently, if in a certain direction an increase in the fitness function is detected, 

the new improved individual shall substitute its predecessor. Hence, the LS technique pro-

posed can only improve the fitness function of the individuals analyzed, thus improving the 

overall performance of the optimization. 

The LS technique in the MA introduces a spike of diversity and intensification into the 

optimization process. This effect shall prove useful when the GA convergence is compro-

mised as a fact of the existence of local maximums, resulting in an overall greater perfor-

mance of the optimization, achieving greater solutions consequently. 

However, within the local search technique there exists an abundant quantity of algo-

rithms from whose development and configuration relies the performance of the MA. There-

fore, we shall analyze it thoughtfully forthwith. 

8.5.3 Local Search in the MA optimization 

The LS method grants to obtain accurate information about a bounded region defined 

by a distance function on the space of solutions. LS explores near neighbors for finding the 

best-adapted individuals within the area. Every set of adjacent individuals or distance 1 de-

fines the neighborhood. Once the aim number of neighbors has been inspected, the next 

point in the LS is the selection of the best fitness neighbor. The algorithm ends when the 

stopping condition is reached (e.g. there is no evolution in the fitness between generations 

or the neighbor reached satisfies a criterion) or when over the maximum number of local 

iterations permitted is attained. 

During the execution of the LS, the optimization of the number of individuals, breadth 

of search, and the count of depth iterations are vital factors for achieving practical results. 

Different LS techniques are considered in the literature, such as Tabu Search [67], Variable 

Neighborhood Descendt (VND) [68], selective LS [69], LS chain [70], or Iterated LS [71]. 

The adaptation to the characteristics of the problem determines their selection. 

In this paper, VND is chosen since it allows the quantification of the improvement of 

the fitness in the spatial directions of the sensors in their neighborhood (i.e. the proximal 

allowable locations of the architecture sensors) for defining a path in the LS optimization. 

The application of LS in MA is critical for introducing knowledge in the evolutionary opti-

mization process. Previous researches have used LS for introducing heterogeneity in the final 

solution for improving the elite individuals of the population [68] or for accelerating the 

overall speed of the optimization.  
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In this paper, we use LS in the MA not only for improving the elite individuals but 

also for introducing diversity in the evolutionary process for examining potential unfavored 

spaces of solutions. Potential unfavored areas of solutions appeared in the NLP in NLOS 

conditions. Significant differences in the fitness values are produced among contiguous so-

lutions since obstacles significantly modify the architecture noises of adjacent node distribu-

tions. 

The LS enables the examination of the most different individuals of the population to 

find potential optimum node distributions that are difficult to access through the GA oper-

ators and the evolutionary process. 

8.5.3.1 Pseudo-fitness function 

A critical issue in the MA is the selection of a LS fitness function, which should be 

kept in harmony with the GA search function [𝟕𝟕𝟕𝟕]. The GA presented in Section 8.3 pro-

poses the minimization of the CRLB error characterization of the TDOA architecture. How-

ever, we propose a pseudo-fitness function in the LS which analyzes the LOS/NLOS links 

of the positioning signal paths.  

The pseudo function allows the finding of the optimum node distribution of reduced 

search spaces defined by neighborhood relations. Pseudo-function is composed by a path 

loss exponent value of the LOS and NLOS links and the total distances of the LOS and 

NLOS links under coverage which are used for the target location determination. The reduc-

tion of the paths allows the minimization of the noise uncertainties which supposes the main 

error source among neighboring potential solutions. 

 

𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿 =
1

∑ ∑ 𝑑𝑑𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿
𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁

𝑖𝑖=1
𝑇𝑇
𝑘𝑘=1 + ∑ ∑ 𝑑𝑑𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖=1

𝑇𝑇
𝑘𝑘=1

 

 

 

(8.15) 

This optimization methodology has led to the maximization of the inverse of the sum 

values associated with the LOS and NLOS links in each possible TLE analyzed point (𝑻𝑻) for 

each architecture sensor under coverage (𝑵𝑵). 

This pseudo function has proven the competence to ensure the finding of the neigh-

borhood local optima. A new neighborhood for the next LS iteration is defined through the 

selection of the most adapted individual of the neighbors analyzed based on the pseudo-

fitness function values. The definition of a different fitness evaluation for the LS instead of 
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the fitness used in the GA optimization promotes the analysis of the CRLB of the local 

optima individual of the neighborhood just before introducing the LS optimal to the general 

optimization process. 

8.5.3.2 Variable Neighborhood-Descent Local Search 

The neighborhood search aims to maximize the pseudo-fitness function to obtain the 

local optima of the LS individual selected. Since the geometric and clock errors remain prac-

tically constant among contiguous solutions, the neighborhood LS looks for reducing the 

NLOS paths of the positioning signals. 

In this paper, we apply a variable neighborhood descent algorithm (VND) [𝟕𝟕𝟕𝟕] which 

finds the best individual of a defined neighborhood and later defines a new neighborhood 

based on the current LS individual optimum. VND is constantly improving or keeping the 

best LS individual in a new neighborhood for a maximum defined number of iterations, 

which is known in MA as Local Search Depth (LSD). 

VND algorithm can also end by finding an individual sufficiently improved (e.g. avoid-

ing all the NLOS connections in the positioning signals). The LS exploration is performed 

for each sensor of the architecture. The neighborhood is defined for every sensor which is 

moved around its neighborhood for improving its positioning connections. We explore 26 

potential movements of each sensor for improving the pseudo fitness function value (i.e. 26 

directions are considered for every sensor in each iteration of the LS). This LS is particularly 

crucial for the CS since this sensor is used for computing the time measurements in the A-

TDOA and consequently the positioning links of the CS affect the quality of a node distri-

bution in a bigger extent.    

8.5.3.2 Definition of the LS individuals 

The application of the MA LS in this article looks for providing genetic variability in 

the population and for discovering unexplored regions. In the intensification phase of the 

GA optimization, the existence of many individuals in a defined domain of the space of 

solutions promotes the access to every possible NLE solution through the crossover opera-

tor in this area. Nevertheless, GA make the most different individuals in this final optimiza-

tion stages very probable to disappear without the exploration of their surrounding region 

thoroughly. In addition, the performance of the GA mutation in any optimization phase, 
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which can produce diverse individuals, is not enough for providing variability in NLOS en-

vironments since the exploration of new potential regions is limited to the finding of a good 

enough individual in the new space of solutions to survive the pressure selection of the next 

generation. Therefore, we use the MA LS to explore the most different individuals of the 

population in order to find new promising solutions to the NLP.  

The definition of the most different individuals of the population is achieved through 

the measurement of the dissimilarity among solutions. The dissimilarity is calculated by ap-

plying the Hamming distance in the binary codification of two different solutions (i.e. two 

different sensor distributions) [𝟕𝟕𝟕𝟕]. However, the dissimilarity metric cannot be directly ap-

plied since identical sensors can be located in different positions of the binary codification 

of two different individuals. Hence, each sensor of any individual must be first compared 

with all the sensor locations of the rest of the individuals. 

 

 

Figure 8.6 Calculation of the dissimilarities of the Node 2 of the Individual 1 �𝐼𝐼1𝑁𝑁2� with each node of 

the Individual 2 (𝐼𝐼2). The dissimilarity between 𝐼𝐼1𝑁𝑁2 is zero since they are identical and is determined 

through the Hamming distance with the rest of the nodes of 𝐼𝐼2. 

 

Therefore, the measurement of the dissimilitude among the different sensor distribu-

tions requires the finding of the pairs of sensors among two different potential solu-

tions(𝑰𝑰𝟏𝟏 and 𝑰𝑰𝟐𝟐) which are more similar among them. However, greedy approaches cannot 

be applied for achieving this value since not the selection of the most similar nodes of two 
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different individuals provides the minimum sum of the Hamming distance among the indi-

viduals. Consequently, we define the dissimilarity matrix among individuals 𝒅𝒅 containing the 

values of the Hamming distance of each node of the 𝑰𝑰𝟏𝟏 with each node of the 𝑰𝑰𝟐𝟐: 

 

 

𝑑𝑑 =  

⎝

⎜
⎜
⎛
𝑑𝑑(𝐼𝐼1 𝑁𝑁1 , 𝐼𝐼2 𝑁𝑁1) 𝑑𝑑(𝐼𝐼1 𝑁𝑁1 , 𝐼𝐼2 𝑁𝑁2) … 𝑑𝑑(𝐼𝐼1 𝑁𝑁1 , 𝐼𝐼2 𝑁𝑁𝑗𝑗−1) 𝑑𝑑(𝐼𝐼1 𝑁𝑁1 , 𝐼𝐼2 𝑁𝑁𝑗𝑗)

𝑑𝑑(𝐼𝐼1 𝑁𝑁2  , 𝐼𝐼2 𝑁𝑁1) 𝑑𝑑(𝐼𝐼1 𝑁𝑁2 , 𝐼𝐼2 𝑁𝑁2) … 𝑑𝑑(𝐼𝐼1 𝑁𝑁2 , 𝐼𝐼2 𝑁𝑁𝑗𝑗−1) 𝑑𝑑(𝐼𝐼1 𝑁𝑁2 , 𝐼𝐼2 𝑁𝑁𝑗𝑗)
⋮

𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗−1  , 𝐼𝐼2 𝑁𝑁1)
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗  , 𝐼𝐼2 𝑁𝑁1)

⋮
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗−1  , 𝐼𝐼2 𝑁𝑁2)
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗  , 𝐼𝐼2 𝑁𝑁2)

 
…
…

⋮
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗−1 , 𝐼𝐼2 𝑁𝑁𝑗𝑗−1)
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗  , 𝐼𝐼2 𝑁𝑁𝑗𝑗−1)

⋮
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗−1  , 𝐼𝐼2 𝑁𝑁𝑗𝑗)
𝑑𝑑(𝐼𝐼1 𝑁𝑁𝑗𝑗  , 𝐼𝐼2 𝑁𝑁𝑗𝑗) ⎠

⎟
⎟
⎞
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We explore the d matrix through a branch and bound algorithm [] for finding the 

combination of sensors of the two individuals which minimizes the Hamming distance of 

the pair of individuals. The procedure follows the definition of the most promising node (i.e. 

the more reduced value of the d matrix) and later exploring the possible combinations of the 

matrix without repeating row and column for finding the pairs of sensors which minimizes 

the sum of the dissimilarities. Once these pairs of similar sensors have been defined, the 

dissimilitude among solutions is defined as: 

 

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚� � 𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=1

� 
(8.17) 

 

where 𝐷𝐷𝑖𝑖𝑖𝑖 is the dissimilitude among the solutions 𝑖𝑖 and 𝑗𝑗, 𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the hamming 

distance measured in one of the pairs of contiguous sensors among solutions previously 

defined and 𝑁𝑁 the total number of sensors used for the localization.  

