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Abstract. The node location plays a critical role in the LPS performance capa-
bilities. Due to the complexity of this problem, the implementation of heuristic 
methodologies such as genetic algorithms (GA) has been widely proposed in the 
literature. However, the performance of GA is heavily dependent of the con-
sistency of its foundation and its adaptation to the nature of the optimization prob-
lem. In this paper, we analyze and compare a variety of different selection and 
crossover techniques in search for the most suitable configuration for the node 
location problem. Results show that although some combinations achieve ade-
quate results, the concept of a hybrid GA that takes advantage from different 
configurations depending on the problem requirements can surpass any fixed in-
dividual combination. 
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1 Introduction 

Local Positioning Systems (LPS) have supposed an active topic of research over the 
last few years. They rely on the deployment of sensors in a well-defined area in which 
the accuracy demands are higher than the Global Navigation Satellite Systems (GNSS) 
can provide. GNSS devices suffer distortion in the quality of their signals by crossing 
large buildings [1], by facing obstacles in their paths [2], by ionospheric effects [3] or 
by unstable synchronization among the system elements [4]. 
    For these reasons, a new solution to mitigate these adverse effects is required for 
high-demanded applications such as autonomous navigation in indoor and outdoor en-
vironments. LPS have proven to enhance localization accuracy based on the ad-hoc 
deployment of sensors to avoid negative phenomena on signals. This requires an exact 
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knowledge of the environment and a technique to correctly distribute the sensors in 
space. 
    However, the distribution of sensors in space in LPS, known as the node location 
problem, is a complex problem which has been proven to be NP-Hard [5] [6]. There-
fore, heuristic solutions to the node location problem has been widely proposed in the 
literature. Tabu search methodologies [7], the firefly algorithm [8], the dolphin swarm 
algorithm [9], simulated annealing [10] but especially genetic algorithms (GA) [11] 
[12] [13] have been used to solve this problem. 
    Authors have previously addressed this problem by achieving reductions in the signal 
noise [14], algorithm coverage enhancements [15], clock errors [4] or mitigating ad-
verse phenomena such as multipath or sensor failures [16] in Wireless Sensor Net-
works. This requires the computation of a fitness function to measure the beauty of the 
node distributions. Generally, the Cramer Rao Lower Bound (CRLB) estimator has 
been used to provide an evaluation of the quality of a sensor deployment in LPS [14] 
[17] [18] [19] [20]. CRLB is a maximum likelihood estimator which defines the mini-
mum localization error achievable by any positioning algorithm in a target location 
given a defined node distribution in a particular operation environment. In this way, the 
overall reduction of the CRLB in every possible target location, Target Location Envi-
ronment (TLE), produces the better node configuration in the space among the possible 
node distributions considered in the optimization, Node Location Environment (NLE) 
[11]. 
    We showed in [11] that the beauty of the sensor configuration in Line-of-Sight envi-
ronments is a heuristic complex problem in which the configuration of the hyperparam-
eters of the Genetic Algorithm was crucial to achieve actual and valuable solutions. In 
this sense, the purpose of this study was to describe the methodology for constructing 
a valid GA for the node location problem, considering a further discussion to the genetic 
operators (selection, crossover and mutation techniques) in order to achieve better re-
sults. 
    In this paper, we study different configurations for the genetic operators of the node 
location problem in an Asynchronous Time Difference of Arrival (A-TDOA) [21] po-
sitioning architecture in order to improve the quality of the heuristic search of our pre-
vious studies. We also look for providing a common framework for the discussion of 
the genetic operators used in the node location problem as well as the combination of 
these functions in a hybrid GA configuration to enhance the overall performance. 
    The remaining of the paper is organized as follows: the steps of the GA for the node 
location optimization in LPS are introduced in Section 2, the results are presented in 
Section 3 and Section 4 concludes the paper. 
 

2  Genetic Algorithm for the Node Location Problem 

The node location problem is crucial for LPS. The freedom of the designer to locate 
sensors in space allows the reduction of the errors produced by signal noise [18], algo-
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rithm coverage enhancement [15], clock errors [4], multipath effects [13] or sensor fail-
ures [16]. This requires a heuristic approach since the problem has been characterized 
as NP-Hard [5] [6]. 

Among the different metaheuristics, the GA have proven to specially fit the require-
ments of this complex problem. GA were first introduced by Holland [22] and later 
refined by Goldberg [23] built on the theory of evolution. By this postulate, the best 
adapted individuals are the most probable to survive and produce offspring for the next 
generations, where descendant individuals will present better adaptation to the environ-
ment. 

The general steps followed in a GA computation problem are described in Figure 1. 
These steps include the generation of the initial population for which a codification of 
the individuals is required, a fitness function definition for the evaluation of the indi-
viduals, a stop condition that can be based on a pre-defined number of generations or 
the definition of a suitable convergence criteria for the problem; and the genetic opera-
tors (selection, elitism, crossing and mutation) which are deeply discussed in this paper. 

