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Abstract: The accuracy requirements for sensor network positioning have grown over the last few
years due to the high precision demanded in activities related with vehicles and robots. Such systems
involve a wide range of specifications which must be met through positioning devices based on time
measurement. These systems have been traditionally designed with the synchronization of their
sensors in order to compute the position estimation. However, this synchronization introduces an
error in the time determination which can be avoided through the centralization of the measurements
in a single clock in a coordinate sensor. This can be found in typical architectures such as Asynchronous
Time Difference of Arrival (A-TDOA) and Difference-Time Difference of Arrival (D-TDOA) systems.
In this paper, a study of the suitability of these new systems based on a Cramér-Rao Lower Bound
(CRLB) evaluation was performed for the first time under different 3D real environments for multiple
sensor locations. The analysis was carried out through a new heteroscedastic noise variance modelling
with a distance-dependent Log-normal path loss propagation model. Results showed that A-TDOA
provided less uncertainty in the root mean square error (RMSE) in the positioning, while D-TDOA
reduced the standard deviation and increased stability all over the domain.

Keywords: sensor networks; TDOA; asynchronous; Cramér—Rao lower bound; heteroscedasticity

1. Introduction

Over the past few years, positioning systems have experienced a growing importance due to the
wide range of applications they present in numerous civil and military fields. Positioning methods
based on satellite systems, e.g., global navigation satellite systems (GNSS), offer accurate precision
with global coverage but still present accuracy issues for specific crucial tasks such as high-precision
trajectories or indoor navigation. These issues have recently attracted much attention with the advent
of unmanned transportation.

Positioning systems have traditionally been classified into four main groups: Time of Arrival
systems (TOA) [1,2], Time Difference of Arrival systems (TDOA) [3,4], Angle of Arrival systems
(AOA) [5,6], Received Signal Strength Indication systems (RSSI) [7,8], or a combination of them [9,10].
Methods based on time measurement (i.e., TOA and TDOA) have been the main exponents of recent
developments, on account of their robustness, universality, and reliability, in addition to their great
accuracy and relative simplicity.

Time measurements have usually been obtained in two different ways. The most common one
measures time intervals by synchronizing emitter and receiver clocks, which is mandatory in the case
of TOA systems. The other option comes from the synchronization of receivers, and is optional in
TDOA systems. This fact significantly affects the accuracy of the positioning determination process due
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to the appearance of clock instabilities and the introduction of small time-offsets during the process of
synchronization among elements.

Owing to the challenging accuracy requirements to be met in sensor networks, the minimization of
key factors that increase the uncertainty associated with the calculation of the position is an imperative
task. Location systems based on TOA processes present disadvantages in this matter. Their accuracy
may be in the order of 10 cm [11-13], but time errors which can occur during the synchronization
process significantly increase the uncertainties associated with the position calculation [14-16].

Conventional TDOA methods have been traditionally dependent on global synchronization
amongst the receivers, reaching higher accuracy levels requiring less energy than TOA systems.
Nevertheless, synchronization instabilities are still present and the system complexity is higher than
TOA architectures.

Notwithstanding these previous tendencies, a new pattern has been developed over the last few
years, which advocates for the implementation of asynchronous architectures wherein a single clock is
used to measure the time differences of arrival characteristic of TDOA systems. These new systems
could overcome synchronization disadvantages in TDOA systems with less architecture complexity
and higher sensor ubication flexibility, and they are key to this work. The main advantages of these
new methods would include the elimination of the synchronization among receivers and the resulting
error introduced in the measurement process [17,18].

Inrecent years, two different asynchronous systems have been proposed. Asynchronous TDOA [17]
and difference-time TDOA [18]. These systems display an architecture based on a coordinator sensor
and a collection of worker sensors. The coordinator sensor is in charge of processing the time
measurements. The worker sensors collaborate in the determination of time differences. These new
architectures avoid the necessity of a clock built into every sensor of the system. This fact reduces
the overall costs and the complexity of the system and boosts accuracy by eliminating the interaction
among sensor clocks. All these factors enhance indoor and low-level flight sensor positioning accuracy,
a key factor that is driving the increasing popularity of these methods.

