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ABSTRACT The emergence of autonomous vehicles with high needs for accuracy in location has hardened
the requirements of the positioning systems used for navigation. Local Positioning Systems (LPS) have
shown an excellent adaptation to these conditions, thanks to stability and reduction in the levels of positioning
uncertainty. The accuracy achieved by methodologies based on temporal measurements depends mainly
on the uncertainties in the measurements of these systems. In this aspect, the presence of noise and the
existence of temporary instabilities in measurement clocks, depending on the distribution of sensors in the
environment, acquire great relevance. In this article, we introduce for the first time in the authors’ best
knowledge a Cramér-Rao Lower Bound (CRLB) model for the quantification of the global uncertainty
in positioning systems caused by both noise and temporary instabilities in the measurement devices.
Additionally, this technique is applied to the optimization of sensor distributions for Time of Arrival
(TOA), Time Difference of Arrival (TDOA) and Asynchronous TDOA (A-TDOA) architectures using a
Genetic Algorithm in a non-uniform 3D environment. Results show that A-TDOAmethodology significantly
overcomes synchronous architectures in terms of global accuracy and stability when noise and clock errors
are considered in time measurements of LPS applications.

INDEX TERMS Clock instability, CRLB, genetic algorithm, global accuracy, LPS, noise.

I. INTRODUCTION
The spatial location of objects in real-time has become one of
the main factors of progress in current technological develop-
ment. Its influence in relevant areas of modern society, such
as transport, industry and security, is particularly noteworthy.

Over the last few years, the emergence of autonomous
vehicles has increased the accuracy and availability needs of
the positioning systems as an essential part for the proper
functioning and controlled navigation of these new devices
through wireless communications. This dependence causes a
remarkable hardening in the requirements of the positioning
systems of these modern applications.

Traditionally, two main conceptions in the positioning
systems design have been considered: a global coverage
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of the system through satellites in space trying to offer
the maximum availability, or a local deployment of sensors
looking for a particular adaptation to the characteristics of
the environment and the positioning targets inside a known
area.

Global Navigation Satellite Systems (GNSS) have repre-
sented a great advance in the history of humanity in terms of
navigation. The deployment of constellations of satellites in
space allows the global coverage of their signals extending
even the use of the systems to difficult accessible environ-
ments. However, they present serious drawbacks when it
comes to providing a stable navigation service with high
accuracy services under real operating conditions. The rea-
sons lie in the high probability of appearance of disruptive
phenomena along the positioning signals path, due to the
great distance between the satellites and the objects to be
positioned.
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The problem associated with GNSS is solved through
Local Positioning Systems (LPS). These systems are built
on the conception of an infrastructure of terrestrial sensors
in charge of making the necessary measurements for the
location. This approach entails a notable reduction in terms
of the distance of the path of the positioning signal, favoring
the reduction of harmful phenomena which may affect the
accuracy of system measurements. Additionally, the flexibil-
ity in the location of sensors offers the advantage of adapting
the system to the terrestrial orography taken into account the
operating conditions of the environment, thereby increasing
the position accuracy.

Regardless of the type of wireless system selected,
GNSS or LPS, the location of objects requires the treat-
ment of signals to define the position of any target in space.
The systems act through the processing of signals emitted
by the target, the satellites or nodes [1]. If this signal is
processed inside the target, the systems are classified as
active or direct while if the signal is treated in the posi-
tioning infrastructure the systems are known as passive or
indirect.

These systems depend on the acquisition of somemeasure-
ments of signal and physical properties such as time, angle,
power, frequency or phase to determine the location of the
targets.

Time systems such as the Time of Arrival (TOA) [2] and
Time Difference of Arrival (TDOA) [3] relies on the time-of-
flight of the signal between an emitter and a receiver. Angle
of Arrival (AOA) [4] measures the angle of an emission
with respect to known position references. Received Signal
Strength Indication (RSSI) [5] relies on the deterioration of
the signal power in its propagation while acoustic Doppler-
based systems [6] measure the differences in frequency of
the signal among a set of receivers. Recent studies are also
starting to combine these methods with sensor fusion [7] and
including the use of multiple phase delays among the signals
in Phase Difference of Arrival (PDOA) methods [8], [9].

