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Abstract: Positioning asynchronous architectures based on time measurements are reaching growing
importance in Local Positioning Systems (LPS). These architectures have special relevance in precision
applications and indoor/outdoor navigation of automatic vehicles such as Automatic Ground Vehicles
(AGVs) and Unmanned Aerial Vehicles (UAVs). The positioning error of these systems is conditioned
by the algorithms used in the position calculation, the quality of the time measurements, and the sensor
deployment of the signal receivers. Once the algorithms have been defined and the method to compute
the time measurements has been selected, the only design criteria of the LPS is the distribution of
the sensors in the three-dimensional space. This problem has proved to be NP-hard, and therefore
a heuristic solution to the problem is recommended. In this paper, a genetic algorithm with the
flexibility to be adapted to different scenarios and ground modelings is proposed. This algorithm is
used to determine the best node localization in order to reduce the Cramér-Rao Lower Bound (CRLB)
with a heteroscedastic noise consideration in each sensor of an Asynchronous Time Difference of
Arrival (A-TDOA) architecture. The methodology proposed allows for the optimization of the 3D
sensor deployment of a passive A-TDOA architecture, including ground modeling flexibility and
heteroscedastic noise consideration with sequential iterations, and reducing the spatial discretization
to achieve better results. Results show that optimization with 15% of elitism and a Tournament 3
selection strategy offers the best maximization for the algorithm.

Keywords:  genetic algorithm; LPS; Asynchronous; TDOA; CRLB; sensor networks;
passive localization

1. Introduction

Global Positioning Systems (GNSS) have been traditionally used to guide vehicle navigation in
outdoor environments. However, the accuracy achieved by these systems has been insufficient for
some tasks such as the navigation of AGVs, UAVs, precision agriculture, surveillance and espionage
work, or indoor location of vehicles. For this reason, over the last few years, local positioning systems
(LPS) have been developed where the proximity between their sensors and the positioning targets
allows for the significant reduction of errors in positioning.

Both the GNSS and the LPS make measurements of certain parameters of the signals such as
time [1], frequency [2], or power [3] in order to determine the location of the vehicles. From these
models, the most popular are those based on temporary measurements because of their simplicity,
robustness, accuracy, and ease of implementation. Among these temporary systems, it is possible to
find the Time of Arrival (TOA) [4] and Time Difference of Arrival (TDOA) systems [5].
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The TOA systems are based on the measurement of the absolute times of travel of the signal
between the transmitter and the receiver. This requires synchronization between all the sensors
involved in the calculation of the position, including the target. On the other hand, the TDOA systems
are based on the measurement of the relative flight times of the signal reaching two different receivers.

In this case, the synchronization of the sensors is optional since the computation of the time
differences can be computed in a single clock in a coordinating sensor [6], as in the architecture
A-TDOA [7]. The elimination of the synchronism in A-TDOA produces a global reduction of the
positioning error and an increase in the stability of the position calculation over the time due to the
elimination of the initial time offset and the drift [8], as these factors introduce errors in this methodology.
Even though both TOA and TDOA systems can achieve better peaks of accuracy, the overall accuracy of
these systems is reduced since the last synchronization of their clocks, showing the A-TDOA architecture
better results and stability over the time. As a consequence, these asynchronous architectures are
taking on a special relevance at present in applications that require high accuracy in positioning.

There is also a distinction in the systems according to the function of the target in the processing
of the positioning signal. The systems in which the position is calculated in a receptor of the vehicle,
with the system nodes acting as emitters, are considered as direct or centralized methods, while the
systems where the vehicle only sends the signal to the receiver nodes are considered as passive or
decentralized methods. In this paper, the passive A-TDOA architecture has been selected according to
its accuracy in highly demanded applications.