The aim of this article was to develop for the first time, to the extent of our knowledge,
a methodology to select the suitability of these two asynchronous TDOA systems under different
sensor placements in a 3D, real environment. This methodology must consider that vehicle navigation
in local positioning systems (LPS) is highly affected by noisy environments, thus system evaluations
must be performed at a high accuracy level even where time measurements are corrupted by noise.

Cramér-Rao Lower Bound (CRLB) is a commonly used estimator to determine the lowest possible
uncertainty associated with a positioning process in line-of-sight (LOS) [19,20] and non-line-of-sight
(NLOS) [21] conditions. This method models measurement uncertainties through the variance
associated to every sensor range estimation.

Conventional models consider the presence of a constant variance associated to each time
measurement [22]. However, to attain a higher level of accuracy in the results, it is imperative to
introduce the distance between emitter and receiver in the model allowing for heteroscedasticity in
time measurements [23,24]. This phenomenon is especially important in cases with medium and high
signal-to-noise ratios (SNRs) in the receivers. If the SNR is reduced, the positioning pulse detection
becomes significantly hampered, leading to drastic time measurement errors which reduce the accuracy
of the positioning system [25].

Therefore, the hypothesis of heteroscedastic variances needs to be implemented on the basis of a
propagation loss model over the signal path between the emitter and the receivers [26,27], depending on
the positioning methodology and the characteristics of communication amongst every single sensor of
the system.

The remainder of this paper is organized as follows. In Section 2, a comparison of the main
characteristics of asynchronous TDOA architectures studied is developed. Section 3 covers the main
path-loss models used to calculate the SNR. Section 4 includes a study of the Cramér-Rao Lower
Bound, based on a matrix model implemented for each system architecture. Section 5 gathers the
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conclusions obtained from all the studies, along with the election of the best system. Lastly, Section 6
presents the conclusions and completes the article.

2. Asynchronous TDOA Methods

In this section, the asynchronous TDOA methods will be introduced. Neither of these methods
need to synchronize any element of the system, using only one clock to measure the differences in
times of the TDOA system. The notation used throughout the study is the one described hereafter:
TS defines the location of the Target Sensor, Coordinate Sensor (CS) represents the position of the
receiver in charge of the time measurements, Worker Sensors (WS) are the rest of emitters/receivers,
N is the total number of WS, and additionally, a CS must be considered, tstarT and tgnp represent the
start and the end of the time measurement process in the CS.

2.1. A-TDOA

In Figure 1, an A-TDOA architecture is presented [17]. It proposes a passive positioning system
based on one single clock in the CS node, using the positioned sensor as signal repeater.
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A-TDOA 2
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t

Figure 1. Asynchronous Time Difference of Arrival (A-TDOA) system timing diagram. Example
of architecture operation with n Worker sensors (WS) nodes (1 must be at least equal to 4).
Rectangular positioning pulses are emitted from the WS nodes, and when the arrival of the signal to
the Target Sensor (TS) node is produced, signals are instantaneously retransmitted to the Coordinate
Sensor (CS) node. When the process is completed, A-TDOA time measurements are accomplished.

Positioning pulses are emitted by WS nodes, reaching the CS node with successive time differences
which lead to the beginning of the time measurement associated with each WS-CS (tstarr;). Conversely,
the signal emitted by each WS node is received by the TS node in charge of sending again these signals
to the Cs node (tgnp,). When the signal is received, the time measurement process comes to an end,
completing the time measurement process of each WS-CS pair. The TDOA measurement in terms of
distance is represented by the following relation.

A—-TDOA; = C(fEND,- - tSTART,v) —IWS; = CS|

ie[1,N] M
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2.2. D-TDOA

The D-TDOA method is based on the combination of a traditional TDOA system and a round trip
time (RTT) method, accomplishing the goal of obtaining the time difference measurements with only
one clock [18], as shown in Figure 2.
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Figure 2. Difference-Time Difference of Arrival (D-TDOA) timing diagram. Example of architecture
operation with n WS nodes (with a minimum number of 4). The positioning target pulse is received at
every WS node of the system that retransmits it towards the CS node. D-TDOA time measurements are
completed by a round-trip transmission (RTT) process between each pair of WS-CS nodes.