Among all of these wireless methods, those based on tem-
porarymeasurements -TOA and TDOA- stand out mainly due
to their high ratio between accuracy, provided by the method-
ology, and the complexity associated with architecture.

The main source of error comes from the necessary tempo-
ral synchronization between sensors in the TOA and TDOA
architectures which acquires special relevance in LPS due
to the higher sensitivity needs in the measurements and the
increased accuracy requirements.

However, there is a difference between TOA and TDOA
systems. While TOA systems require the synchronism of the
clocks of every sensor involved in the localization process,
TDOA systems do not require this synchronism as they mea-
sure relative times of flight.

Nevertheless, the errors associated with the synchroniza-
tion process in both systems are no longer negligible due to
the reduction in the magnitude of the temporary measure-
ment, making it difficult to implement these methodologies
in applications with high location accuracy [10], [11].

The solution goes through the introduction of TDOA archi-
tectures of asynchronous typology, built on the basis of reduc-
tion or elimination of synchronization between the sensors of
the system by centralizing all the system measurements in a
single clock of a coordinator sensor. Within these systems,
the Asynchronous TDOA (A-TDOA) [12] and Difference-
time TDOA (D-TDOA) [13] architectures stand out. In one
of our previous works [14] we perform a comparison in terms
of accuracy for these methodologies in 3D environments,
obtaining the best overall results for the A-TDOA architec-
ture. For this reason, in this article a comparison between
synchronous (TOA and TDOA) and asynchronous temporal
methods (A-TDOA) will be addressed. This will allow us to
determine the influence of the synchronization process on the
global positioning error of the systems.

However, in order to achieve valuable results, the syn-
chronization error cannot be addressed separately from other
error sources in a direct approach. Although the uncertainties
linked to the temporal measurements are the main source of
error in time positioning systems, this only happens when
other factors are optimized. For instance, in the positioning
design, the selection of the architecture and algorithms for
the location determination lay down the first thresholds of
uncertainty in the calculation of the position [15].

After this consideration, the attenuation of the signal power
during its travel from the transmitter to the receiver due to the
environment -noise errors-, the uncertainties caused by the
instabilities of the measurement clocks and the occurrence of
multipath must then be considered [16].

These errors are closely related to the spatial distribution
of the system sensors, increasing the importance of this link
in LPS. The minimization of these errors is a requirement
in this article that allows the valuable comparison between
synchronous and asynchronous positioning systems. Once its
effects are minimized, the temporary measurements assume
the greatest weight of the system error.

In this sense, the study of the optimized location of the sen-
sors with the objective of minimizing these uncertainties in
the calculation of the position has been fully studied recently.

Tekdas and Isler [17] and subsequently Yoon and Kim [18]
classified the problem of optimizing the distribution of sen-
sors for positioning within the NP-hard category, which
constitutes the absence of exact algorithms that resonate in
polynomial time. This circumstance has directed research
in this field towards the use of metaheuristic techniques,
especially Genetic Algorithms (GA) [19]–[21].

The characteristics of robustness, flexibility, optimiza-
tion of non-derivable and non-linear functions and space
exploration of solutions have boosted the GA as the main
methodology for optimizing the distribution of sensors in
LPS. Historically, the minimization of the uncertainty of the
positioningwas carried out based on the parameter Geometric
Dilution of Position (GDOP) [22], governed by the adoption
of homoscedastic noise models, where the variances have
become invariants [23]. This hypothesis can be applicable in
GNSS, where the distances between satellites and targets are

VOLUME 8, 2020 31911



R. Álvarez et al.: Combined Noise and Clock CRLB Error Model

similar. However, this does not occur in LPS where the dis-
tances traveled by the positioning signalsmay vary depending
on the sensor receiver.

In this regard, the Cramér-Rao Lower Bound (CRLB)
allows us to know the uncertainty of the positioning based
on the heteroscedastic modeling of variances in temporal
measurements [24]. This characterization of the error with
noise consideration is made based on the models of signal
propagation losses [25] and the positioning architecture in
question which supposes a key fact due to the different paths
of the signals in each system.

For this purpose, in one of our previous works, we have
proposed the optimization of the sensor location of LPS
systems in search of the minimization of the CRLB [26].
This methodology uses a GA to locate the components of the
positioning system in any type of environment, regardless of
its geometric characteristics and the predefined restrictions
on the location of sensors.