However, once the positioning architecture has been selected, along with the algorithms that
allow for the calculation of the position [9-11], the only factor that allows the reduction of the global
positioning error of the vehicles is the spatial distribution occupied by the sensors or satellites in space
with respect to positioning targets. This spatial distribution strongly affects the system accuracy by
increasing the positioning errors due to the changes in the geometric properties of the intersection of
the surfaces containing the possible locations of the targets in the space [11] -spheres in TOA systems
and hyperboloids in TDOA systems. An inappropriate sensor deployment can also produce an increase
in the quantity of the noise received in the nodes and an increase of the multipath generated during
the transmission. All these factors can be controlled through an optimized node localization.

This problem has been widely studied in recent years, although it differs significantly depending
on the location of satellites in Global Navigation Satellite Systems (GNSS) such as GPS, GLONASS,
or Galileo and local positioning networks.

GNSS positioning systems seek global coverage as the main design requirement. This has led
to the location of constellations of satellites that are at the same height above the earth’s surface.
As a consequence, the signals emitted by the satellites travel practically the same distance until they
reach the positioning targets and their signals suffer distortions that could be considered homogeneous.
In addition, the high cost of its satellites has promoted the search for the minimization of the deployment
of satellites in space to reduce the overall costs of these systems. The satellites are all dependent on each
other since the requirements of achieving a global synchronism of the positioning system significantly
reduce the flexibility of the design.

On the other hand, LPS seek to maximize the accuracy in determining the position and thus they
use an adequate number of sensors to reduce the errors in order to meet their needs. The altitudes in
which the sensors are located are variable and highly dependent on the characteristics of the ground
surface where they will be placed. The variability of the distances between the target and the different
sensors causes the heteroscedasticity of the noise measured in the sensors [12]. In addition, in LPS
networks, sensors act in a more independent way since not all of them have to be interconnected with
each other, and even asynchronous architectures are being developed [7,8] which increase the flexibility
of these systems. As a consequence, it is necessary to establish a methodology to optimize the location
of the beacons in LPS systems, considering the special characteristics of these architectures.
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2. State of Art

The first studies on sensor location in Local Positioning Systems were focused on the minimization
of the number of sensors displayed. Francis et al. [13] demonstrated that the initial linear models used
to solve the node distribution problem were excessively complex. This hypothesis was supported in
the large dimensionality of the solutions space, and it is the reason why he proposed a reduction of the
complexity based on a grid model. Shoval et al. [14] modified the conception of the problem with the
consideration of the C-N-LNR (Continuous non-linear) model in order to compute an optimization
through a greedy-type algorithm. In this model, sensor location is defined between two main areas:
maximum area (effective coverage of the sensor) and minimum area (where the least possible separation
between sensors is considered). C-N-LNR aims for an optimization in the node distribution with
special consideration of some critical points in the AGVs navigation.

The usage of heuristic methods has proven to be especially suitable for the sensor location problem.
Tekdas et al. [15] and subsequently Yoon et al. [16] concluded that this distribution problem is NP-hard,
which led to a heuristic method solution such as Genetic Algorithms (GA) [11,17-24], simulated
annealing [25] or Tabu search methodologies [26].

The initial solutions of the problem through GA were based on Global Dilution of Precision
(GDOP) as the factor to measure the quality of the sensor locations [27,28]. GDOP has been widely
used in Global Positioning systems. GDOP consists of a measurement of the suitability of the relative
position between the target and the sensor location, Position Dilution of Precision (PDOP), and the
uncertainty of time measurements, Time Dilution of Precision (TDOP). While the TDOP depends on
the measuring instruments, PDOP is a geometric factor which is determined by the calculation of the
volume defined by the unitary vectors of the target with each sensor. The minimum value of the PDOP
strongly depends on the number of sensors of the distribution [29].

Nevertheless, GDOP is constructed under the assumption of similar distances between target
and nodes, which happens only in satellite navigation. However, LPS can have variable distances
in the target-node connection, leading to different noises in the signal receivers. Burke et al. [30]
justified that noise variances can vary notably among sensors so that a heteroscedastic model in the
time measurements must be considered to achieve practical results [31].