Positioning pulses are broadcast by the TS node, reaching the CS node at tst4rT. This temporal
reference is common to all the time measurements realized by the method. Meanwhile, the TS node
emission is received at the WS nodes, which resend it to the CS node (tgnp,), completing the time
difference measurement of each WS—CS pair of nodes. Lastly, the pulse is emitted from the CS node to
WS nodes with the aim of calculating the processing time on each WS node. The TDOA measurement
in terms of distance is represented by the following relation:

D — TDOA; = c(tenp, — tstarr) — IWS; — CSll,i € [1,N] k)

While A — TDOA; and D — TDOA,; hold similar equations, the time measurement recordings and
positioning pulse travels differ significantly from one method to the other. These characteristics are
analyzed in the following sections.

3. Heteroscedastic Noise Model

In this section, a noise variance distance-dependent model is implemented associated to the process
of location in asynchronous TDOAs system, allowing for a better reproducibility of real conditions.

The process starts with the TOA variance range estimate due to the noisy environments. Next,
the TDOA variance range estimate is defined based on time measurement correlation assumptions.
The heteroscedastic noise variance model is completed with the path-loss propagation model
implementation that best fit with the multiple sensor network’s characteristics.

Amongst the main sources of ranging errors of positioning systems based on time measurements,
the most important for TDOA asynchronous techniques is the uncertainty induced by white Gaussian
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noise (WGN) in the propagation channel. This problem has been deeply studied for TOA architectures,
quantifying it with the CRLB [25]:

2
c
25

>————— i=1,..,M )
(27B)*t,B-SNR;

Oi

where M is the total number of sensors, 0;% is the receptor range estimate variance, c is the pulse
propagation velocity, B is the bandwidth, tg is the length of time during which the bandwidth is
occupied, and SNR; is the signal-to-noise ratio for each receiver.

The majority of range estimation architectures consider the product t;B approximately unitary.
This, together with the hypothesis of high levels of SNR at the receivers and efficient estimator,
enables the derivation of the following relation for a TOA variance estimation [23,24].

2 c?
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B2.SNR, ' @
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Based on the TOA variance estimation, the implementation for TDOA systems is made under

some assumptions. He and Dong [17] proposed that the time measurements in asynchronous TDOA

architectures are considered independent. Consequently, the off-diagonal elements of the covariance

matrix associated with the Gaussian noise modelling are null. According to Kaune et al. [19],

the variance associated with a difference distance between two nodes is the sum of the variances for
each node, under the assumption of uncorrelated time measurements.

Hence:
017,2 — o2+ 0]2
i=1,...,M ®)
ji=1,...,.M
Consequently,
2 _ Af_1 1
oij” = lce_Z(SNR,» + SNRj)
i=1,..., M (6)
ji=1,..., M

In Equation (6), the SNR associated with each receiver mainly depends on the power emission,
the transmission frequency, and environment. This last aspect is characterized by means of path-loss
propagation models for indoor and outdoor environments. Large-scale models predict the mean signal
strength in LOS environments based on the distance between emitter/receiver and the characteristics
of the signal. Small-scale or fading models characterize the rapid fluctuations of the signal when the
distance of the emitter/receiver is short, in both conditions (LOS and NLOS) [27].

Multiple sensor networks with high location accuracy are used in many applications. However,
in the majority of systems, path loss during operation presents a higher level of dependency on large
distances of the emitter/receiver and LOS propagation.

Consequently, large-scale models seem more appropriate for this analysis. Assuming invariant
power transmission and homogeneity in the operation of receivers, the following relations

are established:
Pr

i PL; Pr 1 .
SNRj= — =—=——i=
‘P, P, P,PL
where Pr is transmission power, Pg, is the received power in each receiver, PL is the path loss, and P,
is the mean noise power, obtained from the Johnson-Nyquist equation:

1,...,N ()

P, = kpToB ®)
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where kg is the Boltzmann's constant, T is the absolute temperature of the receiver input, and B is the
receiver bandwidth.

Large-scale path loss models have been deeply studied in the last decades for modelling mobile
communications. The vast majority of these methods were built under some of these restrictions:
emitter and receiver heights, transmission frequency, and emitter—receiver distance, among others.
Under these limitations, the modelling of asynchronous TDOA architecture is not possible due to the
emitter/receiver’s characteristics in multiple sensor networks.