This previous methodology contemplates one of the main
causes of uncertainty in the calculation of the position as a
result of the path traveled by the signals through the different
locations of the system sensors. In this article, we will com-
plete this error model with the contribution of errors caused
by the temporary instabilities of the measurement clocks in
the CRLB model.

This error characterization is mixing the uncertainties from
the signal propagation, which are greater in A-TDOA rather
than in TDOA and TOA systems as a consequence of the
architecture design -the signal paths are greater-, and the
clock errors which are reduced in A-TDOA systems rather
than in TDOA and TOA as a consequence of the elimination
of the synchronism. This fact promotes that only in scenar-
ios where optimization has been performed, the time-based
positioning systems accuracy achievable is comparable.

With this consideration, we apply for the first time in the
authors’ best knowledge a 3D optimization of the sensor
location in any application environment for TOA, TDOA and
A-TDOA architectures with the minimization of the position-
ing uncertainty induced by the combined effect of noise and
system measurement clocks. We develop this methodology
and this error modeling in order to be able to perform an
a priori comparison of the suitability of each architecture in
a 3D complex environment and in order to show the effects
of the synchronization process in the combined errors of each
system.

The remainder of the article is organized as follows: in
Section 2 the notation is introduced and the mathematical
models of temporal instabilities of the measurement clocks
for the TOA, TDOA and A-TDOA architectures are pre-
sented. Section 3 shows the construction of the CRLB to
model the effects of noise and clock errors. Section 4 develops
aspects related to the generation of the fitness function of
the GA optimization required for the valuable comparison
between architectures. Section 5 shows the results of the pro-
posed methodology. Finally, sections 6 present the advances
in innovation and the research conclusions.

FIGURE 1. Sensor notation for TOA, TDOA and A-TDOA architectures.

II. INFLUENCE OF CLOCK ERRORS IN LPS
In this section, a characterization of time measurement errors
induced by clocks in terms of positioning architectures is pre-
sented. The notation used throughout the study is described
hereafter. Target Sensor (TS) indicates the target location.
Coordinate Sensor (CS) represents every sensor of TOA,
TDOA or A-TDOA methodologies that are capable of per-
forming time measurements. In the case of TOA and TDOA
architectures, all sensors will be CS, whereas in the A-TDOA
technique [14] only one of them will possess the time mea-
surement device. The term Worker Sensors (WS) refers to
all architecture sensors without the capability of measure,
acting as transponders. Lastly, NCS is the number of CS and
NWS the number of WS. The described notation is presented
in Figure 1 for TOA, TDOA and A-TDOA architetures.

Temporal instabilities in clocks originate from the appear-
ance of additional uncertainties in time measurements dur-
ing the location process. Zhou et al. [13] model clock
errors according to two parameters: initial-time offset and
clock drift. The initial-time offset points out the tempo-
ral delay between the reference clock used for synchro-
nization and the clock located in every CS of positioning
architectures. Thus, this error only appears when a synchro-
nization process is needed. The clock drift indicates the
frequency deviation of the clocks, which introduces a cumu-
lative error during time measurements. Conventionally, this
clock instability is expressed in parts-per-million (ppm) or
parts-per-billion (ppb).

The presence of initial-time offsets and/or clock drifts
disturb time measurements in every time-based position-
ing methodology. However, their influence on final location
accuracy depends on architecture characteristics, meaning
that certain techniques are more vulnerable to these errors.

In the next paragraphs, an analysis of clock errors in
time measurements of TOA (TTOA), TDOA (TTDOA) and
A-TDOA (TA−TDOA) architectures is presented. This enables
the modeling of these uncertainties and the collection of
relationships between clock errors and the location of sensors
in every architecture.

Zhou et al. [13] characterize the time measurement per-
turbed by clock instabilities as:

t = t
′

+ U + η(t
′

−M ) (1)

where t indicates the clock measurement, t ′ indicates the
ideal time measurement, U is the initial-time offset, η is the
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clock drift and M specifies the instant of the last process of
synchronization.