2.1 Codification of individuals 

GA are composed by generations of individuals. Every of these individuals are a pos-
sible solution of the node location problem among all the combinations considered for 
the optimization (NLE). The codification is usually binary since it allows the better 
performance of the genetic operators. Therefore, it requires the escalation of the varia-
bles implied in the definition of the individuals into the binary coding. In this problem, 
these variables are the Cartesian coordinates of each node used in the positioning ar-
chitecture displayed. 

 
 

  
Fig. 1. Genetic Algorithm Codification of Individuals 
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Fig. 2. Flux diagram of the GA. 

    As it is shown in Figure 1, the population consists of a number i of individuals which 
must be defined as one of the hyperparameters of the GA. Each individual carries a 
number j of nodes to locate, consisting every node of the gene sequences used for the 
escalation in binary codification of the position of a node for each defined Cartesian 
coordinate. In this paper, the initial population of the GA is randomly defined for guar-
anteeing the diversity of the initial population. 

2.2 Evaluation of individuals 

The beauty of each individual must be determined through a fitness function in order 
to detect the better adapted individuals of the population which are the best candidate 
solutions for the node location problem. Over the last few years, in the localization 
field, the CRLB parameter has been used as fitness function for the node location prob-
lem  [14] [17] [18] since it allows the introduction of the uncertainties present in the 
communications channel in the covariance matrix of the system. Particularly, Kaune et 
al. [14] proposed a CRLB matrix form in which Huang et al. [17] introduced a hetero-
scedastic noise model consideration which especially fits for LPS applications: 
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(1) 

where FIM is the Fisher Information Matrix (the inverse of the CRLB), h(TS) a vector 
containing the travel of the signal in the positioning architecture at study (in this case 
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the A-TDOA [18] [21]), R(TS) the covariance matrix of the system containing the in-
formation of the signal noise uncertainties as we introduced in [11], TS the target sensor 
position expressed by its Cartesian coordinates through the m and n estimated parame-
ters. 
The Root Mean Square Error (RMSE), which is used as the fitness function of the GA, 
with the minimum achievable error in the TS location, can be directly obtained through 
the trace of the inverse of the FIM (CRLB) as follows: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐹𝐹𝐼𝐼𝑀𝑀−1) 
 

(2) 

2.3 Selection techniques and elitism concept 

Once evaluated, the selection procedure for the population is started. The main goal of 
this step of the GA is to arrange the individuals for the crossover in a way that optimizes 
the final solution, relying on the fitness value as a beauty estimator. 

However, numerous selection methodologies are available, depending on the partic-
ular behavior of the specific characteristics of the problem. Therefore, in search for the 
most suited technique, we will analyze the behavior of tournament selection, with 2 and 
3 individuals, roulette and ranked roulette selection [24]. 

The proportional and ranked roulette methodologies base their selection probability 
on the fitness value obtained by each individual. Although any individual can be se-
lected, it is common for the most adapted individuals to dominate the selection criteria, 
resulting in a loss of diversity and a premature convergence.  

The ranked-roulette pursues to prevent this phenomenon by establishing a selection 
probability based on the rank or position of each individual in the overall population. 
However, this methodology demands additional computation time, as it is required to 
rearrange the individuals multiple times and it is heavily dependent on the rank assign-
ment which hinges on the specific problem characteristics. 

On the other hand, the tournament selection methodologies rely heavily on the fit-
ness values and may present problems of diversity for large number of contestants. 
However, being the selection of the contestants random, techniques such as tournament 
2 or 3 stand out as well rounded and balanced selection methodologies. 
    Furthermore, the use of elitism along the selection criteria has been widely used 
through the GA literature. Although this particular step is optional, its improvement of 
the obtained solution by increasing the selection pressure is quite remarkable.   

In this research we have opted for a persistent elitism where a certain percentage of 
the most adapted individuals are preserved for the next generation. The adequate selec-
tion of this percentage is critical for the GA’s stability. An excessive value of elitism 
will result in a loss of genetic diversity and will incur a worse solution, thus we will 
analyze the appropriate value for each configuration we propose. 
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2.4   Crossover techniques 

The crossover techniques, as well as selection criteria, play a decisive role in the per-
formance of the GA in the exploration and optimization of the solution. The objective 
of this step is to create the next generation of individuals in a way that optimizes the 
algorithm search for the optimal solution. Three different methodologies have been 
studied, the single point crossover, multipoint crossover and the uniform crossover.  
 These three techniques differ from one another in the amount of crossover points of 
the procedure, as shown in Figure 2. By increasing the number of crossover points, up 
to the uniform technique, we enhance the genetic diversity and the probability of a pro-
ductive new individual [25].   
 Nevertheless, a methodology with a lower number of crossover points, such as single 
point crossover, promotes the convergence of the algorithm by preserving most of the 
gene sequence of the most adapted individuals.  
 In search for the best appropriate methodology for the node location problem, we 
will study the single point crossover (SP), the multipoint crossover for 2 (MP2) and 3 
(MP3) points and the uniform crossover. 