Once the dissimilitude among solutions is defined it can be expressed in matrix form 

(𝑫𝑫) for a general definition of the distances among every of the population individuals: 

 

𝐷𝐷 =  

⎝

⎜
⎛

0 𝐷𝐷12 … 𝐷𝐷1(𝑛𝑛−1) 𝐷𝐷1𝑛𝑛
𝐷𝐷21 0 … 𝐷𝐷2(𝑛𝑛−1) 𝐷𝐷2𝑛𝑛
⋮

𝐷𝐷(𝑛𝑛−1)1
𝐷𝐷𝑛𝑛1

⋮
𝐷𝐷(𝑛𝑛−1)2
𝐷𝐷𝑛𝑛2

0
…
…

⋮
0

𝐷𝐷𝑛𝑛(𝑛𝑛−1)

⋮
𝐷𝐷(𝑛𝑛−1)𝑛𝑛

0 ⎠

⎟
⎞
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The finding of the most different individual of the set to whom we apply the LS in 

search for new unexplored spaces of solutions is obtained through the maximization of the 

𝑫𝑫 matrix row or column sum values since the dissimilarity matrix is symmetric. This sum 

represents the total difference of an individual with the rest of the individuals of the popula-

tion. According to this total dissimilitude factor, the population is ordered and a percentage 

of the first new individuals (i.e. the most different) is chosen for executing the VND algo-

rithm. 

In addition, we select the elite individual of the population for practicing the LS on it, 

thus obtaining an improvement in the accuracy results of the optimization within the LS. 

8.6 Results 
In this section, we present the results obtained by the MA optimization introduced in 

the previous section, along some comparisons with previously proposed methodologies. All 

algorithms and simulations were coded and executed in the MATLAB software environment, 

being every test performed with an Intel(R) i7 2.4GHz CPU and 16 GB of RAM. 

Table 8.6 shows the results of the MA optimization. Due to the overall performance 

improvement of the optimization achieved by the LS, the final node distribution obtained 

reach a significant increase in positioning accuracy from previous simulations from Table 

8.3. Therefore, in pursue of the optimal compromise between position accuracy and amount 

of sensors (i.e installation and maintenance costs) we can lower the number of sensors to 8 

nodes without compromising the system accuracy. 

Table 8.6. MA optimization results. Values displayed are the mean and minimal values of 

the mean RMSE of the simulations executed. 

Node Distributions Min RMSE (m) Mean RMSE (m) 

5 Nodes 4.287 4.923 

8 Nodes 3.142 3.208 

11 Nodes 2.184 2.284 

 

Figure 8.7 shows the MA search of the optimal solution, combining the GA optimiza-

tion with a LS methodology that enhances the overall performance of the optimization with 
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every iteration of the VND. However, it is possible to improve even further the MA optimi-

zation, relying this technique on a GA, thus a single combination of genetic operators and 

hyperparameters. Furthermore, it is possible to implement multiple configurations of genetic 

operators and hyperparameters into the GA optimization, thus obtaining a HGA, that along 

the LS of the MA results in an overall improvement of the optimization performance carried 

out by the proposed Hybrid Memetic Algorithm (HMA). 

 

 

Figure 8.7 Memetic Algorithm convergence to the optimal solution for an 8-node distribution. Results 

show that the VNS utilized in the LS algorithm introduces significant improvements on the fitness values 

of the selected individuals, thus improving the convergence. These improvements escalate rapidly due to 

the effect of elitism on the enhanced individuals, thus preserving and spreading even further their prop-

erties. 

Therefore, Table 8.7 shows the positioning error for each methodology proposed. 

Hence, we can appreciate an escalated increase in the optimization results with each step 

forward in the methodology selected. 

Furthermore, Figure 8.8 shows the compendium of techniques introduced in this pa-

per and their respective convergence for an 8-node distribution optimization. 

Ultimately, Figure 8.9 show the optimal node distribution obtained by the HMA in 

Table 8.7, along the RMSE values for the TLE. 

From the obtained results we can conclude that the resulting increase in diversification 
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introduced by the MA derives in an increase in the number of generations the final conver-

gence to a solution. However, as shown in Figure 8.8 this additional diversity implemented 

into the optimization achieves higher results than other methodologies as it allows a greater 

exploration of the solution environment. 

 

Table 8.7. Comparison of positioning accuracy for each methodology studied in this paper 

for 8 nodes. Results displayed refer to the mean and minimal mean RMSE of every simula-

tion executed. 

Methodology Min RMSE (m) Mean RMSE (m) 

GA 3.54 3.91 

HGA 3.243 3.423 

MA 3.142 3.208 

HMA 3.037 3.101 

 

 

 

Figure 8.8 Convergence of the compendium of techniques proposed in this paper for 8 nodes. 

Nevertheless, the implementation of a MA requires the introduction of knowledge into 

the problem, thus investing additional time into designing a specific LS methodology for 

each different problem. MA excel when faced against extremely adverse scenarios, or against 

different initial conditions that may turn ineffective the hyperparameters previously adjusted.  
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 Therefore, it is critical to analyze each particular case, taking into consideration the 

complexity of the scenario along the possible variability of their initial configuration, in 

search of the optimal methodology for each particular case. Nevertheless, as results show, 

MA are ideal versatile techniques for adverse variable scenarios, such as the one proposed in 

this paper. 

 

 

Figure 8.9 Optimal node distribution of 8 sensors obtained by the HMA and the RMSE accuracy of the 

TLE for the scenario proposed. The obtained distribution achieves an overall adequate positioing against 

the terrain adversities, even so for a reduced number of sensors. 

8.7 Conclusions 
Local Positioning Systems (LPS) are attracting large research interest over the last few 

years for performing high-demanded accuracy applications such as guided autonomous nav-

igation in indoor and outdoor environments. Availability, robustness, hardware configura-

tion, architecture coverage and uncertainties reduction are some of the most important issues 

addressed for achieving optimal sensor node deployments and fulfilling the LPS design re-

quirements. 
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These tasks require optimized ad-hoc node distributions for adapting to the character-

istics of the environment in which the LPS are deployed. Among LPS, those based on tem-

poral measurements stand out since they provide a relevant trade-off among costs, hardware 

complexity, robustness and accuracy. The achievement of valid node deployments in Time-

Based Positioning Systems (TBS) demands an error characterization in which the noise of 

the communications channel in LOS and NLOS architecture links and the clock errors in 

the temporal measurements must be considered.  

The TBS have shown an excellent performance for LPS applications and among these 

architectures novel asynchronous architectures stand out due to the unnecessary synchro-

nism of the system devices consequently reducing the clock errors. Thus, in this paper, we 

define a Cramér-Rao Bound (CRB) model for the Asynchronous Time Difference of Arrival 

(A-TDOA) architecture since CRB provides the minimum achievable positioning error of 

this architecture by using any positioning algorithm. 

This CRB model is applied for measuring the quality of an A-TDOA node deployment 

for solving the Node Location Problem (NLP) of this architecture. The NLP requires the 

finding of the optimized cartesian coordinates of the architecture sensors of any sensor net-

work distribution. It has been assigned as NP-Hard since a polynomial or exact solution 

cannot be found. Therefore, a heuristic solution to the NLP has been extended in the litera-

ture. Amongst the metaheuristic techniques, Genetic Algorithms (GA) have shown an excel-

lent trade-off between the diversification and intensification stages of the optimization. 

However, in our previous research we have found that the GA optimization is unstable 

in NLOS environments in which the discontinuities in the fitness values of contiguous solu-

tions makes the exploration of new potential spaces of solutions be difficult to address. 

As a consequence, in this paper we propose the introduction of knowledge in the op-

timization process. First, we propose a hybrid GA (HGA) based on the modification of the 

GA operators during the optimization process defining two optimization phases: an en-

hanced deep-exploration phase followed by a heavy-intensification phase. 

Later, we introduce for the first time in the authors’ best knowledge a memetic algo-

rithm (MA) consisting of a mixture of the GA optimization with a variable neighborhood-

descent (VND) Local Search (LS) strategy for the NLP in the localization field. The MA 

applies the LS to the most different individuals of the population defined by Hamming dis-

tance in order to explore new different spaces of solutions not favored by the evolutionary 
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optimization process. In addition, we define a pseudo-fitness function based on the reduc-

tion of the architecture LOS and NLOS links since geometric and clock errors have a reduced 

impact in the neighborhood in which the LS is applied. 

We finally design a Hybrid Memetic Algorithm (HMA) which combines the beneficial 

effect of the HGA and the MA for the achievement of improved node deployments. 