Based on this error description, uncertainties in time
measurements are obtained for each architecture on analy-
sis. Firstly, relations that governed TOA methodology are
presented:

TTOAi = ti − t0

TTOAi =
[
t
′

i + Ui + ηi
(
t
′

i −M
)]

−

[
t
′

0 + U0 + η0

(
t
′

0 −M
)]

i = 1, . . . ,NCS (2)

where the i sub-index refers to time measurements of each
TOA sensor and the 0 sub-index indicates those measures car-
ried out by the TS. Ideal time measurements are defined – t ′i
and t ′0– in the following equations:

t
′

i = t
′

0 +
‖TS − CS i‖

/
c = M + T0 + Ti t

′

0 = M + T0 (3)

where T0 is the interval between the end of the synchroniza-
tion process and the instant of the positioning pulse emission,
and Ti is the amount of time required by the positioning
signals to flight from the target to each CS of TOA archi-
tectures. In addition to the characterization of clocks insta-
bilities, the temporal resolution of the implemented clocks
must be considered. For this purpose, each TOA time mea-
surement is truncated (floorTR) based on the clock parameters
of resolution.

TTOAi = Ti + Ui − U0 + T0 (ηi − η0)+ Tiηi
CETOAi =

∣∣Ti − floorTR (TTOAi)∣∣ (4)

where TTOA and CETOA are respectively the actual time
measurement and the clock error in each TOA sensor. In the
case of a TDOA architecture, time measurements with the
effect of clock errors are characterized in terms of the next
relations:

TTDOAij = (ti − t0)−
(
tj − t0

)
= ti − tj

TTDOAij =
[
t
′

i + Ui + ηi
(
t
′

i −M
)]

−

[
t
′

j + Uj + ηj
(
t
′

j −M
)]

i = 1, . . . ,NCS
j = 1, . . . ,NCS
where i 6= j (5)

where ideal time measurements in each sensor– t ′i and t
′
j– are

derived from the architecture characteristics:

t
′

i = t
′

0 +
‖TS − CS i‖

/
c = M + T 0 + Ti

t
′

j = t
′

0 +

∥∥TS − CS j∥∥/c = M + T 0 + Tj (6)

where Ti and Tj represent the time interval associated with the
travel of the positioning signal from the target to each CS of
TDOA architectures. Inserting ‘‘(6)’’ in ‘‘(5)’’ and adding the
truncating effect derived from the deployment of clocks with
finite time resolution:

TTDOAij = [Ti + Ui − U0 + T0 (ηi − η0)+ Tiηi]

−
[
Tj + Uj − U0 + T0

(
ηj − η0

)
+ Tjηj

]

TTDOAi = [Ti + Ui − U0 + T0 (ηi − η0)+ Tiηi]

TTDOAj =
[
Tj + Uj − U0 + T0

(
ηj − η0

)
+ Tjηj

]
CETDOAij =

∣∣Ti − floorTR (TTDOAi)∣∣
+
∣∣Tj − floorTR (TTDOAj)∣∣ (7)

where TTDOA and CETDOA represent the TDOA time mea-
surement and the concerning error in each TDOA measure.
Time measurements uncertainties originated by clock errors
in A-TDOA architecture [12], [14] are modeled by the fol-
lowing equations:

TA−TDOAi = (ti − t0)− (tCS − t0) = ti − tCS
TA−TDOAi =

[
t ′i + UCS + ηCS

(
t ′i −M

)]
−
[
t ′CS + UCS + ηCS

(
t ′CS −M

)]
i = 1, . . . ,NWS (8)

where time measurements based on ideal conditions and in
the absence of error – t ′i and t

′
CS– are modeled through the

following relations:

t ′i = t
′

0 +
‖TS −WS i‖

/
c+
‖TS − CS‖/

c
= M + T0 + Ti + TTS

t ′CS = t
′

0 +
||WS i − CS||

/
c = M + T0 + TCS i (9)

where Ti is the time of flight from the target to each WS of
A-TDOA architectures, TTS is the duration that the position-
ing signal needs to complete the distance between the target
and the CS, and TCS i is referred to the period of time from the
emission of the positioning signal in each WS to its reception
in the CS. Combining ‘‘(8)’’ and ‘‘(9)’’ and including the time
resolution effect on the measurements:

TA−TDOAi =
(
Ti + TTS − TCS i

)
(1+ ηCS)

CEA−TDOAi =
∣∣(Ti+TTS−TCS i)−floorTR(TA−TDOAi)∣∣ (10)

where TA−TDOA and CEA−TDOA refer to the time measure-
ment of each A-TDOA pair of sensors and the error intro-
duced due to the clock instabilities.