Based on the preceding assumptions, the path loss propagation model selected for the simulation
is the Log-normal, which eliminates the restrictions on emitter-receiver geometry.

di

n
Log —normal : PL; = PL(dy) (%) )

The noise model final implementation in the CRLB variance definition is presented below:

o= sgpraller +[4]]
i=1,...,. M
ji=1.., M

(10)

where dj is the reference distance to the emitter, the basis from which the Log-normal model hypothesis
is valid, PL(dy) is the path loss for this distance, and 7 is the path loss exponent.

4. CRLB Derivation for A-TDOA and D-TDOA Systems

The prediction of the uncertainty associated with the position calculation process is one of the
most significant accomplishments in the design and development of positioning systems.

From a statistical point of view, CRLB expresses the minimum variance value of any unbiased
estimator of a deterministic parameter. In other words, the CRLB defines the minimum possible
uncertainty associated with an estimation process.

var(é)z L = L (11)
FIM E[[%lnf[x;e]]z]

In this equation, 8 is the unbiased estimator for the parameter of study, FIM is the Fisher Information
Matrix, E the expectation value of the denominator function, X the parameter measurement vector,
0 is the parameter vector to be estimated, and f(X; 0) is the probability density function of X for the
parameter O.

Cramér-Rao Lower Bound has proved to be especially suitable in positioning. This is due to its
definition based on a prior knowledge possibility of maximum reachable exactitude in terms of the
architecture geometry, the environment modelling, and the intrinsic characteristics of measurement
instruments. This maximum value reached by the position estimator would be valid as long as it is
unbiased and efficient.

In this section, the CRLB is adapted to A-TDOA and D-TDOA architectures. Additionally,
the noise variance model introduced in Section 3 is implemented in order to estimate the RMSE in the
TS location estimation.

For a TDOA system, time measurements associated with the receivers are modelled by the
addition of WGN. In a real environment, the variance associated with this phenomenon depends on
the distance between emitter and receiver, inducing heteroscedasticity in data management. In this
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context, Kaune et al. [19] includes a model of the dependent parameter’s variance in the calculation of
the inverse of the Fisher Information Matrix (J).

1 (TSN (I(TS)\ 1 1 (3a(TS)\'(Ia(TS) b
]_GZ(TS)( dTS )( aTS )+§a2(T5)( aTS )( dTS ) (12)
That can be expressed in matrix form as:
T
Joun = (a};(;)) R‘l(TS)(aha(iS) ) + %tr(R‘l(TS)(aI;ECZS))R_l(TS)(aI;(xTHS))) (13)

where sub-indexes m and n refer to the respective row and column of J. The column matrix h(X)
expresses the differences in the Euclidean distances among the TDOA measurements of each pair

of receivers:
ha-tpoai = ITS — WSi|| + ITS = CS|| - [IWS; = CS||

i=1..,N 14)

hp-tpoai = IITS = WSill + IWS; — CS|| - |ITS — CS|

i=1..,N (15)

Finally, R(x) is the covariance matrix of the system, which is characterized by null off-diagonal
elements for both systems, due to the non-correlation among time measurements. The variance
modelling was implemented according to the model explained in Section 3, with the following
definition for the distances between each asynchronous TDOA system.

da-tpoa ; = ITS = WSil| + IITS = CS||
dp-tpoa j; = IIWS; = CS| (16)
i=1,..., N

dp-tpoa ; = ITS — WSil| + 2|[WS; — CS||
dp-tpoa ;-, = ITS-CS|| (17)
i=1,...,N

The uncertainty is evaluated in terms of RMSE, as shown in the following equation
(three-dimensional location), where the sub-indexes refer to the diagonal elements of matrix J:

RMSE = +Ji1+ ]2+ J33 (18)

5. Simulation Results

In this section, asynchronous TDOA systems A-TDOA and D-TDOA are compared for sensor
network positioning. Firstly, a set of global communication parameters are defined in Table 1.

Table 1. Architecture parameters for Cramér-Rao Lower Bound (CRLB) study. Communication links
amongst elements of Asynchronous Time Difference of Arrival (A-TDOA) and Difference-Time
Difference of Arrival (D-TDOA) systems are restricted to these principal parameters. They were selected
due to their utilization in similar tracking applications in the aerospace industry [26,27].