This model is evaluated in this paper through the CRLB, which is an unbiased estimator of the
lowest uncertainty in a positioning system under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS)
conditions [32].

A path loss propagation model is introduced in order to consider signal depreciation for an
asynchronous positioning architecture (A-TDOA) for the first time. Furthermore, a 3D positioning of
the automatic vehicles, both AGVs and UAVs, is considered in an LPS. This factor presents a novelty in
comparison with the other papers considered in this revision, which are focused on 2D positioning.
This consideration forces the introduction of a third coordinate as a new degree of freedom in the
sensor location in the space.

In conclusion, this paper presents a 3D optimization in the sensor location of an asynchronous
positioning architecture through the CRLB with heteroscedastic noises for the first time in the literature
according to our best knowledge. An actual 3D environment has been defined to locate the sensors and
to allow for navigation of the vehicles. The optimization process is performed via a genetic algorithm
that will be presented in the paper.

The remainder of the article is organized as follows: In Section 3, an actual ground model is
presented and the main area for navigation of the vehicles and location of the sensors are defined;
in Section 4 the genetic algorithm characteristics are presented and its usage is justified. The evaluation
of the quality of the node distributions in the genetic algorithm by means of CRLB is analyzed in
Section 5. Section 6 shows the results that are then discussed in Section 7. And finally, Section 8
presents the conclusions related to the research reported in this paper.
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3. Ground Model

The proposed GA allows the 3D optimization of the positioning sensor placement based on any
base surface characterization, regardless of fluctuations in the elevation of the modeling environment.
Additionally, this GA admits the generation of any optimization region at the base surface level (AGV
modeling) or above it (UAV modeling).

The flexibility of the presented methodology is proven via the characterization of an irregular
1000 x 1000 m base surface for all analysis optimizations. This modeling is defined by the projections
of the ground curves on the x-z and y-z planes, which are shown in Figure 1. In addition, base surface
elevation has been distorted with a normal distribution N(5, 1) m.

x-z plane generatrix y-Z plane generatrix
500 160

350 1}
0 200 400 600 800 1000 o 200 400 600 800 1000

x(m) y (m)

Figure 1. Base surface elevation profiles expressed in terms of x-z and y-z plane generatrix.

The characterization of the scenario is completely defined with two regions: Node Localization
Environment (NLE) and Target Localization Environment (TLE). NLE is the space where nodes have
free possible movement during genetic algorithm performance. The projection of the NLE to the base
surface can have an area equal to or smaller than this, and there may be obstacle zones where the nodes
cannot be located. Regarding elevation of the NLE, it is defined based on maximum and minimum
elevations with respect to the modeling surface. The minimum pre-set elevation is 3 m with the aim
of avoiding adverse phenomena originated by multipath trajectories that degrade the final position
estimations. The maximum elevation of the nodes has been established as 10 m above the base surface,
in order to limit the impact of the use of large supports to place the sensors.

TLE defines the entire space of possible locations of the targets that are going to be positioned.
It is possible to perform its modeling both in the projection on the base surface and in elevation, which
will be dependent on the type of optimization carried out. The lower limitation in height depends on
the application to be optimized, while the upper limit will be as a general rule of 120 m (maximum
flight height for UAVs).

Next, we present the two scenarios in which the final optimization of the sensor distribution will
be based on the CRLB. The spatial discretization of the TLE region is 30 m in Cartesian coordinates x-y
and 5 m in the z-coordinate, in order to achieve the compromise solution between spatial resolution
and processing time, taking advantage of the continuity of the accuracy results obtained when fine
grids are implemented. In the case of the NLE, due to the adaptability of the length of chromosomes
based on the region limits and the GA properties, the spatial resolution varies in the three coordinates
from 0.5 to 1 m. In addition, if lower spatial resolutions are required, it could be achieved by the GA
through the modification of the length of chromosomes to a higher value than initially determined.

Figure 2 shows the first of the scenarios submitted to the optimization process. The plan projection
of the NLE and the TLE presents an area equal to the base surface, with the elevation limitations
previously defined.