Previous expressions reveal the key importance of the
travel carried out by the positioning signal in the magni-
tude of the absolute error of time measurement uncertain-
ties due to clock errors. However, their relativity on the
final measure varies in function of the positioning architec-
ture. This phenomenon is modeled by the Clock Relative
Error (CRE), which is the ratio of absolute time error to
ideal time measurement ignoring the time resolution. This
is due to the independency of this factor with location
methodologies:

CRETOAi =
|Ui − U0 + T0 (ηi − η0)+ Tiηi|

Ti
(11)

CRETDOAij =
|Ui − U0 + T0 (ηi − η0)+ Tiηi|

Ti

+

∣∣Uj − U0 + T0
(
ηj − η0

)
+ Tjηj

∣∣
Tj

(12)
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CREA−TDOAi =
|ηCS | |Ti + TTS − TCS |
|Ti + TTS − TCS |

= |ηCS | (13)

These equations expose an important conclusion. CRE in
A-TDOA architectures is constant and it only depends on CS
clock frequency drift. In other words, the relativity of the
clock errors in the final time measurement does not depend
on sensors or target location. In contrast, in TOA and TDOA
methodologies the impact of clock uncertainties is dependent
on the signal travel and all clock instabilities.

Based on this analysis, the minimization of absolute tem-
poral uncertainties and their influence on final measures is
possible through an optimization of the distribution of the
sensors of time-based positioning architectures. It is interest-
ing to highlight that this effect is accomplished by the direct
minimization of the time measurements performed by the CS
clock in A-TDOA methodologies.

III. CRLB DERIVATION WITH CLOCK
ERRORS IMPLEMENTATION
CRLB implementation in positioning enables the determi-
nation of the maximum accuracy of location when tempo-
ral measurements are perturbed. This tool has been widely
adopted for LOS and NLOS conditions, as shown in [27].
The suitability of the CRLB, especially for LPS relies on the
heteroscedasticity of variance models, heterogeneity in the
sensor placement circumstances, and flexibility in the char-
acterization of several operating conditions.

Conventionally, this technique has been used to character-
ize the reduction of accuracy in location due to time mea-
surement errors induced by noise. The presence of noise in
the communication channel has been traditionally modeled
by a White Gaussian Noise (WGN) distribution [28]. Based
on this assumption, Kaune et al. [29] develop a generic matrix
form of CRLB where time measurement uncertainties are
dependent on target-sensor distance [14], [26].

Jmn =
(
∂h (TS)
∂xm

)T
R−1 (TS)

(
∂h (TS)
∂xn

)
+
1
2
tr
(
R−1(TS)

(
∂R (TS)
∂xm

)
R−1 (TS)

(
∂R (TS)
∂xn

))
(14)

In this relation, J is the Fisher Information matrix where
m and n sub-indexes represent the parameters to estimate –
TS Cartesian coordinates-. h(TS) vector indicates distance
relationships between sensors and targets according to the
positioning signal travel in every architecture.

hTOAi = ‖TS − CS i‖ i = 1, . . . ,NCS (15)

hTDOAi = ‖TS − CS i‖ −
∥∥TS − CS j∥∥

i = 1, . . . ,NCS j = 1, . . . ,NCS (16)

hA−TDOAi = ||TS −WS i|| + ||TS − CS|| − ||WS i − CS||

i = 1, . . . ,NWS (17)

The quantification of uncertainties in each time measure-
ment is performed through the covariance matrix R (TS).

In this paper, a combined model of noise effects and clock
errors is presented based on the assumption of independence
between these two factors. Reasons for this hypothesis rest in
the absence of relation between the physical source of these
disruptions.

The construction of the R (TS) matrix is subjected to
significant differences according to positioning architectures.
In the case of TOA and A-TDOA time measurements are
independent of each other. In contrast, Z. Sahinoglu et al.
proved in [30] that TDOA time differences measurements
are correlated, which causes the presence of non-zero off-
diagonal terms in the covariance matrix.