2.5 Mutation techniques 

The mutation function in a GA provides an additional source of genetic diversity to the 
configuration, playing a main role in the exploration of the environment in search for 
the optimal solution. 
 In this step of the GA, we artificially create entropy in the optimization of the solu-
tion by randomly modifying the genetic sequences of some individuals. Although it 
may seem futile to sabotage some of the individuals, the addition of the right amount 
of chaos is favorable for the optimization process, especially when close to a local or 
global maximum of the solution.  
 However, it is crucial to select an appropriate value for the mutation parameter, being 
an excessive value adverse for the convergence of the GA. 
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Fig. 3. Crossover methodologies 

 

3 Results 

The simulations were executed in the Python programing language, in an environment 
with the following characteristics.  
 
 

                    
Fig. 4. Environment selected               Table 1. LPS Parameters [4]   

 
In order to obtain the most suited methodology, we have studied a variety of possible 

combinations between the previously explained techniques. All simulations were exe-
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cuted with the same parameters of elitism, mutation and individuals, which were ex-
perimentally obtained based on previous simulations. The results of these different con-
figurations over 10 simulations are listed below. 
 

As shown in Table 2, three methodologies stand out, tournament 3 with 3-point 
crossover and tournament 2 and 3 with single point crossover. Once selected the best 
possible configurations, it is possible to optimize the mutation and elitism parameters 
for each configuration, as shown in Figure 4. 

 

 

Table 2. Comparison of the selection methodologies of tournament 2 (T2) and 3 (T3), roulette 
(R) and ranked roulette (RR) with the corresponding crossover techniques. All simulations were 
run equally with a 15% percentage of mutation and elitism. 

 
 

 
Fig. 5. Comparison between the best combinations of Table 2, in each graph the parameter at 

study is modified, remaining constant the second variable with a fixed value of 15%. 

 
The best values are obtained from the T2/SP (tournament 2 and single point crosso-

ver) combination. 
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Therefore, we consider this value to be the optimal solution as no other combination 
obtains a greater result. However, in the T2/SP configuration, the single point crossover 
is considered to be an elitist technique that provides a quick and strong convergence, 
however the genetic diversity could be compromised. 

On the other hand, in the T3/MP3 (tournament 3 and 3-point crossover) technique 
features a more chaotic approach which is favorable for the exploration of the environ-
ment but can difficult the convergence to the optimal solution. 

Hence, we have assembled a hybrid genetic algorithm that combines these two meth-
odologies in the pursuit of a superior solution. This hybrid algorithm present two dif-
ferent stages: an exploration-heavy phase and a solution intensification phase. The first 
phase relies on the T3/MP3 configuration for searching the optimal solution in the 
whole environment, after a certain number of generations, the algorithm would switch 
to the second stage. This last phase pretends to favor the convergence to the optimal 
solution encountered in the previous phase, through the elitist configuration of T2/SP. 
 In each phase of the program, the parameters of elitism and mutation are adapted to 
the optimal configuration of each technique in charge, obtained from Figure 4. 
 

 

 
Fig. 6 Performance of the hybrid configuration of the GA 

 
As seen in Figure 5 the result obtained is greater than the maximum obtainable for 

each configuration individually. The optimal node distribution obtained for this config-
uration can be obtained from the most adapted individual, displayed in Figure 6. 
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Fig. 7. Sensor positioning obtained from Figure 5 

 

4 Conclusions 

LPS have proven to be a well-suited alternative to GNSS for certain applications, thus 
its renown in the research community. However, LPS have shown to be heavily de-
pendent on the environment characteristics and its particular distribution on it. None-
theless, this problem has been defined as NP-Hard, thus the use of heuristic methodol-
ogy, such as GA, has been widely expanded throughout the literature. 
 In this paper, we have studied and compared the use of different methodologies of 
selection, crossover, mutation and elitism in order to obtain the most suited combina-
tion to find the optimal solution to this particular problem. 
 Results show that a strong elitism favors the convergence to the desired solution. 
Also, the entropy generators in the GA, such as mutation and multiple points crossovers 
play a decisive role to achieve valuable results. The use of these operators is critical in 
order to explore the environment selected in search for the optimal solution. 
 Therefore, the hybrid configuration proposed, which relies on multiple phases in the 
optimization procedure, achieves a greater solution than any possible individual com-
bination of the most expanded genetic operators analyzed, thus fulfilling the main ob-
jective of this paper. 
 The conclusions achieved on this paper present a different perspective in the node 
location problem incorporating hybrid genetic configurations, opening new opportuni-
ties for future investigations. 
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