Results show that the introduction of an enhanced combination of GA operators in 

the HGA enables the finding of better candidate solutions to the NLP in NLOS environ-

ments. Additionally, the introduction of knowledge in the optimization evolutionary (MA) 

process increases the overall performance in the solution of the NLP in a greater extent than 

the GA operators in the HGA. Finally, the HMA outperforms the previous configurations 

through the beneficial effect of the GA operators and the LS strategy of the MA. The HMA 

methodology proposed reaches an increase in accuracy in the optimization process in the 

scenario of simulations of this article of 14.2 % with regards to previous GA optimizations 

of the literature.  
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Chapter 9 

Concluding Remarks and Outlook 

9.1 Conclusions 
This dissertation presents an extensive analysis of the Time Local Positioning Systems. 

These systems are promising for the development of high-demanded accuracy applications 

in fields such as autonomous navigation, rescue operations, surveillance, underwater locali-

zation, tunnel and indoor localization, agriculture or surveillance. The implementation of 

LPS requires an ad-hoc deployment of sensors which fit the characteristic of the environ-

ment of application and demands an extensive knowledge of the localization field for achiev-

ing optimal deployments for meeting the design requirements. 

In this thesis, the obtainment of optimized cost-effective deployment of sensors in 

LPS has been studied with the following concluding remarks: 

 The solution of the LPS problem with the minimum number of sensors re-

quires an optimized sensor distribution of sensors in space. 

 The disambiguation of the position calculation of LPS with the minimum num-

ber of sensors demands a convergence sphere in which its interior points can 

act as the starting point of an iterative algorithm for the position determination 

with total confidence. 

 The sphere of converge has a direct relationship with the distance among the 

ambiguous solutions in the LPS problem with the minimum number of sen-

sors. 

 The disambiguation in the position calculation in LPS is produced through the 

maximization of the distance between the ambiguous solutions. This distance 

must exceed a threshold which naturally happens in GNSS and must be in-

duced in LPS. 

 Traditional optimizations of the location of the nodes in LPS have not consid-

ered eventual sensor failures. This has promoted that the performance of the 

LPS in emergency conditions have instantly decreased with regards to nominal 

operating conditions without failures. 

 A stable performance of the LPS in critical conditions can be achieved through 
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optimizations which consider the emergency conditions. Results have shown 

that minimal reductions in the nominal performance of LPS are produced 

when considering possible failure conditions in the architecture sensors while 

the performance in emergency conditions is notably enhanced. 

 The main disadvantage of asynchronous LPS is their dependency on the CS 

for the position calculation. This can promote the availability absence of the 

architecture in CS failure conditions causing the lack of coverage in some re-

gions of the TLE. 

 This consideration must be contemplated in the optimization process allowing 

the coverage of at least two different CS in each analyzed TLE point. It is also 

required that the optimization of the sensor location of the asynchronous ar-

chitecture must enhance the system performance with the primary and the sec-

ondary CS under coverage. 

 The employment of all the architecture sensors which exceed the 𝑆𝑆𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 may 

not produce the less uncertainty in the calculation of the position in NLOS 

conditions. This is due to possible imbalanced error distributions among the 

architecture sensors. Consequently, the finding of the best combination of ar-

chitecture sensors for calculating the target location is required in NLOS LPS 

applications. 

 The asynchronous LPS may require the introduction of a greater number of 

CS in especially harsh regions with irregular environments of operations, thus 

increasing the system costs. 

 The characteristics of the Time LPS made that there is not a prevalent archi-

tecture for any high-demanded accuracy application a priori. Thus, an objective 

comparison of the performance of each architecture must be done for every 

scenario of application. 

 This comparative may consider accuracy, robustness availability and system 

implementation costs for extracting valid conclusions on the application of 

each architecture. 

 The solution of the NLP is essential for the application of any LPS. This prob-

lem is especially complex to be addressed in NLOS conditions with high spaces 

of solutions. This is due to the discontinuities in the fitness function evaluation 
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among contiguous solutions. As a consequence, the difficulty of the intensifi-

cation during the evolutionary process followed in the solution of the NLP, 

significantly increases promoting the appearance of unfavored regions of the 

space of solutions. 

 The implementation of LS procedures in the most different individuals of the 

genetic population used for the solution of the NLP has demonstrated the 

improvement in the heuristic search of the GA applicated to the NLP. 

 The LS in the NLP can implement a pseudo-fitness function which can 

uniquely consider the reduction of the positioning signal paths -especially the 

NLOS links- since the clock and geometric errors in neighborhood regions 

remains practically constant. 

 The combined effect of the LS with an adaptive use of the GA operators allows 

the improvement of the NLP results with regards to only genetic approaches 

employed in the literature. 

9.2. Future Research Areas 
This dissertation has presented the progress in the research of the LPS in the SINFAB 

group of the University of León over the last few years. Nonetheless plenty of investigations 

may be derived from this thesis: 

 Actual implementation of LPS which allows us to validate the clock and noise 

models used throughout the node deployment optimizations. Investigations 

on UWB technologies will be done in order to prove the behavior of LPS. 

 Optimization of the node distribution of LPS in indoor environments for the 

guided navigation of Automatic Ground Vehicles for collaborating in manu-

facturing activities of the Industry 4.0. 

 Implementation of different metaheuristics for the Node Location Problem 

for improving the accuracy results in especially NLOS complex scenarios. 

 Node Location Problem solution with a variable number of nodes during the 

evolutionary process. This requires the addressing of the variable-length ge-

netic problem with the definition of novel selection, crossing and mutation 

operators applied to variable number of nodes distributions. This allows the 

solution of a unique NP-Hard problem instead of n different NP-Hard prob-

lems for n different number of nodes configurations. 
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 Research on modular sensor distributions for large-scale LPS applications. The 

definition of huge environments for the application of LPS increases the re-

quired number of sensors for these deployments, which makes the Node Lo-

cation Problem to be extremely NP-Hard for addressing the whole optimiza-

tion in a unique step. 

 Research on novel asynchronous LPS architectures which can reduce the de-

pendence on the target sensor for the retransmission of the positioning signal. 

 Development of energy-effective node deployments in Time LPS which boost 

the reduction of the energy consumption of unmanned aerial vehicles (UAV) 

for increasing the navigation autonomy of these vehicles. 

 Definition of maximum convergence points for the initialization of iterative 

positioning algorithms. 

 Implementation of methods for the ponderation of a weighted least-squares 

matrix in the actual operation of LPS based on the a priori knowledge collected 

by the characterization of the uncertainties provided in this dissertation.  
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Síntesis 



 

 
172 

 

 

Capítulo 1 

Resumen 
 

El desarrollo tecnológico actual y futuro demanda de forma progresiva la introducción 

de sistemas de posicionamiento que sean capaces de proporcionar localizaciones más exactas 

y estables a lo largo del tiempo. Tradicionalmente, se han empleado los sistemas de navega-

ción satelital (GNSS) que permitían alcanzar cobertura global y el acceso a territorios con 

orografías especialmente complejas. 

Sin embargo, la navegación GNSS para aplicaciones de elevada precisión requiere de 

un profundo tratamiento de las señales de posicionamiento para reducir las incertidumbres 

generadas por el ruido, las mediciones temporales y las inestabilidades ionosféricas. Además, 

fenómenos adversos en las señales como el multicamino o la propagación en condiciones de 

falta de línea de visión (NLOS) pueden inhabilitar el uso de los GNSS en el interior de edi-

ficios, en navegación de baja cota o en entornos con profundas irregularidades. 

Como consecuencia, en los últimos años, aplicaciones de posicionamiento local (LPS), 

con especiales características adaptadas al entorno en el que son desplegados, permiten re-

ducir la incertidumbre en el cálculo de la posición de los GNSS y mitigar los efectos negativos 

en las señales de posicionamiento, alcanzando con ello un gran interés de investigación. No 

obstante, el despliegue de los LPS supone nuevos desafíos que ya se encontraban resueltos 

en los GNSS o que surgen como consecuencia de la proximidad entre el objetivo de posi-

cionamiento y los sensores del sistema. 

Entre los diferentes LPS, aquellos basados en mediciones temporales, son los que per-

miten lograr una mejor relación entre exactitud, estabilidad, robustez, sencillez de implemen-

tación y coste. Por ello, los LPS temporales son analizados en esta tesis doctoral como can-

didatos para satisfacer las futuras aplicaciones de precisión tecnológicas. 

Es por ello que, en esta disertación se abordan problemas específicos de los LPS tem-

porales como la desambiguación del cálculo de la posición con el mínimo número de senso-

res, el despliegue optimizado de los sensores de sus arquitecturas o la consideración de posi-

bles fallos de operación de los nodos de las arquitecturas de posicionamiento. 

En primer lugar, en el capítulo 4, se propone una metodología para el cálculo de la 

posición con el mínimo número de sensores de una arquitectura LPS TDOA logrando la 

resolución de la ambigüedad matemática que se genera por la intersección de superficies no 
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lineales. Esta metodología requiere la maximización de la distancia entre las dos soluciones 

que se generan en el caso ambiguo mediante una distribución optimizada de los sensores en 

el espacio que permita la aplicación de un algoritmo de posicionamiento iterativo con total 

confianza. 

En el capítulo 5, se plantea un procedimiento de optimización de la distribución de los 

sensores de las arquitecturas LPS que no tiene únicamente en cuenta el funcionamiento del 

sistema en condiciones nominales sino también su funcionamiento estable en caso de fallo 

de alguno de sus sensores. Los resultados mostraron que este tipo de optimización reduce 

mínimamente las prestaciones del sistema en condiciones nominales, pero alcanza una me-

jora notoria de su funcionamiento en condiciones de emergencia. 