Parameter Magnitude
Frequency of emission 1090 MHz
Bandwidth 100 MHz
Transmission power 400 W

Mean noise power —-94 dBm
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In addition to these parameters, the comparison among architectures was carried out based on
unity gain antennas in all system transceivers and on the assumption of full-duplex communication
capacity among elements. Furthermore, an assumption of the receive-and-retransmit technique in
transceivers operations and a unity frequency-time product in all the architectures’ communications
was considered.

The results were obtained based on simulations carried out on an irregular surface of 1 km?
(1000 x 1000 m) with an elevation modelled by a normal distribution N(15,9) cm. The space analysis
was limited to a height above ground level from 1 to 100 m. Under this assumption, the spatial
discretization was 100 m for surface coordinates (Cartesian x and y) and 10 m for coordinate z.

Additionally, the minimum height of sensor nodes (WS and CS) was restricted to 3 m with the
objective of not inducing effects that were not considered by the Log-normal model (specially ground
reflections and multipath). The maximum height was also limited to 13 m, but this restriction was
related to the size of the supports (less than 10 m).

Lastly, a path loss exponent value of 2.1 was selected as highly recommended in sub-urban
environments with medium frequencies [27]. Due to the theoretical approach of the problem, the Free
Space Propagation Model (FSPM) was used to obtain PL(d).

The comparison among systems (in Table 2) was carried out with five random distributions of
receivers, each one with a number of five sensors. This was the minimum number of nodes for a
unique three-dimensional location in TDOA architectures.

The best distributions for each system are illustrated in the following images, together with the
CRLB evaluation in terms of RMSE at every point of the discretization.

Table 2. Node distributions in meters. Five random node distributions were defined in order to analyze
the accuracy level of A-TDOA and D-TDOA architectures based on their CRLB system definition.
CRLB evaluation does not require a classification of WS and CS nodes.

Distributions x y z
Sensor 1 249 242 3
Sensor 2 254 759 4

D.1  Sensor 3 576 500 3
Sensor 4 811 124 13
Sensor 5 879 819 13
Sensor 1 72 156 3
Sensor 2 141 854 13

D.2  Sensor 3 496 484 3
Sensor 4 810 891 3
Sensor 5 876 133 13
Sensor 1 78 911 13
Sensor 2 244 241 13

D.3  Sensor 3 516 539 3
Sensor 4 624 655 13
Sensor 5 810 891 3
Sensor 1 191 880 10
Sensor 2 435 527 3

D.4  Sensor 3 482 198 9
Sensor 4 758 254 3
Sensor 5 782 788 7
Sensor 1 148 313 3
Sensor 2 469 621 13

D.5 Sensor 3 550 500 3
Sensor 4 750 218 13
Sensor 5 783 944 3
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As it can be seen in Figures 3 and 4, points that are close to the surface or nodes present a higher
RMSE. This phenomenon is due to the relative location between nodes and these discretization points,
that causes an increase of the influence of time measurements uncertainties in total positioning accuracy.
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Figure 3. Best distribution of Worker Sensor (WS) and Coordinator Sensor (CS) nodes for the A-TDOA
system. The base surface is presented as the grey hyperplane located at the bottom of the picture.
The nodes are represented by black spheres with their correspondent holder that links them to the base

surface. The CRLB evaluation of the discretization points is displayed according to the right-hand
side legend.
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Figure 4. Best distribution of Worker Sensor (WS) and Coordinate Sensor (CS) nodes for the D-TDOA
system. The base surface is presented as the grey hyperplane located at the bottom of the picture.
The nodes are represented by black spheres with their correspondent holder that links them to the

base surface. The CRLB evaluation of discretization points is displayed according to the right-hand
side legend.
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The final simulation results are presented in Table 3.

Table 3. RMSE distribution parameters for the five sensor distribution schemes in Table 2 are presented.
These data were obtained based on the spatial discretization technique shown in Figures 3 and 4.