Sensors 2019, 19, 3880 50f16

Scenario 1: NLE and TLE
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Figure 2. Scenario 1. First environment characterization for optimization with Genetic Algorithms (GA).

Figure 3 shows the second of the scenarios under analysis. In this case, the optimization is carried
out for a TLE that extends to a bounded region of the base surface, fulfilling the limitations in elevation
for Scenario 1. The NLE occupies the same volume as in Scenario 1, except for the space occupied by
the TLE, which on this occasion cannot be used for the location of nodes inside it.

Scenario 2: NLE and TLE
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Figure 3. Scenario 2. Second environment representation for optimization with Genetic Algorithms—(GA).
TLE region is limited to the center of the domain. NLE space extends all over the base surface, except for
TLE region.

4. Genetic Algorithm

The total space of solutions of the optimization problem is dependent on the degree of
spatial resolution required in the location of the nodes, which in turn will be determined by
the spatial discretization developed on the NLE regions. For positioning of n sensors and with
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the spacings specified above, there will be 4624" and 3944" possible solutions to the problem in
Scenario 1 and 2 respectively.

The magnitude of this search space prevents the use of exact resolution techniques that examine the
entire spectrum of solutions to achieve the optimization of the problem in question. Additionally, greedy
resolution techniques and those based on a recursive division [33] of the problem are discouraged due
to the great joint dependence between the location of the different nodes and the final solution.

These aspects lead to the optimization of this problem being carried out through heuristic
techniques [34]. Among them, genetic algorithms present multiple advantages, among which are
great flexibility and robustness, use of non-derivable fitness functions, parallel treatment of solutions,
and commitment between diversification and intensification in the search within the space of solutions.
These characteristics set genetic algorithms as the final key for solving the node localization problem.

Genetic algorithms are based on the hypothesis of the theory of evolution, where individuals better
adapted to the environment survive and generate descendants, who with the passing of generations will
acquire better characteristics of adaptation to the environment than their predecessors [35]. In this way,
this methodology starts from an initial set of random solutions whose aptitudes will be evaluated by
means of a fitness function (problem optimization function). Subsequently, genetic selection, crossing,
and mutation operators will be applied to generate new possible solutions to the problem from the
best ones of the previous generation. This process will be repeated until the algorithm converges or
until a predetermined number of generations, resulting in the final solution to optimize the problem.

4.1. Coding

The coding allows for the transformation of the variables of the problem to a system in which the
genetic operators can be applied. The way in which it is carried out will determine to a large extent the
search capacity in the solution space and the convergence of the algorithm.

The selected coding is of a binary type, facilitating the implementation of genetic operators and
diversifying the search for solutions [35]. However, the evaluation of the individuals of the population
must be carried out based on the Cartesian coordinates x, y, z of each of the nodes, these being expressed
in real numbers.

Figure 4 shows an example of the transformation of the Cartesian coordinates of each node
into a generic individual of the population. Real coordinates based on binary are obtained in two
successive steps.

oooto|oatoss Joooso1 | .. |ooooto |1isao1 | dototo |

Coordinate x Coordinate y Coordinate z Coordinate x Coordinate y Coordinate z

( ) ( )
[ |

Node 1 Node n

Figure 4. Binary coding in GA. Example of association between Cartesian node coordinates and their
value in binary coding.

First, the direct conversion between binary digits and natural numbers is carried out, based on
previously defined binary chain lengths. These can be invariant for all coordinates or determined
based on the maximum magnitude differences possible in the scenario and for each of the coordinates.
This last option is the one finally implemented because it allows for a greater homogeneity in the
spatial resolution of the solutions in the three coordinates, from 0.5 to 1 m-, and total adaptability to
the NLE region limits at every point of the environment.
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Secondly, each of the coordinates of the nodes is transformed into natural numbers to the values
in real numbers depending on the geometry of the environment. This conversion, which is called
escalation, is done through the following relationship.