Por otra parte, el surgimiento de nuevas arquitecturas asíncronas LPS recomienda el 

uso de esta metodología del capítulo 5 para tratar el fallo eventual de los sensores coordina-

dores de posicionamiento asíncrono. Esto permite resolver la principal desventaja de estos 

sistemas: la imposibilidad de acceso a alguno de estos sensores coordinadores en alguna re-

gión del espacio produce la pérdida temporal de la disponibilidad de posicionamiento de las 

arquitecturas asíncronas en estos lugares. Por ello, se aplica el principio de optimización de 

las distribuciones de posicionamiento del capítulo 5 en el capítulo 6 para permitir la minimi-

zación de los errores de ruido y relojes de la arquitectura asíncrona A-TDOA en condiciones 

nominales y de emergencia. Además, se estudia en este capítulo la combinación óptima de 

sensores en cobertura para el cálculo de la posición en condiciones NLOS con degradación 

desbalanceada de la señal. 

En el capítulo 7 se extiende la metodología del capítulo 6 para encontrar despliegues 

de sensores optimizados que alcancen buenas propiedades de exactitud, disponibilidad y ro-

bustez en las principales arquitecturas LPS temporales (TOA, TDOA y A-TDOA). Esto 

permite la generación de un marco común de comparación de las arquitecturas temporales 

para su despliegue en escenarios urbanos complejos. Este marco es necesario ya que en las 

arquitecturas LPS temporales se produce una distribución desbalanceada entre los errores de 

reloj y de ruido de estos sistemas que hace que no se pueda definir a priori la idoneidad de 

una arquitectura sobre las demás en escenarios complejos. 

Por último, se presenta en el capítulo 8, un algoritmo memético para la resolución del 

problema de colocación de sensores de posicionamiento (NLP) en entornos complejos 

NLOS en los que se produzca discontinuidad en la función de evaluación de la calidad de 
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una distribución de sensores entre soluciones contiguas. Esto requiere la introducción de un 

procedimiento de búsqueda local basado en la exploración de vecindades colindantes en es-

pacios de soluciones no favorecidos por la evolución genética presentada tradicionalmente 

en la literatura. El análisis de la idoneidad de los vecinos puede centrarse exclusivamente en 

la evaluación de los caminos de las señales de posicionamiento ya que los errores de relojes 

y geométricos son prácticamente constantes, lo que permite alcanzar una gran eficiencia en 

el proceso de búsqueda local. Los resultados demostraron la prevalencia de esta técnica con 

respecto a la exclusiva exploración genética tradicional. 
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Capítulo 2 

Objetivos y organización de la tesis 
 

1.1. Objetivos 

 
Esta disertación busca un análisis profundo sobre la implementación de sistemas de 

posicionamiento local (LPS) para aplicaciones de precisión de alta demanda. En este marco 

general, hay algunos objetivos generales de la tesis y objetivos específicos particulares en cada 

uno de los capítulos de investigación. Los objetivos generales de la disertación se presentan 

a continuación, mientras que los objetivos particulares de cada capítulo se describen en el 

Capítulo 3 y en cada una de las unidades de investigación presentadas desde el Capítulo 4 al 

Capítulo 8: 

 Estudio sobre desempeño de los Sistemas de Posicionamiento Local con el 

número mínimo de nodos para determinar la ubicación del vehículo. 

 Definición de una metodología para lograr la desambiguación del cálculo de la 

posición con el número mínimo de nodos en Sistemas de Posicionamiento 

Local basados en medidas Temporales. 

 Diseño de un procedimiento mejorado para el despliegue de una arquitectura 

de nodos sensores en LPS considerando eventuales condiciones críticas de 

operación por posibles fallas de sensores en la arquitectura de posicionamiento. 

 Análisis de novedosas metodologías asincrónicas para su aplicación en Siste-

mas de Posicionamiento Local: estudios sobre el diseño, implementación, des-

pliegue, disponibilidad y robustez. 

 Desarrollo de una metodología novedosa y rentable para la reducción de las 

incertidumbres de reloj y ruido en sistemas de posicionamiento locales basados 

en medidas temporales. 

 Selección adecuada de nodos del sistema para el cálculo de la posición en el 

área de cobertura de los Sistemas de Posicionamiento Local. 

 Análisis de la interacción entre los Sensores Trabajadores y el Coordinador en 

Sistemas de Posicionamiento Locales Asíncronos. 
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 Definición de un marco común para la selección del Sistema de Posiciona-

miento Local de Tiempo más apropiado en escenarios urbanos complejos 

NLOS basado en precisión, disponibilidad, robustez y costos del sistema. 

 Análisis de las técnicas metaheurísticas empleadas para resolver el problema de 

localización de nodos en redes de sensores inalámbricos. 

 Estudio de la influencia de los operadores de algoritmos genéticos y técnicas 

de búsqueda local en el problema de localización de nodos. 

 Proposición de una metodología memética híbrida novedosa para abordar el 

problema de ubicación de nodos en escenarios complejos NLOS en los que 

existe discontinuidad en la evaluación de la función de aptitud entre soluciones 

contiguas. 

1.2. Contribuciones principales 
A continuación, se presenta una sinopsis de las principales contribuciones de esta tesis: 

I. Definición de una metodología para la resolución de la ambigüedad en la ubi-

cación del vehículo en 3D, con el número mínimo de nodos, mediante la defi-

nición de una esfera de convergencia que actúa como intervalo de confianza 

para la definición del punto de partida de un método iterativo en el cálculo de 

la posición. 

II. Una estrategia novedosa en el despliegue de nodos sensores para una arquitec-

tura basada en condiciones primarias y de emergencia que permite que el sis-

tema funcione adecuadamente en condiciones de falla. 

III.  La caracterización del reloj del sistema y las incertidumbres de ruido en con-

diciones LOS y NLOS para los principales Sistemas de Posicionamiento Local 

de Tiempo: TOA, TDOA y A-TDOA. 

IV. Definición de la combinación de sensores con cobertura más adecuada para el 

cálculo de la posición en base a la reducción de los Límites Cramér-Rao en 

cada punto de cobertura analizado. 

V. Solución a la potencial indisponibilidad del sensor coordinador en condiciones 

de falla de despliegues de nodos asíncronos. 

VI. La propuesta de una metodología novedosa para el problema de cobertura de 

localización en condiciones nominales y de emergencia. 

VII. Definición de un marco común para la comparación del desempeño de los 
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Sistemas de Posicionamiento Locales basados en medidas Temporales en es-

cenarios urbanos complejos NLOS. 

VIII. Adaptación de una optimización flexible de la distribución de sensores a esce-

narios urbanos. 

IX. Proposición de un algoritmo memético híbrido para la solución del problema 

de ubicación de nodos basado en un uso inteligente de los operadores GA 

durante el proceso evolutivo y una estrategia de búsqueda local de vecindad 

variable descentente para explorar posibles espacios de soluciones desfavore-

cidos. 

 

1.3. Organización de la tesis 
La estructura de esta disertación se presenta en esta sección. El capítulo 1 define los 

principales objetivos de la disertación, presenta las aportaciones de la tesis doctoral, propor-

ciona la organización del documento e introduce los proyectos de financiación de la investi-

gación y el grupo de investigación en el que se ha desarrollado la tesis. 

 El Capítulo 2 proporciona una introducción general al LPS incluyendo el estado del 

arte de las tecnologías, la definición de las áreas en las que se aplica el LPS, las principales 

arquitecturas del LPS, una particularización sobre los sistemas basados en el tiempo y los 

algoritmos de posicionamiento utilizados en el literatura. 

 Posteriormente, se destaca la importancia de la solución de la PNL en LPS. Se pre-

sentan las principales técnicas heurísticas para abordar este problema complejo NP-Hard y 

se menciona la relevancia del GA debido a su compromiso entre diversificación e intensifi-

cación. 

 Luego, se analiza la caracterización de las incertidumbres del sistema para determinar 

la calidad de las distribuciones de los nodos a través de los Cramér-Rao Bounds, finalizando 

el Capítulo con la propuesta de las principales líneas de investigación de esta disertación junto 

con algunos de los aportes de la tesis. 

 El Capítulo 3 introduce la conexión entre los capítulos de investigación de esta diser-

tación y la investigación general realizada en el campo de la localización durante el desarrollo 

de la tesis doctoral. 

 El Capítulo 4 analiza la ambigüedad matemática en el cálculo de la posición de los 

sistemas de arquitectura TDOA con cuatro nodos de sensor. Se propone una metodología 



 

 
178 

 

 

para resolver el problema 3D TDOA con el mínimo de nodos mediante la definición de una 

esfera de convergencia desde la cual, cualquier punto interior puede actuar como punto de 

partida para la determinación de la ubicación objetivo con total fiabilidad. 

 El Capítulo 5 propone una metodología novedosa para lograr el rendimiento óptimo 

de la arquitectura TDOA en casos de mal funcionamiento de algún sensor con una reducción 

mínima de la precisión en condiciones de funcionamiento nominales. Además, la solución 

del problema TDOA 3D de 4 nodos está garantizada en condiciones de falla de cualquiera 

de los sensores de la arquitectura. 

 El Capítulo 6 presenta una estrategia rentable para el despliegue de redes de sensores 

asíncronos. Resuelve el problema de cobertura en casos de falla del sensor Coordinador asu-

miendo la optimización para condiciones primarias y secundarias (emergencia) del sistema 

de localización. Además, se proporciona una técnica para calcular la posición con los nodos 

más prometedores bajo cobertura. 

 El Capítulo 7 introduce una metodología para la comparación del desempeño de las 

Arquitecturas de Posicionamiento Basadas en mediciones Temporales más relevantes (TOA, 

TDOA y A-TDOA) en escenarios urbanos complejos NLOS. Esta comparación se propor-

ciona una vez que se optimiza la distribución del sensor de cada arquitectura, ya que las 

configuraciones óptimas a priori no se pueden determinar directamente. Los criterios de op-

timización son precisión, solidez, disponibilidad y costo de cada arquitectura. 