Noise components of variances in the R (TS) matrix is
built based on a heteroscedastic model that is governed by
a Log-normal path-loss propagation model. This characteri-
zation has been made under the assumption of uncorrelated
measurement noise at different sensors [29]:

Clock error terms in R (TS) matrix has been defined
based on Monte-Carlo simulation of l iterations in order to
correctly estimate each temporal variance associated with
every positioning architecture. In addition, the time res-
olution is introduced in order to maximize clock uncer-
tainty representation. The combined expressions of variances
for noise and clock errors are presented in the following
equations:

σ 2
TOAi =

c2

B2
(
PT
/
Pn

)PL (d0) [( did0
)n]

+
1
l

l∑
k=1

{
CETOAic

}2
di = ‖TS − CS i‖ i = 1, . . . ,NCS (18)

σ 2
TDOAij =

c2

B2
(
PT
/
Pn

)PL (d0) [( did0
)n
+

(
dj
d0

)n]

+
1
l

l∑
k=1

{
CETDOAijc

2
}

di = ‖TS − CS i‖

dj =
∥∥TS − CS j∥∥ i = 1, . . . ,NCS j = 1, . . . ,NCS
where i 6= j (19)

σ 2
A−TDOAi =

c2

B2
(
PT
/
Pn

)PL (d0)
×

[(
di
d0

)n
+

(
dTS
d0

)n
+

(
dCS
d0

)n]
+
1
l

l∑
k=1

{
CEA−TDOAic

}2
di = ‖TS −WS i‖

dTS = ||TS − CS||

dCS i = ||WS i − CS|| i = 1, . . . ,NWS (20)

where c is the signal propagation speed in m/s, B is the
signal bandwidth is Hz, PT is the transmission power
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in W, Pn is the mean noise level in W which is cal-
culated based on Johnson-Nyquist relation, n is the path
loss exponent, d0 is the reference distance for the Log-
normal model, PL(d0) is the path-loss related to reference
distance.

Lastly, global accuracy in positioning is evaluated by
means of the Mean Squared Error (MSE) of diagonal ele-
ments of matrix J−1. This enables an incremental penaliza-
tion when the accuracy reduces its magnitude, which helps in
the optimization process.

IV. FITNESS FUNCTION MODELING
In the previous sections, a combined clock and noise error
model has been introduced in order to consider the uncer-
tainties of the measurement devices and the signal deteri-
oration in positioning systems. This model can be applied
to achieve an optimized node distribution in TOA, TDOA
and A-TDOA systems through the minimization of these
uncertainties in each architecture. This is the main goal of
this article and must guarantee the reduction of global posi-
tioning errors in any navigation environment for any type of
vehicle.

The achievement of these objectives has led to the
application of the positioning sensor layout proposed by
J. Díez-González et al. [26]. This procedure is based on a
Genetic Algorithm (GA) that allows the optimization of sen-
sor placement in 3D irregular environments with free defini-
tions of the reference surface and the region of optimization.
For this purpose, the GA employs a methodology that allows
the transformation of the cartesian coordinates of each indi-
vidual in the population from binary to real digits –and vice
versa– according to the local characteristics of the optimiza-
tion environments. Additionally, this GA provides freedom
in the choice of: the selection technique –Tournament 2,
Tournament 3, Roulette and Ranking–, the percentage of
elitism and mutation, and the convergence criteria. Finally,
a partial process of resolution allows the progressive reduc-
tion of the space of solution, stimulating the intensification in
the search of the final solution.

Once the algorithm has been defined, the fitness function
selection is the key factor to perform the optimization process.
In this case, the fitness function must allow the combined
reduction of the uncertainties introduced by noise and clock
errors, with the aim of reaching the highest levels of accuracy
for each positioning architecture. The equations defined in
the Sections 2 and 3, show that a minimization of the signal
travel, and the reduction of the time measurements in each
clock -without null measurements- in order to minimize the
influence of the clocks in the global error, allows the opti-
mization of the global process with a concrete number of
sensors.

This optimization methodology has led to the maximiza-
tion of the inverse of the mean values of the Mean Squared
Error (MSE)measured in each possible vehicle location in the
optimization environment as follows. In addition, the fitness
function penalizes forbidden sensor locations pre-determined

based on environment characterization.

ff =
1

mean (MSENT )
− CP

∑N
i=1 Ri
N

(21)

where NT indicates the total number of evaluation points of
the CRLB, N is the total number of architecture sensors, Ri
represents the existence or not −1, 0 respectively- of sensors
located in a banned area, and CP is the weight associated to
the penalization factor.