—(Nmax_Nmin) +Nmin (1)

where Coory is the Cartesian coordinate of the node scaled in real numbers Coory is the Cartesian
coordinate of the node expressed in natural numbers, L is the length of the binary chain associated
with the coordinate in question, N4y is the maximum value of the coordinate in the scenario, and Ny,
is the minimum magnitude of the coordinate in the scenario.

This real-binary conversion must be carried out by means of a sequential calculation of the
Cartesian coordinates of each of the nodes present in each individual of the population. In this way,
first, the x coordinates of each node are scaled based on the knowledge of the maximum dimensions of
the scenario (invariants for the x coordinate). Next, the coordinates are scaled and based on the spatial
limitations for the direction and the scenario based on the previously scaled x coordinate. Finally, the z
coordinates are scaled according to the maximum dimensions of the environment for the z-direction
that is dependent on the previously scaled x and y coordinates.

The use of this methodology in any environment is linked to the implementation of some type
of 1D interpolation for the scaling of the coordinates, as well as to the use of 2D interpolation for the
scaling of the z-coordinates.

The real-binary transformation is governed by the same principles, with the proviso provision
that the initial real coordinate must be a multiple of the step assigned to that scaling, where the step is
expressed by the following equation:

Nmax - Nmin

Step —
P L1

@

4.2. Selection

The choice of genetic selection operator was based on a comparison between the most widespread
in the literature: Tournament 2, Tournament 3, and Roulette [36]. In addition, the comparative
is completed with an analysis of elitism percentages for each selection procedure, searching for
those that maximize the fitness function value while reducing the number of generations needed to
reach convergence.

The results of the optimization are shown together with the number of generations needed
in Scenarios 1 and 2, subject to the maximization of the fitness function and convergence criteria
presented in Section 6. A number of 16 consecutive optimizations with the three operators has been
performed in each scenario in order to avoid local maximums that could be achieved with this heuristic
technique. This procedure allows for comparing the selection techniques in order to select the best fit
for this problem.

Tables 1 and 2 show that the best results are obtained for a selection technique of Tournament 3
in Scenarios 1 and 2, being the option chosen for the final implementation of the GA. Tournament 2
presents more stability but does not reach the same maximum values which are the final objective of
the optimization.

Table 1. Selection technique analysis. Mean and maximum fitness function values in Scenario 1 for
Tournament 2, Tournament 3, and Roulette.

Selection Technique Mean Fitness Function Max Fitness Function
Tournament 2 646 656
Tournament 3 643 658

Roulette 618 649
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Table 2. Selection technique analysis. Mean and maximum fitness function values in Scenario 2 for
Tournament 2, Tournament 3, and Roulette.

Selection Technique Mean Fitness Function Max Fitness Function
Tournament 2 757 776
Tournament 3 753 779

Roulette 708 758

Furthermore, the number of generations to reach the convergence of the algorithm is significantly
reduced with Tournament 3, as can be seen in Figure 5, because a more competitive way in the
selection of the individuals is performed. Roulette has been totally discarded because the number of
generations suffers a notable increase which causes a computational time addition and the values of
the optimization present more instabilities than in the other techniques.

ql%%eratiuns to convergence in Scenario1 Generations to convergence in Scenario 2

120 |
m—— Tournament 2 m—— Tournament 2
110 e ToUrnaMent 3 110 e TOUrNAMENL 3

g Roulette g Roulette
5 100 & 100
B ©
o 90 o 90
o c
¥} (5}
o [&)]

BO BO
B B
L2 £ 701
E E
=} 3
S 60 = B0
& o
o o
2 50 L 5 \

40 1 40 1

30 30

0 10 20 30 40 50 1] 10 20 30 40 50
% Elitism % Elitism

Figure 5. Convergence analysis in terms of elitism. In this picture, the number of generations that is
needed to reach convergence is presented in Scenarios 1 and 2 in function of the percentage of elitism.

For these reasons, Tournament 3 was the final selection operator choice. Then, elitism had to be
selected. Subsequently, a comparison was made for different percentages of elitism in the selected
strategy, Tournament 3.