 El Capítulo 8 investiga el problema de la ubicación del nodo en el campo de la loca-

lización. Proporciona una definición de la complejidad del problema y analiza las técnicas 

metaheurísticas que se han empleado para abordar este problema NP-Hard. Después del 

análisis, se propone un Algoritmo Memético Híbrido, que combina los efectos beneficiosos 

de los Algoritmos Genéticos en el Problema de Ubicación del Nodo junto con un Procedi-

miento de Búsqueda Local para examinar las potenciales regiones desfavorecidas del espacio 

de soluciones. 

 Finalmente, el Capítulo 9 brinda las observaciones finales y las futuras investigaciones 

derivadas de los resultados obtenidos en esta disertación. 
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investigación han financiado las actividades de investigación de esta tesis doctoral.
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Capítulo 3 

Introducción General 
 

El desarrollo de la tecnología móvil en los sistemas tecnológicos requiere en múltiples 

aplicaciones la localización del usuario para proporcionar un servicio personalizado y adap-

tado de alta calidad. Estos sistemas acostumbran a utilizar las señales de los sistemas de na-

vegación satelital (GNSS) para proporcionar cobertura global con un coste reducido. 

No obstante, otras aplicaciones tecnológicas con elevados requerimientos de exactitud 

en la localización están empezando a sufrir las limitaciones de los GNSS para proveer una 

posición estable y con baja incertidumbre. Estos problemas se acrecientan en entornos com-

plejos orográficos [1], en interiores de edificios [2], túneles y puentes [3,4], bajo el agua en 

navegación submarina o en suelos de baja cota de UAV [5]. Para mitigar estos efectos, los 

GNSS trabajaron en dos más: un profundo tratamiento de los errores de las señales para 

reducir las incertidumbres de relojes [6], ruido [7] e ionosféricas [8] y la dispersión terrestre 

de aumentadores que permiten reducir los errores del sistema. 

De todas maneras, los sistemas GNSS fueron concebidos para proporcionar una co-

bertura global y la reducción de sus incertidumbres requerirán la puesta en órbita de un nú-

mero mayor de satélites incrementando con ello notablemente los costes de funcionamiento. 

No obstante, la liberalización del uso de los sistemas GNSS a escala global ha permitido 

avances en este sentido mediante la fusión de sensores de posicionamiento de diferentes 

GNSS combinando sus señales y mejorando con ello los resultados de posicionamiento al-

canzado [9]. Esto está suponiendo un importante aspecto de investigación en estos años.  

Sin embargo, a pesar de todos los esfuerzos realizados por los GNSS, todavía no son 

capaces de alcanzar las exactitudes requeridas en algunos campos como la vigilancia, opera-

ciones de rescate, agricultura de precisión o navegación de exteriores e interiores de vehículos 

autónomos. Como consecuencia, en los últimos años se han desarrollado los sistemas locales 

de posicionamiento (LPS) [10]. 

Los LPS se encuentran basados en el despliegue de sensores terrestres en los que su 

proximidad con respecto al target permite la reducción de la incertidumbre en el cálculo de 

la posición. Los LPS se clasifican en función de la propiedad física medida para determinar 

la localización del target: tiempo [11], potencia [12], fase [13], frecuencia [14] o ángulo [15], 
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así como una combinación entre todas estas [16,17]. 

Entre los LPS, aquellos basados en mediciones temporales, proporcionan la mejor re-

lación entre exactitud, robustez, estabilidad, facilidad de implementación de sus arquitecturas 

de hardware y coste. Por este motivo, en esta desertización se profundiza en el análisis de las 

arquitecturas temporales LPS para su implementación en aplicaciones de elevadas prestacio-

nes.  

Particularizando en las arquitecturas temporales LPS se distingue entre las arquitectu-

ras síncronas - Time of Arrival (AOA) [18] y Time Difference of Arrival (TDOA) [19] – y 

las arquitecturas asíncronas – Asynchronous Time Difference of Arrival (A-TDOA) [20]. 

Los sistemas TOA miden el tiempo total de viaje de la señal entre un emisor y un 

receptor. Este tiempo puede ser convertido a través de la velocidad de vuelo de las ondas 

electromagnéticas (c) en una distancia entre emisor y receptor. Como el emisor puede en-

contrarse en cualquier lugar del espacio que se encuentre a una distancia determinada del 

receptor de la señal, por cada señal de posicionamiento se genera una esfera de posibles 

localizaciones del target en el espacio. Por ello, la resolución del problema TOA 3D requiere 

de al menos 3 receptores que generen 3 esferas distintas.  No obstante, las condiciones de 

no linealidad de las ecuaciones esféricas provocan una ambigüedad con dos soluciones dis-

tintas en la intersección de 3 esferas que no puede ser resuelta desde el punto de vista mate-

mático. 

Los sistemas TDOA se basan en la medición del tiempo relativo que trascurre entre la 

llegada de una señal de posicionamiento a dos receptores distintos. Esta medición de tiempo 

relativo provoca que sólo sea necesario el sincronismo entre los relojes del sistema mientras 

que en los sistemas TOA se requiere el sincronismo también del reloj del target porque la 

medición temporal requiere el instante de emisión del pulso de posicionamiento. Mientras 

en los sistemas TOA se toma exclusivamente el camino entre emisor y receptor para obtener 

una ecuación de posicionamiento, los sistemas TDOA requieren de un par de señales para la 

medición de tiempos relativa. Esto produce que la resolución del problema tridimensional 

requiera la introducción de un sensor más y que en lugar de ecuaciones esferas se trabaje con 

la intersección espacial de hiperboloides. Al igual que en el caso TOA, se produce una ambi-

güedad matemática en el cálculo de la posición con 4 receptores que puede resolverse en 

sistemas LPS a través de la metodología introducida en el capítulo 4 de esta disertación [21].  

Los sistemas A-TDOA eliminan la necesidad de sincronismo de los relojes del sistema 
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mediante una estrategia de recepción y retransmisión de los pulsos de posicionamiento en el 

TS. Esto permite procesar todas las mediciones temporales en un único sensor coordinador 

reduciendo con ello las incertidumbres de las mediciones temporales. Esta particularidad los 

ha hecho especialmente prometedores para aplicaciones LPS como consecuencia del impor-

tante peso de la incertidumbre de la medición temporal en los errores de los LPS. Las arqui-

tecturas A-TDOA producen ecuaciones de elipsoides [22] cuya intersección requiere de 4 

ecuaciones y 5 sensores para resolver completamente el problema desde un punto de vista 

matemático. 

Precisamente, la necesidad de resolver ecuaciones no lineales ha dado lugar a múltiples 

algoritmos de posicionamiento en la literatura. En general, pueden clasificarse en algoritmos 

cerrados y algoritmos iterativos. Los algoritmos cerrados [23] permiten una resolución directa 

del problema de posicionamiento, pero son más inestables a la incertidumbre generada en el 

proceso de medición temporal de las señales de posicionamiento. Por el contra, los algorit-

mos iterativos [24] permiten el tratamiento del error de las señales, pero dependen íntima-

mente de la posición de partida de las iteraciones que conducen a la posición espacial del 

target pudiendo llegar a tener incluso problemas de convergencia si la posición de partida se 

encuentra muy alejada de la posición final de las iteraciones. 

Sin embargo, sea cual sea la arquitectura de posicionamiento empleada y los algoritmos 

utilizados para el cálculo de la posición, la distribución espacial de los sensores de cada ar-

quitectura es esencial para reducir las incertidumbres de posicionamiento de los LPS. 

Este problema, que requiere la optimización de la distribución espacial de los sensores, 

ha sido denominado como el problema de localización de nodos (NLP) y ha sido asignado 

como NP-Hard [25] por lo que se recomienda el empleo de metodologías heurísticas para su 

resolución. Como consecuencia, el recocido simulado [26], el algoritmo de luciérnaga [27], el 

algoritmo de enjambre de delfines [28], el algoritmo de búsqueda bacterial [29], la optimiza-

ción por pastoreo de elefantes [30], búsqueda local diversificada [31] pero especialmente los 

Algoritmos Genéticos (GA) [32-34] destacan en la resolución de este problema por su com-

promiso entre diversificación e intensificación del espacio de soluciones. En esta disertación, 

en el Capítulo 8, se añaden los algoritmos meméticos como una técnica prometedora para el 

NLP en entornos complejos que incluyen sin línea de visión (NLOS) en los que se producen 

discontinuidad en la evaluación de la función de adaptación entre soluciones contiguas ge-

neran dos regiones desfavorecidas de exploración del espacio de soluciones.  
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Estas esenciales optimizaciones del NLP requieren de una función que determine la 

calidad de las distribuciones de balizado para reducir la incertidumbre de relojes y ruido de 

cada sistema y potenciar las propiedades de disponibilidad y robustez de las arquitecturas de 

posicionamiento. Para ello, los LPS demandan una caracterización heterocedástica del ruido 

de la señal que se modela en la matriz de covarianzas de la Cota Inferior de Cramér Rao 

(CRLB) [35,36]. Esta modelización es flexible y nos ha permitido introducir el ruido de la 

señal en condiciones LOS y NLOS junto a la incertidumbre de los relojes. La minimización 

de la CRLB se corresponde con la menor incertidumbre en el cálculo de la posición alcanza-

ble por cualquier algoritmo de posicionamiento y no puede ser derivada conjuntamente en 

todos los lugares de cobertura de las arquitecturas LPS [37]. Como consecuencia, la utiliza-

ción de la CRLB como criterio de optimización del NLP también aconseja el empleo de 

metodología metaheurística para la resolución del problema.  