V. RESULTS
In this section, the accuracy results after the optimization
of sensors located in a 3D irregular environment for TOA,
TDOA and A-TDOA architectures are presented.

Firstly, a 3D irregular scenario has been designed for the
simulations. Area designations have followed the considera-
tions of [26]. This simulation environment has been selected
in order to exemplify a possible situation of optimization
in real conditions. In this way, NLE is the Node Location
Environment which indicates the extension free movement
of the sensors during optimization, and TLE is the Target
Location Environment which represents all possible locations
of the positioning targets.

As can be observed in Figure 1, the NLE region spreads
throughout the base surface with the exception of the
zone corresponding to the TLE projection over the surface.
In terms of elevation, the NLEminimum height is 1 meter - to
prevent non-modeling events like multipath - and the maxi-
mum elevation is pre-set to 15 meters to restrict sensor envi-
ronment disruption. The NLE region resolution is contained
in the interval [0.5,1] meters due to the adaptability of the
length of the GA chromosomes based on the environment
extension.

In the case of the TLE zone, limiting levels are 1 meter
as the minimum and 120 meters as maximum. They have
been selected to represent a joint aerial-ground accuracymax-
imization with maximum representativeness of the reality-
based on pre-establish assumptions. The spatial discretization
of the TLE region is 30 meters on x and y Cartesian coordi-
nates, and 5 meters on z coordinate. This provides sufficient
spatial resolution for the optimization, without reducing sig-
nificantly the number of studied points.

Once the optimization scenario is selected, the next step
is the determination of global configuration parameters
that allow the comparison among time-based positioning
architectures.

Lastly, the GA configuration parameters selected are Tour-
nament 3 as selection procedure, 7 % of elitism, single-point
crossover and mutation probability of 3 %. This election
provides the best relation between fitness function maximiza-
tion and convergence speed. It must be stressed that TDOA
and A-TDOA optimization have been carried out with five
sensors in order to deploy the minimum number of them to
accomplish and univocal 3D positioning. In the case of TOA
architecture, the optimization process has been performed
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TABLE 1. TOA, TDOA and A-TDOA architectures parameters for
optimization. Variables selection for noise modeling has been
accomplished based on [31], whereas clock errors characterization is in
reliance with [13].

FIGURE 2. The scenario of the simulations. 3D irregular environment
characterization for node optimization distribution of sensors in TOA,
TDOA and A-TDOA architectures.

with four and five sensors to facilitate the comparison and
the acquisition of conclusions.

The importance of the sensor placement for any position-
ing architecture is proved in Figure 2, where the CRLB is
obtained for a random distribution of 5 sensors for TOA
architecture.

As shown, a non-optimized location of sensors is the major
contribution to the increase in the uncertainty of positioning.
The accuracy evaluation after the optimization of sensor loca-
tion for TOA, TDOA and A-TDOA architectures with noise
and clock error uncertainties, is presented hereafter. Results
are shown together with the localization of the optimized
sensor placement in the environment.

A comparative in terms of accuracy is displayed
in Tables 2 and 3 for all positioning methodologies on analy-
sis. These values have been obtained based on five different
optimizations for each architecture with the objective of

TABLE 2. Accuracy analysis for TOA, TDOA and A-TDOA architectures after
sensor location optimization when noise uncertainties are present.
Values in parentheses indicate the number of sensors in the distribution.

TABLE 3. Accuracy analysis for TOA, TDOA and A-TDOA methodologies
after sensor location optimization when noise and clock error
uncertainties are considered. Values in parentheses indicate the number
of sensors in the distribution.

FIGURE 3. RMSE analysis in terms of noise and clock errors for TOA
architecture with 5 sensors. The distribution of sensors is not optimized
via GA. The reference surface is presented in grey tones. Black spheres
symbolize the localization of each sensor.

avoiding peak results due to the random initialization of the
GA. Firstly, results are shown when only noise effects affect
the time measurements.

Secondly, accuracy estimation with noise and clock error
uncertainties is evaluated for positioning architectures.

Tables 2 and 3 reveal important information about the
performance of the architectures in the analysis for an
LPS application. Synchronous methodologies –TOA and
TDOA- provide better accuracy than asynchronous
(A-TDOA) if only noise disturbance is modeled. This aspect
is directly related to the reduction of the travel distance
of positioning signal which is typical of TOA and TDOA
methods.
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FIGURE 4. RMSE analysis in terms of noise and clock errors for TOA
architecture with an optimized node distribution of 5 sensors.