RMSE (dB) A-TDOA D-TDOA
Mean -0.5791 2.1446
D1 Min -9.3067 -8.2291
) Max 21.4022 19.1978
SD 5.5552 4.6881
Mean —0.9528 2.3131
D2 Min -8.6153 —7.4459
’ Max 13.4399 19.3637
SD 4.6718 4.1344
Mean 0.0682 2.2769
D3 Min -8.9972 —8.0968
’ Max 13.2448 11.9421
SD 4.9828 3.6965
Mean 0.2111 2.6452
DA Min -9.1009 —7.4856
: Max 17.3846 18.3655
SD 5.7176 4.5620
Mean 0.2524 2.2070
D5 Min —9.8805 —8.1964
’ Max 13.3707 11.8791
SD 5.0180 3.8402
Mean of Means RMSE —0.2000 2.3174
Mean Standard Deviations RMSE 5.1891 41842

Based on the results of the simulations, it was shown that the A-TDOA system presented a lower
mean RMSE value in every distribution. The minimum RMSE values in each distribution were obtained
by the A-TDOA method. In the case of maximum RMSE values, the tendency was not obvious. Finally,
it can be observed that the standard deviation in every distribution was lower for the D-TDOA system,
which implies a higher stability.

In terms of architecture complexity, A-TDOA systems require an initial step in the emission
of the positioning pulses of the WS nodes in order to simultaneously start the process. In contrast,
in D-TDOA systems, the first communication link exclusively depends on the target node emission.
Energy consumption is another factor to be evaluated. Due to the lower energy requirements for
amplifying the signal power at the retransmission stage in each node, A-TDOA architectures lead to
better results than D-TDOA.

In summary, the A-TDOA system provides a higher accuracy than the D-TDOA method, but the
latter presents a lower level of variation in the evaluation for sensor location. Although, A-TDOA
architectures present more hardware complexity, they sport less energy consumption due to the
reduction of the signal travel. On the basis of the information gathered, it can be concluded that the
best method for multiple sensor locations is the A-TDOA system.

6. Discussion

The new asynchronous TDOA architectures have led to a major improvement as a consequence of
the reduction of the complexity in sensor networks and the increasing accuracy of time measurements
over the last few years. These methodologies have been experiencing a growing importance in LPS
with particular application in robot indoor navigation and unmanned aerial vehicles (UAVs).
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Amongst the asynchronous architectures, A-TDOA and D-TDOA have taken special relevance,
but their novelty assumed that no previous research on the suitability of these systems had been
accomplished before. This means that these architectures have not been studied in an actual common
environment in order to determine a comparison among their system errors that would allow us to
select the best architecture under different conditions. The error bounds must be calculated through the
Cramér-Rao Lower Bound estimator all over the domain. In this context, CRLB allows to determine
the minimum achievable error of a locating system with independence from the positioning algorithm
used. With this parameter, the determination of the best asynchronous architecture could be done in a
particular context. The extension of the usage of the LPS forces the design of an environment where
CRLB must be derived in a 3D context for the first time.

This derivation includes a path-loss model propagation which depends on the distances between
emitter and receiver of the positioning signal. This leads to heteroscedastic noise variances consideration
that particularly fits with LPS.

The goal of this article has allowed for the development of a new methodology in order to select
the best system in different contexts.

7. Conclusions

High accuracy requirements in modern applications lead to positioning systems where noise
uncertainties must be minimized. New asynchronous positioning architectures have supposed a
revolution where positioning errors have been considerably reduced. In this paper, a methodology to
select the suitability of two asynchronous TDOA systems based on a CRLB evaluation under a 3D,
real environment was accomplished for the first time to the best of our knowledge.

This analysis was performed based on a CRLB comparison where the uncertainties of time
measurements originated by noise were distance dependent. This resulted in heteroscedasticity in the
variance associated with sensor range estimation. This real model allowed us to determine the best
TDOA asynchronous architecture with positioning algorithm independence.

The results showed that the A-TDOA system provided generally less uncertainty in the positioning,
regardless of the node distributions. Nevertheless, the D-TDOA system achieved a better level of
homogenization by reducing the RMSE standard deviation in the domain. On the basis of the
information gathered, and taking into account the CRLB, it can be concluded that the best method for
sensor location is the A-TDOA system.

These aspects are being treated in the current investigation, where the node distribution would be
optimized for CRLB via genetic algorithms, attaining a RMSE minimization at all discretization points
in future works.
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