Toda esta caracterización de las incertidumbres de los LPS en conjunto con la optimi-

zación de la distribución de balizado de cada arquitectura son empleadas en esta disertación 

para extraer conclusiones de implementación y despliegue de los LPS en condiciones reales 

de operación. 
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Capítulo 4 

Evolución de la línea de investigación y enlace entre artículos 
 

Los estudios de investigación presentados en esta disertación son parte de las investi-

gaciones desarrolladas en el grupo de investigación SINFAB de la Universidad de León. El 

objetivo de este capítulo es clarificar la unión entre los siguientes capítulos (4-8) y dar una 

visión general de la evolución de las actividades de investigación llevadas a cabo en los últi-

mos años. 

La investigación comenzó con la conceptualización de la posible implementación de 

los Sistemas de Posicionamiento Local (LPS) para la navegación guiada de los emergentes 

vehículos autónomos. Las necesidades de exactitud de estos sistemas has sugerido el desplie-

gue de una red de sensores para la mejora de los resultados de exactitud de los GNSS. 

Los primeros pasos de estas investigaciones demandaban el análisis de las particulari-

dades de los LPS con respecto a los GNSS. Uno de los primeros descubrimientos fue que la 

determinación de la posición con el menor número de sensores presentaba una elevada com-

plejidad en los LPS con respecto a los GNSS. Mientras la ambigüedad en el cálculo de la 

posición con 3 satélites en los sistemas de tiempo de llegada (TOA) y los sistemas de dife-

rencias de tiempo de llegada (TDOA) había sido resuelta tradicionalmente mediante la elimi-

nación de la solución incoherente (e.g. una de las dos posibles soluciones se encontraba tra-

dicionalmente fuera de la superficie terrestre, por debajo de la tierra o extremadamente se-

parada de la última posición conocida de un vehículo), en los LPS la reducida separación 

entre las soluciones no permitía la resolución directa de este escenario adverso. 

Como consecuencia, se desarrolló una metodología basada en los principios de un al-

goritmo de posicionamiento iterativo para la resolución del problema mínimo de sensores 

en arquitecturas TDOA en el Capítulo 4 [1]. Esta metodología demostró que en distribucio-

nes de sensores optimizadas en las que se maximice la distancia entre las dos soluciones, el 

problema tridimensional TDOA con cuatro receptores presenta unas propiedades análogas 

a otros en los que más sensores se encuentren disponibles en los que la desambiguación en 

la determinación de la posición se consigue de manera directa. En primer lugar, la búsqueda 

de la distribución optimizada de sensores fue analizada en configuraciones de redes de sen-

sores siguiendo patrones regulares, encontrando que la mejor combinación de sensores en el 
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espacio para resolver este problema no sigue ningún patrón de diseño. Justo en este instante, 

descubrimos el problema de localización de nodos en redes de sensores (NLP) que ha sido 

designado como NP-Hard y sugiere el empleo de técnicas metaheurísticas para abordar este 

complejo problema. 

En este contexto, dirigimos nuestra investigación para descubrir la relación entre la 

distribución espacial de sensores con las propiedades principales de los LPS: determinación 

de las incertidumbres del cálculo de la posición, disponibilidad del sistema y robustez. 

Aunque, tradicionalmente, las incertidumbres de ruidos de la señal relacionadas con la 

disposición geométrica relativa entre el vehículo y los satélites en los GNSS se han modelado 

a través de la dilución de la posición (PDOP), el PDOP se encuentra basado en una consi-

deración del error homocedástica ya que las señales viajan caminos similares entre los satélites 

y el objetivo de posicionamiento en los GNSS. Este no es el caso para los LPS en los que la 

señal de posicionamiento viaja a través de caminos que difieren significativamente entre los 

diferentes sensores de la arquitectura. Como consecuencia, definimos una consideración he-

terocedástica del ruido para las arquitecturas temporales LPS basada en un modelo de pérdi-

das de propagación Log-Normal que especialmente cubre las características de los escenarios 

de aplicación de los LPS. Posteriormente, aplicamos este modelo a la comparación de las 

incertidumbres de ruido de las dos principales arquitecturas asíncronas introducidas en los 

últimos años ( Diferencia Asíncrona de las Diferencias de Tiempo de la Llegada de la Señal 

-A-TDOA- y Diferencia Temporal de las Diferencias de Tiempo de Llegada de la señal -D-

TDOA-) que han mostrado una excelente adaptación en aplicaciones LPS []. 

Las dos arquirtecturas fueron comparadas en cinco distribuciones de sensores mos-

trando la arquitectura A-TDOA mejor exactitud y estabilidad en aplicaciones LPS. 

El análisis de las arquitecturas asíncronas fue seleccionado ya que la eliminación del 

sincronismo necesario entre los relojes del vehículo y los de la arquitectura en los sistemas 

TOA y el de los relojes de la arquitectura en los TDOA representan una parte relevante del 

error global de estos LPS. 

Sin embargo, el análisis del error de las arquitecturas asíncronas fue llevado a cabo en 

entornos regulares de simulación en los que la mejor combinación de los sensores de las 

arquitecturas no fue probada. Por ello, desarrollamos una metodología metaheurística para 

encontrar despliegues optimizados de sensores en escenarios irregulares de simulaciones. 

Creamos con ello un entorno para simular cualquier escenario irregular real de aplicación de 
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los LPS. En estos escenarios, se distingue entre la zona para la navegación de los vehículos, 

Target Location Environment (TLE) y la de posibles localizaciones de los nodos de la arqui-

tectura, Node Location Environment (NLE). 

Esta distinción es de especial aplicación en los LPS, lo que supone la principal diferen-

cia con las optimizaciones de las redes de sensores Wireless ya que las posibles localizaciones 

del vehículo deben ser consideradas conjuntamente en el proceso de optimización. Además, 

esta particularidad hace que la caracterización del error del artículo [2] no pueda ser derivada 

para el TLE de forma completa, recomendando por ello de nuevo una aproximación heurís-

tica al problema para encontrar distribuciones optimizadas de sensores. 

Como consecuencia, aplicamos la caracterización del ruido introducido en el artículo 

[2] en la matriz de covarianzas de la Cota Inferiror de Cramér Rao (CRLB) ya que propor-

ciona el menor error alcanzable por cualquier algoritmo de posicionamiento empleado en el 

cálculo de la posición para caracterizar la calidad de una distribución de sensores en un Al-

goritmo Genético (GA) en el que se incluye una definición irregular del escenario de simula-

ciones para una arquitectura A-TDOA. 

Los resultados mostraron que mejoras significativas en la exactitud de los LPS podían 

alcanzarse mediante la optimización de distribuciones de sensores en escenarios irregulares. 

Sin embargo, estas optimizaciones consideraban exclusivamente el desempeño de los LPS 

en condiciones de operación nominales (i.e. aquellas en las que todos los sensores de la ar-

quitectura funcionan correctamente). Esto podría provocar que un fallo eventual en alguno 

de los elementos del sistema podría promover que el sistema completo podría instantánea-

mente incrementar sus errores provocando la pérdida de utilidad de los LPS en estas condi-

ciones. 

Propusimos por ello una metodología en [4] (Capítulo 5) para el funcionamiento me-

jorado de los LPS en condiciones de fallo para optimizar el funcionamiento del sistema para 

cada combinación de sensores que exceda el mínimo número de nodos requerido en cada 

punto analizado del TLE de la optimización. Además, garantizamos la operación del sistema 

para el mínimo número de sensores a través de la maximización de la esfera de convergencia 

de [1] para cada combinación de cuatro sensores en cobertura de una arquitectura TDOA. 

Los resultados mostraron que las optimizaciones que consideran condiciones de emergencia 

(i.e. con posibles fallos de sensores) se comportan de manera similar a las optimizaciones 

nominales tradicionales, pero mejoran significativamente el comportamiento en condiciones 
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de fallo [5]. 

Sin embargo, las incertidumbres en el cálculo de la posición se encuentran notable-

mente afectadas por los errores cometidos en las mediciones temporales de las arquitecturas 

LPS además del ruido de la señal previamente definido. Esto nos llevó a la caracterización 

del ruido de los relojes en la matriz de covarianzas de la CRLB. Generamos un modelo en el 

que el clock drift, initial-time offset y los errores de truncamiento del sistema fueron consi-

derados [6]. Este modelo permite la comparación de las tres principales arquitecturas tem-

porales LPS con una consideración de ruido [2] y el modelo de definición del error de los 

relojes de [6] en distribuciones optimizadas de sensores en escenarios irregulares de simula-

ciones [3]. Los resultados mostraron que las arquitecturas asíncronas son más estables en 

condiciones de línea de visión (LOS) que las arquitecturas síncronas como consecuencia de 

la eliminación de las necesidades de sincronismo. 

Sin embargo, los resultados no fueron concluyentes ya que las arquitecturas asíncronas 

demandas la estrategia de recibir y retransmitir en las señales de posicionamiento incremen-

tando con ello el camino de la señal. Como consecuencia, un incremento en la incertidumbre 

de ruido se produce, lo que puede afectar al comportamiento asíncrono de los LPS en esce-

narios sin línea de visión (NLOS) donde se producen degradaciones significativas de las se-

ñales, incrementando con ello la probabilidad de sufrir efectos adversos en las señales como 

el multipath. 

Por ello, incluimos los caminos NLOS en la caracterización del ruido de la CRLB de 

la arquitectura A-TDOA del modelo del [2] con la extensión del modelo de pérdidas de 

propagación Log-Normal en [7]. Esto requirió el desarrollo de un nuevo algoritmo para dis-

tinguir los caminos LOS y NLOS de vuelo de la señal de posicionamiento. También inclui-

mos un algoritmo para la detección de los fenómenos de multipath basados en la definición 

del elipsoide de la zona Fresnel en el que se producen interferencias destructivas del canal de 

comunicaciones y el elipsoide que contiene el espacio 3D alrededor del emisor y el receptor 

de la señal de posicionamiento donde un objeto podría producir una señal que no podría 

distinguirse del camino LOS (i.e el que se usa para las mediciones temporales). 