FIGURE 5. RMSE analysis in terms of noise and clock errors for TDOA
architecture with an optimized node distribution of 5 sensors.

FIGURE 6. RMSE analysis in terms of noise and clock errors for A-TDOA
architecture with an optimized node distribution of 5 sensors.

However, when clock instabilities are added to noise as
uncertainty factors in time measurements, the performance
of A-TDOA architecture is far significantly higher than syn-
chronous methodologies. This is mainly induced by the elim-
ination of initial time-offset and cumulative errors that are
introduced in the time measurements as a consequence of
the time-lapse from the last synchronization. In addition,
A-TDOA architectures could reduce, through the sensor dis-
tribution, the amount of the time measurements thanks to the
TDOA methodology employing one common sensor (CS)
for all measures. Clock error models have shown that this
aspect directly reduces the uncertainties induced in the final

FIGURE 7. Parametric analysis of the time from synchronization in TOA,
TDOA and A-TDOA architectures with an optimized distribution of 5
sensors. Variables for the analysis are derived from Table 1.

FIGURE 8. Parametric analysis of initial time offset for TOA, TDOA and
A-TDOA architectures with an optimized distribution of 5 sensors.
Variables for the analysis are derived from Table 1.

measurement, and the errors in the final positioning. The rela-
tion of these magnitudes with the global accuracy for TOA,
TDOA and A-TDOA architectures are presented hereafter:

Figure 6 and 7 reveals that TOA and TDOA architectures
would provide the same accuracy level if their sensors initial-
time offset were null and the time from synchronization was
less than 1µs, which is nearly impracticable with actual tech-
nology. Based on these results, the better candidate in terms
of accuracy and performance stability for LPS applications
are the asynchronous time-based architectures.

VI. CONCLUSION
The LPS have emerged as the most adequate systems for
high-performance applications in terms of accuracy and sta-
bility in the target localization. This has been achieved
through the reduction of the uncertainties related to the mea-
surements in these architectures and the flexibility to locate
the sensor distribution in the space.

In this paper, we have developed for the first time in the
authors’ best knowledge a model to consider the uncertain-
ties introduced by the navigation environment and the clock
instabilities in the time measurements of the CRLB matrix.
This methodology has been derived for the TOA, TDOA
and A-TDOA architectures, with the aim of evaluating their
performance based on a set of global communication parame-
ters under a 3D-real environment. This error characterization
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shows the necessary process to minimize these measurement
instabilities and jointly reduce the influence of the signal
travel.

It must be highlighted that it has been shown that the
Clock Relative Error (CRE) in A-TDOA architectures has a
constant factor that is independent of the signal positioning
travel and it only depends on the clock drift of its coordi-
nate sensor which produces great stability in the accuracy
results of this methodology. This fact has special relevance in
LPS where distances between target and sensors are highly
heterogeneous.

The minimization of the error uncertainties requires an
optimized sensor distribution for each architecture in order
to make the results comparable and to achieve practical
results. This is a consequence of the influence of the sensor
deployment in the signal paths of each architecture as well
as time lapses to be measured. In optimized sensor distribu-
tions signal paths are reduced in TOA systems from TDOA
systems which in turn are smaller than A-TDOA as a result
of the architecture design. But, in these systems, the path
degradation of the signals can be offset by less affected clock
errors. For this reason, this article studies the combined effect
of these error sources under optimized node deployments for
each time-based positioning architecture.

We apply a heuristic optimization for each system with the
minimum number of sensors to achieve an unequivocal target
location. This optimization has been achieved by means of
a genetic algorithm with total independence from the space
surface to locate sensors, the target possible localizations and
the adoption of crossing, selection and mutation techniques.

Results show that A-TDOA provides significantly better
performance in terms of accuracy and stability than TOA and
TDOA architectures. The influence of the time since the last
synchronization and initial time offset on clock errors have
been demonstrated through a parametric analysis. A-TDOA
architectures accuracy is more stable due to the elimination
of uncertainties related to the synchronism process and the
combined minimization of positioning signal path and time
measures made by sensor clocks.
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