Based on Tables 1-3 it is possible to conclude that the genetic operator of selection most appropriate
to this problem is Tournament 3 with 15% elitism, which is a compromise between a competitive
selection and conservation of the best individuals that maximize the fitness function.

Table 3. Maximum fitness function representation for the best selection operator (Tournament 3) in
terms of elitism percentage during population reproduction.

Elitism Max Fitness Function Scenario 1 Max Fitness Function Scenario 2
0% 655 778
15% 658 779
35% 649 752

50% 647 749
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4.3. Crossover and Mutation

The genetic operator of the selected crossing has been a single-point crossover. In conjunction
with the selection strategy implemented, it provides an appropriate behavior as a compromise between
rapid convergence and the ability to prevent local optimums as final results. As for the mutation, a 4%
probability has been selected to facilitate the initial diversification in the search for solutions without
harming intensification in the optimal region of solutions.

5. Fitness Function and Algorithm Convergence

Genetic evolution of the generations is conditioned to an analysis of the beauty of each individual
through a fitness function. In this problem, the CRLB estimator has been selected to perform the
optimization of the sensor location in an asynchronous positioning architecture (A-TDOA) [6,7]. CRLB
allows obtaining the minimum value of the global positioning error.

CRLB is an unbiased estimator of the lowest variance of a determining parameter. In positioning
systems, CRLB determines the minimum error in the calculation of the position by any algorithm used
under both LOS and NLOS conditions. CRLB estimates the variance of the position estimation by
means of the Fisher Information Matrix (FIM):

N 1 1
varl0) > = 3
( ) FIM E[[%lnln f(X;e)]z] ®3)

Being 0, the unbiased estimator of the parameter under study, E the expectation value of the
denominator function, 6 the parameter under study and X the measurements of this parameter that
define a probability density function f(X;0).

A White Gaussian Noise (WGN) is modeled with an association with the uncertainties of the
time measurements. The variance of the WGN depends on the distance between the emitter and the
receiver of the positioning signals. This leads to the heteroscedasticity of the noises. Huang et al. [31]
defined a model in order to introduce all these parameters into the inverse of the FIM (J):

o B B o2

X, Ixm

Matrix h(X) contains the information of the distance differences between the target and sensors,
where m and n sub-indexes express the variables to estimate that are involved in the calculation of each
FIM component. These differences are defined according to the A-TDOA architecture [7] where the
positioning signal travels from the Target Sensor (TS), Coordinator Sensor (CS)—where time differences
are processed—and the Worker Sensors (WS)—where positioning signals are emitted to the Target
Sensor [6]:

hi = ITS = WSill +|ITS — CS|| - [IWS; = CS|
i=1,..., Nws

©)

where Ny is the number of WS nodes. R(X) is the covariance matrix, where the CRLB variance
definition is implemented according to a noise model characterization based on Log-normal path loss
propagation model [37]:

o = o) (4 (5]

(6)
i=1,...,N

where c is the signal propagation speed in m/s, B is the signal bandwidth in Hz, Pr is transmission
power, P, is the mean noise power that is modeled according to Johnson-Nyquist relation, n is the
path loss exponent, dy is the reference distance between emitter and receiver from which Log-normal
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model is correctly implemented and PL(dy) is the path loss associated with dy. Distances d;, drs and
dcs are expressed by the following equations.

di = ||ITS — WS
drs = |ITS - CS|| @)
dcsi = IWS; = CS]|
i=1,..., N

The Root Mean Square Error (RMSE) measures the uncertainty of the sensor location. In this
model, RMSE can be obtained through the terms of the main diagonal of the inverse of the Fisher
Information Matrix:

RMSE = [trace(J71) (8)

The analysis of the RMSE in each point of the TLE for Scenarios 1 and 2 has been defined as the
fitness function in order to evaluate the quality of the sensor distributions in the A-TDOA architecture.
The high amount of analysis points has led to a consideration of the mean values of the RMSE all over
the TLE. The measure of the RMSE for each individual in the GA defines the best candidates to achieve
the optimization, being the best individuals directly conserved for the next generation through elitism
principles defined in Section 4.2.