La creación de estos dos algoritmos promovió el empleo de una optimización multio-

bjetivo para lograr la minimización de las incertidumbres del sistema y la eliminación del 

fenómeno de multipath en escenarios irregulares. 

Los resultados de [7] indicaron que se trata de una técnica óptima para determinar el 
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número de sensores adecuado de cada arquitectura para eliminar los fenómenos adversos 

que se producen en las señales de posicionamiento y par la minimización de la incertidumbre 

en el cálculo de la posición. Sin embargo, esta optimización mostró la dependencia de la 

arquitectura A-TDOA sobre sus sensores coordinadores (CS) ya que son los que procesan 

las señales de todos los sensores trabajadores (WS) para la medición de tiempos del sistema. 

Esto promueve que una localización subóptima de los CS incrementa en mayor medida las 

incertidumbres de la arquitectura de lo que lo hace la localización de los WS. Además, la 

optimización encontró problemas para lograr la colocación de los CS lo que potencialmente 

podría ocasionar una pérdida temporal de disponibilidad de la arquitectura en la que algunos 

puntos en caso de fallo de un CS podrían quedar fuera de la cobertura del sistema. 

Con ello, nos dimos cuenta de la importancia de la optimización de las arquitecturas 

asíncronas considerando tanto situaciones nominales de operación como condiciones de 

emergencia como en el procedimiento detallado en el Capítulo 5 [4] considerando posibles 

fallos de los CS. Además, encontramos en [7] que el total de sensores en cobertura no tiene 

por qué producir los mejores resultados de exactitud de la arquitectura como consecuencia 

de degradaciones desbalanceadas de las señales de posicionamiento en entornos NLOS. Esta 

conclusión sugiere la investigación en la mejor combinación de sensores para el cálculo de la 

posición de los vehículos. Además, el proceso evolutivo seguido en [7] indicó que la conver-

gencia del GA para solucionar el problema de cobertura en localización asíncrona fue difícil 

de tratar sin inducir penalizaciones en los valores de adaptación de los individuos de la po-

blación. Como consecuencia, las distribuciones de sensores en las que no se alcanza el mí-

nimo número de sensores que sobrepasan el 𝑆𝑆𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 son significativamente penalizadas para 

guiar el proceso evolutivo para encontrar combinaciones de sensores válidas. 

Cada una de estas consideraciones previas fueron posteriormente consideradas para 

construir una metodología de despliegue de los LPS asíncronos temporales en el Capítulo 6 

[8]. Propusimos una optimización reforzada en condiciones primarias y secundarias (i.e. po-

sibles fallos de sensores coordinadores) garantizando al menos dos CS disponibles en todas 

las regiones del TLE. Además, encontramos en [8] la configuración óptima de sensores para 

calcular las incertidumbres en la determinación de las coordenadas del vehículo a través de 

un modelo CRLB que combina las condiciones LOS y NLOS para la caracterización del 

ruido de [7] y las incertidumbres de reloj de [6]. 

Esta metodología solventa el principal problema de los LPS asíncronos ya que la falta 
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de disponibilidad de los CS produce la discontinuidad temporal en el cálculo de la posición. 

Además, los resultados indicaron la idoneidad de las metodologías asíncronas para las apli-

caciones LPS ya que la reducción de los errores de los relojes mediante la eliminación del 

sincronismo tiene un impacto relevante en la reducción de las incertidumbres del sistema. 

Sin embargo, la reducción efectiva de las incertidumbres requiere en los LPS asíncro-

nos el despliegue de una cantidad considerable de CS ya que al menos dos de ellos han de 

estar siempre en cobertura y la localización de esos sensores es crítica ya que deben eliminar 

las conexiones NLOS con las señales de posicionamiento y reducir considerablemente los 

efectos del fenómeno multipath. Esta conclusión promueve que entornos especialmente sin-

gulares con irregularidades en el terreno en las que se desplieguen los LPS asíncronos pueden 

suponer un incremento relevante de los CS requeridos para alcanzar resultados válidos, in-

crementando con ellos los costes del sistema. 

Como consecuencia, el profundo estudio de los escenarios de aplicación de los LPS es 

un requerimiento para determinar la arquitectura óptima temporal para adaptarse de una 

forma particular a las condiciones del escenario de simulaciones. Esta conclusión se encuen-

tra también basada en las diferentes características de las principales arquitecturas temporales 

(TOA, TDOA y A-TDOA). 

Los sistemas TOA acumula los mayores errores de reloj ya que requieren la sincroni-

zación entre todos los elementos del sistema pero acumula los menores errores de las incer-

tidumbres del ruido de la señal ya que la señal de posicionamiento sólo viaja entre emisor y 

receptor para producir una ecuación de posibles localizaciones espaciales del vehículo. 

Los sistemas TDOA tienen una distribución equilibrada de las incertidumbres. Supo-

nen una reducción del ruido de los relojes del sistema ya que eliminan el sincronismo con el 

vehículo como sucede en los sistemas TOA pero no alcanzan la completa falta de sincro-

nismo como en los sistemas A-TDOA. Sin embargo, los sistemas TDOA incrementan los 

errores de ruido con respecto a los sistemas TOA ya que para computar una medición tem-

poral requieren dos señales de posicionamiento diferentes entre un emisor y dos receptores 

distintos acumulando con ello el ruido de las dos señales. Pero estos errores de ruido se 

reducen con respecto a los sistemas A-TDOA en los que la estrategia de recepción y retrans-

misión de las señales de posicionamiento incrementa en mayor medida el camino de la señal 

que en el caso TDOA. 

Por ello, los sistemas A-TDOA proporcionan el menor de los errores de reloj, pero 
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con la mayor acumulación de ruido de todos los sistemas. Además, la dependencia de estos 

sistemas del CS debe ser equilibrada por una correcta disposición espacial de los sensores 

pudiendo sufrir en escenarios especialmente irregulares. 

Por ello, no podemos definir ninguna arquitectura perfecta a priori para las aplicacio-

nes LPS y no ha existido en la literatura ninguna aproximación a este problema previamente. 

Como consecuencia, hemos creado en el Capítulo 7 [9] una nueva metodología para compa-

rar el desempeño de las tres principales arquitecturas temporales LPS (TOA, TDOA y A-

TDOA). Esta metodología incluye la exactitud del sistema y el compartimiento estable y 

robusto de las arquitecturas considerando sus particularidades durante el proceso de optimi-

zación de sus distribuciones de sensores. 

Aplicamos el modelo de pérdidas de propagación Log-Normal en condiciones LOS 

[2] y NLOS [7] y la caracterización de los errores de reloj [6] en la CRLB de cada arquitectura 

y usamos la metodología de [4,5] para considerar posibles fallors de los CS asegurando el 

funcionamiento óptimo de cada arquitectura en [9]. 

También hacemos uso de la metodología de [8] para guiar el proceso de optimización 

para encontrar la distribución óptima de sensores en el espacio que produzca la mejor com-

binación de exactitud, disponibilidad y robustez de cada sistema. Esto crea un marco óptimo 

para comparar los LPS basados en medidas temporales en escenarios urbanos complejos. 

Esto ha requerido la modelización de los obstáculos sobre el la caracterización del terreno 

de [3] que incrementa a las áreas TLE y NLE una nueva región de obstáculos (OA) donde 

no se pueden situar ni las balizas ni los vehículos. 

Por otra parte, la relevancia de la resolución del problema NLP en LPS ha quedado 

patente a lo largo de la investigación presentada en este capítulo. Consecuentemente, encon-

trar distribuciones de sensores optimizadas es una actividad crítica para las aplicaciones ad-

hoc LP. Dado que se trata de un problema NP-Hard, las metodologías heurísiticas han des-

tacado para proporcionar distribuciones optimizadas de sensores. Los GA, como se muestra 

en [3], han demostrado su relevancia por su balance entre diversificación e intensificación 

del espacio de soluciones del problema NLP y por lo tanto han prevalecido en la literatura. 

Sin embargo, hemos observado en [7-9] que las optimizaciones del NLP en las que se 

consideran condiciones NLOS, producen un comportamiento inestable de los algoritmos 

evolutivos. Esto se debe a la discontinuidad que se produce en las evaluaciones de la función 

de adaptación entre soluciones contiguas (i.e. distribuciones de sensores que mínimamente 
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se diferencian en las coordenadas de un sensor de la arquitectura) lo que complica el análisis 

de algunas regiones del espacio de soluciones, no siendo suficiente con la mutación y los 

operadores de cruce para explorar estas regiones desfavorecidas. 

En primer lugar, intentamos eliminar este problema mediante configuraciones híbridas 

en los operadores genéticos que cambiaban a lo largo del proceso evolutivo [10]. Esto nos 

permitió crear dos etapas distintas en la optimización del GA: una exploración profunda 

seguida por una fase de fuerte intensificación. Se analizaron diferentes configuraciones de 

cruce y mutación para el escenario de simulaciones proporcionado probando la prevalencia 

de esta técnica para alcanzar mejores resultados de optimización que las configuraciones in-

dividuales [3]. 

Sin embargo, esta metodología se encuentra limitada al escenario de simulaciones en 

el que se lleva a cabo el proceso de optimización. Consecuentemente, los resultados alcanza-

dos por esta técnica en [10] no son aplicables a cualquier escenario LPS. Por ello, considera-

mos una técnica de optimización diferente que pudiese aplicarse a cualquier escenario mejo-

rando los resultados del GA en condiciones de discontinuidad en entornos complejos. 

Como consecuencia, en el Capítulo 8, un Algoritmo Memético (MA) para el NLP en 

localización es propuesto [11]. Este MA combina el GA con un procedimiento de búsqueda 

local (LS) para explorar regiones potencialmente desfavorecidas del espacio de soluciones y 

para mejorar las características de los individuos elitistas alcanzando una mejora del proceso 

evolutivo. 

La búsqueda local mediante la técnica del vecindario variable (VND) se aplica a los 

individuos de la población más diferentes para explorar espacios de soluciones distintos. La 

selección de los individuos más diferentes se lleva a cabo mediante métricas de disimilitud 

entre los individuos de la población. 

Una de las contribuciones más relevantes de la LS es la aplicación de un pseudo fun-

ción de adaptación que confía en la variación mínima de los errores geométricos y de reloj 

en las vecindades de un individuo. Con esto, la reducción de las conexiones NLOS entre los 

sensores de la arquitectura y el vehículo concierne al procedimiento de LS para mejorar los 

individuos del MA. Encontrar los individuos más apropiados de las vecindades siguiendo 

este proceso permite la intensificación en esos espacios de una manera que no puede efec-

tuarse a través de la optimización genética. 
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Los resultados mostraron que la combinación de un uso híbrido reforzado de los ope-

radores genéticos como en [10] y el MA propuesto en [11] sobresalen sobre las configura-

ciones heurísticas previas, alcanzando una mejora en la exactitud de la arquitectura A-TDOA 

de un 14% con respecto a las optimizaciones exclusivamente genéticas de [3]. 

En la actualidad se está realizando más investigación en este campo para encontrar el 

número óptimo de sensores directamente en el proceso evolutivo, la aplicación de diferentes 

aproximaciones heurísticas al NLP, la definición de patrones para el despliegue de LPS en 

aplicaciones de larga escala, la consideración de nuevas arquitecturas asíncronas e implemen-

taciones reales de los LPS que permitan la validación de los modelos de la CRLB. Esto se 

encuentran particularmente detallado en el Capítulo 9 con las investigaciones futuras que 

pueden derivarse de esta disertación. 
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Capítulo 5 

Conclusiones 
 

Esta tesis presenta un análisis extenso de los Sistemas de Posicionamiento Locales 

basados en medidas Temporales. Estos sistemas son prometedores para el desarrollo de apli-

caciones de precisión con alta demanda en campos como navegación autónoma, operaciones 

de rescate, vigilancia, localización subacuática, localización en túneles e interiores, agricultura 

o vigilancia. La implementación de LPS requiere un despliegue ad-hoc de sensores que se 

ajusten a las características del entorno de aplicación y exige un amplio conocimiento del 

espacio de localización para lograr despliegues óptimos con el objetivo de cumplir con los 

requisitos de diseño. 

En esta tesis se ha estudiado la obtención de un despliegue optimizado y rentable de 

sensores en LPS con las siguientes conclusiones finales: 

 

 La solución del problema LPS con el número mínimo de sensores requiere una 

distribución de sensores optimizada en el espacio de sensores. 

 La desambiguación del cálculo de la posición de LPS con el número mínimo 

de sensores exige obtener una esfera de convergencia en la que sus puntos 

interiores puedan actuar como punto de partida de un algoritmo iterativo, con-

siguiendo una determinación de la posición con total confianza. 

 En el problema LPS con el número mínimo de sensores, la esfera de conver-

gencia tiene una relación directa con la distancia entre las soluciones ambiguas. 

 La desambiguación en el cálculo de la posición en LPS se produce mediante la 

maximización de la distancia entre las soluciones ambiguas. Esta distancia debe 

exceder un umbral que ocurre naturalmente en GNSS y debe ser inducida en 

LPS. 

 Las optimizaciones tradicionales sobre la ubicación de los nodos en LPS no 

han considerado eventuales fallas de sensores. Esto ha promovido que el 

desempeño del LPS en condiciones de emergencia haya disminuido instantá-

neamente con respecto a las condiciones nominales de operación sin fallas. 
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 Se puede lograr un rendimiento estable del LPS en condiciones críticas me-

diante optimizaciones que se consideren en condiciones de emergencia. Los 

resultados han demostrado que se producen reducciones mínimas en el rendi-

miento nominal de LPS al considerar posibles condiciones de falla en los sen-

sores de la arquitectura, mientras que el rendimiento en condiciones de emer-

gencia se mejora notablemente. 

 La principal desventaja de los sistemas LPS asíncronos es su dependencia con 

el CS para el cálculo de la posición. Esto puede motivar la carencia de dispo-

nibilidad para la arquitectura en condiciones de fallo de CS, provocando la in-

capacidad de convergencia en ciertas regiones del TLE. 

 Esta consideración ha de ser contemplada en el proceso de optimización para 

permitir la cobertura de al menos dos CS diferentes en cada punto del TLE 

analizado. De la misma forma, se precisa que la optimización de la posición de 

los sensores en arquitecturas asíncronas deba mejorar las prestaciones del sis-

tema con los CS principales y secundarios bajo cobertura.  

 La implementación de todas las arquitecturas de los sensores que exceden el 

𝑆𝑆𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 pueden no producir la menor incertidumbre en el cálculo de la posi-

ción en condiciones NLOS. Esto es debido al desequilibrio de las distribucio-

nes del error a lo largo de las arquitecturas de los sensores. En consecuencia, 

la búsqueda de la mejor combinación de arquitecturas de nodos para obtener 

la posición del vehículo es requerida en condiciones NLOS para aplicaciones 

LPS. 

 Los LPS asíncronos pueden requerir la introducción de un gran número de CS, 

especialmente en regiones adversas con escenarios irregulares, incrementando 

así los costes del sistema. 

 La caracterización de los LPS basados en mediciones temporales ha ocasio-

nado que no exista una arquitectura prevalente para cualquier aplicación de 

precisión a priori. En consecuencia, una comparación objetiva de las presta-

ciones de cada arquitectura ha de realizarse para cada escenario de aplicación. 

 Esta comparación ha de considerar la precisión, robustez, disponibilidad y cos-

tes de implementación del sistema para extraer válidas conclusiones en la im-

plementación de cada arquitectura.  
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 La solución del NLP es esencial para la aplicación de cualquier LPS. Este pro-

blema es especialmente complejo para ser resuelto en condiciones NLOS con 

amplios espacios de soluciones. Esto se debe a la discontinuidad en la evalua-

ción de la función de adaptación a lo largo de soluciones contiguas. Como 

consecuencia, la dificultad de la intensificación durante el proceso evolutivo 

seguido en el NLP, mejora significantemente la aparición de regiones desfavo-

recidas en el espacio de soluciones. 

 La implementación de procedimientos de LS en los individuos más diferentes 

de la población total usada en la solución al NLP ha demostrado cierta mejoría 

respeto a las técnicas metaheurísticas, así como el GA aplicado al NLP: 

 La LS en el NLP puede implementar una pseudo-función de adaptación que 

puede considerar exclusivamente la reducción del recorrido de las señales de 

posicionamiento -especialmente en el caso de conexiones NLOS- ya que los 

errores geométricos y de reloj en las vecindades permanecen prácticamente 

constantes. 

 El efecto combinado de la LS con el uso adaptativo de los operadores genéti-

cos permite la mejora en la resolución del NLP alcanzando mejores resultados 

con respecto a las aproximaciones exclusivamente genéticas empleadas en la 

literatura. 
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Capítulo 6 

Líneas Futuras 
Esta disertación ha presentado el progreso en la investigación de los LPS que se ha 

producido en el grupo de investigación SINFAB de la Universidad de León en los últimos 

años. Aun así, multitud de investigaciones pueden desarrollarse derivadas de los trabajos de 

esta tesis:   

 

 Implementación real de los LPS para validar los modelos de ruido y relojes 

utilizados en las optimizaciones de las distribuciones de balizado. Se harán in-

vestigaciones en la tecnología UWB para probar el comportamiento de los LPS 

temporales. 

 Optimización de la distribución de los sensores de arquitecturas LPS en inte-

riores para la navegación guiada de vehículos autónomos terrestres (AGV) que 

colaboren en actividades manufactureras de la Industria 4.0. 

 Implementación de diferentes metaheurísticas para el problema de nodos de 

posicionamiento tratando de mejorar los resultados de exactitud en escenarios 

especialmente adversos con condiciones NLOS. 

 Solución del problema NLP con un número variable de sensores durante el 

proceso evolutivo. Esto requiere abordar el problema genético multicadena a 

través de la definición de nuevos operadores de selección, cruce y mutación 

aplicados a distribuciones de sensores variables. Esto permite la resolución de 

un único problema NP-Hard para n diferentes números de sensores. 

 Investigación en distribuciones de sensores modulares para aplicaciones de 

LPS de larga escala. La definición de escenarios de grandes dimensiones para 

la aplicación de los LPS incrementa el requerimiento del número de sensores 

de tal manera que provoca que el NLP sea extremadamente NP-Hard para ser 

abordado en una única optimización evolutiva. 

 Investigación en nuevas arquitecturas LPS asíncronas que reducen la depen-

dencia del vehículo en la retransmisión de la señal de posicionamiento. 

 Desarrollo de despliegues de sensores efectivos desde el punto de vista ener-

gético en LPS temporales lo que potencia la reducción del consumo energético 
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de los vehículos aéreos no tripulados (UAV) para incrementar su autonomía 

de navegación. 

 Definición de puntos de máxima convergencia para la inicialización de algorit-

mos iterativos de posicionamiento. 

 Implementación de métodos que permitan la ponderación de la matriz de mí-

nimos cuadrados en condiciones reales de operación de los LPS basados en el 

conocimiento que se obtiene a priori a través de la caracterización de las incer-

tidumbres proporcionada en esta disertación.  
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