The converge criterion of the algorithm has been established by means of the stagnation of the
maximum value of the fitness function in a number of consecutive generations. Furthermore, a number
of coincidences among the individuals in the population of the last generation must be assured to stop
the optimization process. This configuration allows a trade-off solution between the exploration in the
space of solutions and the total processing time. Both Scenarios 1 and 2 present the best optimization
results when a convergence criterion of the 80% of the individuals is considered.

6. Results

This section presents the results of optimizations for CRLB in an A-TDOA positioning system in
Scenarios 1 and 2. Initially, a series of communication parameters linked to the positioning architecture
have been defined in Table 4.

Table 4. A-TDOA system communication parameters for optimization. Their election has been made
based on aeronautical tracking applications [38], with the objective of representing the use of generic
technology in the CRLB analysis.

Parameter Value

Transmission power 400 W
Mean noise power —94 dBm
Frequency of emission 1090 MHz
Bandwidth 100 MHz

Path loss exponent 2.1
Antennae gains Unity
Time-Frequency product 1
Communication type Full-duplex

The simulations presented below have been obtained based on an algorithm configuration with
the Tournament 3 type selection strategy, elitism of 15%, single-point crossing, mutation probability of
4%, and binary coding with the scaling of individuals. All the optimizations have been made based on
a total of 5 sensors to perform the position calculation, minimum necessary from the mathematical
point of view [11] to perform 3D localization. The computational complexity of the algorithm is a
polynomic order (O(n?)) where super-index a is highly variable due to its dependency on the size of
the TLE region, the GA population, and the number of generations to convergence. Algorithm coding
and representation have been implemented in the MATLAB platform.
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First, in Figures 6 and 7, a CRLB evaluation in terms of dB in the TLE of Scenarios 1 and 2
is presented for node distributions optimized by the GA. Notable stability on the CRLB values
can be observed and the results have supposed an improvement in system properties from initial
random populations.

Scenario 1: CRLB evaluation with optimized node distribution

1000

200 - 500
200

400 600 <

800 4ggo 0 v (m)
x (m)

Figure 6. Optimization in Scenario 1. CRLB in meters for TLE region based on node location optimized by GA.

Scenario 2: CRLB with optimized node distribution
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Figure 7. Optimization in Scenario 2. CRLB in meters for TLE region based on node location optimized by GA.

In the development of a set of optimizations with random initial populations for the two scenarios,
it has been observed, as in Figure 8, that whatever the initial starting population of the iterations,
the convergence of each of the five beacons occurs in a very specific environment for each of them.
This is due to the fact that the sensor positioning search region is very limited and shows the stability
in the optimization of the genetic algorithm.
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Figure 8. Sensor distribution in the x-y plane in meters. Each sensor defines an environment where
convergence always happens during the optimization process with independence on the initial random
population. In this figure the result of 48 different optimizations is represented.

With the optimization region delimited for each one of the sensors in Figure 8, the free movement
zone of the beacons (NLE) is fixed to the environment delimited by the blue rectangles for each
sensor. This way, the search space is reduced, and the convergence of the algorithm is achieved
beforehand. In addition, the definition of this environment allows refining the spatial grid spacing in
each coordinate, in order to obtain smaller steps and thereby obtain optimizations of the location of the
sensors in the space with higher resolution and better properties.

Final results of this optimization with the new solution space properties previously defined
are shown and compared with a random node distribution from the initial population of the GA
in Tables 5 and 6.

Table 5. Final results. CRLB statistics in Scenario 1 for random and optimized node distributions of 5
A-TDOA sensors.

Scenario 1 Random Node Placement Optimized Node Placement
Mean (m) 1.759 0.432

Max (m) 19.940 1.089

Min (m) 0.131 0.109

% < 0.5m 11.44% 65.43%

Table 6. Final results. CRLB statistics in Scenario 2 for random and optimized node distributions of 5
A-TDOA sensors.

Scenario 2 Random Node Placement Optimized Node Placement
Mean (m) 3.271 0.261

Max (m) 34.611 0.693

Min (m) 0.316 0.101

% < 0.5m 6.54% 94.56%

These results show the possibility of using the methodology described as a sensor placement
algorithm for applications with high accuracy needs in the positioning of objects. Likewise, a technique
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with a high degree of modularity is provided, which can be applied to any positioning architecture based
on temporary measurements. Finally, the heteroscedastic characterization of the uncertainty associated
with each of the temporary measurements of the system allows a high degree of correspondence with
the reality, especially important in LPS systems.

7. Discussion

In the current article, we present the development of a genetic algorithm that allows the 3D
localization of sensors in a local positioning system. This problem has special relevance since the error
associated with the location of vehicles is very dependent on the spatial location of the sensors.

Specifically, the sensor layout is the sole source of controllable error once the algorithms for
calculating the position, the architecture of the system (A-TDOA) and the process of measuring the
magnitude that allows locating times have been established.

In particular, the spatial distribution of the sensors determines the geometrical properties of the
intersection of the hyperboloids in this problem [11], thus reducing the achievable error levels. For this
reason, it has been shown in the state of the art that this problem of the location of sensors has been
widely studied in recent years. However, most of these articles address a two-dimensional location
problem that in this article has also been extended to the third coordinate of the space to consider the
flight of UAVs in local positioning systems.

In addition, these articles present very defined scenarios in indoor environments with ad-hoc
resolutions for the environments designed. However, in this article, the problem-solving methodology
is detailed in a generalized way for very different scenarios and contexts. This situation is particularized
in two different scenarios where the modeling of the ground follows a randomness that brings the
problem closer to a real context.

The studies carried out in these contexts allow us to optimize the spatial distribution of sensors
for an asynchronous positioning architecture for the first time. To do this, the CRLB estimator is
used to obtain the lowest error level achievable for any algorithm in the possible domain for locating
the vehicles.

For this reason, this article is especially relevant for locating vehicles in precision activities in
outdoor environments and for indoor navigation of automatic vehicles (AGVs). The results achieved
show the benefits of the selected techniques and the importance of the problem posed.

In future work, not only the optimization to reduce the CRLB but also the minimization of the
number of sensors necessary for the location in a given context will be considered. For this, it will be
necessary to analyze the properties of signals and receiver noises in LOS and NLOS communications,
which will lead to a multivariable optimization that will improve the properties of the LPS to be studied.

8. Conclusions

The high accuracy requirements in the positioning system demanded in new applications such as
autonomous vehicle navigation (AGVs and UAVs) or tracking of robots in industrial plants, have led to
a huge increase in LPS based on asynchronous positioning architectures, as the A-TDOA. However, the
intrinsic characteristics of the LPS systems cause a great dependence between the location of the sensors
of the system and the degree of accuracy achieved in the positioning.

In this article, a genetic algorithm is presented for the sensor distribution in a 3D environment
with total flexibility in both the definition of the optimization spaces for the location and the regions of
possible location of the components of the positioning architecture. This technique has been applied to
an LPS with A-TDOA architecture, although its implementation is possible with any type of positioning
system. The optimization carried out was based on the CRLB, with a WGN representation in the
temporary measurements. This modeling allows heteroscedasticity in the variances associated with
the temporal estimation of the sensors, which constitutes a fundamental factor in order to achieve a
correct representation of reality in LPS systems.
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The designed algorithm provides an optimal result for the solution of this problem since it defines
a location environment for every sensor in the space of each executed simulation, showing great
stability independently of the initial random population that is generated.

The definition of this solution space for each sensor allows us to reduce the search space of the
solution, increasing the speed in the convergence and refining the discretization step in each coordinate
in order to obtain a better resolution in the optimization.
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