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ABSTRACT High-accuracy positioning is fundamental for modern applications of autonomous agent
navigation. The accuracy and stability of predicted locations are key factors for evaluating the suitability
of positioning architectures that have to be deployed to real-world cases. Asynchronous TDOA (A-TDOA)
methodologies in Local Positioning Systems (LPS) are effective solutions that satisfy the given requirements
and reduce temporal uncertainties induced during the synchronization process. In this paper, we propose
a technique for the combined characterization of ranging errors –noise, and Non-Line-of-Sight (NLOS)
propagation – through the Cramér-Rao Bound (CRB). NLOS propagation effects on signal quality are
predicted with a new ray-tracing LOS/NLOS algorithm that provides LOS and NLOS travel distances for
communication links in 3D irregular environments. In addition, we propose an algorithm for detecting
multipath effects of destructive interference and disability of LOS paths. The proposed techniques are
applied to sensor placement optimization in 3D real scenarios. A multi-objective optimization (MOP)
process is used based on a Genetic Algorithm (GA) that provides the Pareto Fronts (PFs) for the joined
minimization of location uncertainties (CRB) and multipath effects for a variable number of A-TDOA
architecture sensors. Results show that the designed procedure can determine, before real implementation,
the maximum capacities of the positioning system in terms of accuracy. This allows us to evaluate a trade-off
between accuracy and cost of the architecture or support the design of the positioning system under accuracy
demands.

INDEX TERMS CRB, genetic algorithm, location, LOS, LPS, multi-objective optimization, multipath,
NLOS.

I. INTRODUCTION
Local Positioning Systems (LPS) received a growing interest
from engineering community in recent years as candidates
for navigation applications with high-accuracy requirements,
such as Automatic Ground Vehicles (AGVs) and Unmanned
Aerial Vehicles (UAVs). The justification lies in the small
location uncertainties originated during data acquisition and
the stability that these systems provide, due to their capability
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of reducing the distances between targets and architecture
sensors.

All positioning systems require estimating the location
of targets. Among them, the most popular techniques are
based on measuring time delays [1], [2], received power [3],
or angles of incidence [4]. Time-based architectures have
become predominant due to their trade-off between hardware
complexity, accuracy, and adaptability to complex environ-
ments of operation [5].

Historically, time-based positioning architectures were
designed under the obligation of synchronization between
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targets and sensors, i.e. Time-Of-Arrival (TOA) [6], or archi-
tecture sensors, i.e. Time-Difference-of-Arrival (TDOA) [7].
This factor induces a substantial instability in the magnitude
of the nominal accuracy of localization, due to the time
measurement uncertainties induced during the synchroniza-
tion process [8], [9]. High location accuracy is mandatory
in autonomous navigation in which positioning service must
remain stable in time, which is difficult to attain with TOA
and TDOA conventional methods.

The asynchronous TDOA (A-TDOA) architecture
[10], [11] eliminates the synchronism between sensors
through a positioning methodology where time measure-
ments are performed at only one clock located in a specific
sensor of the architecture. This fact substantially reduces time
measurement uncertainties with respect to TOA and TDOA
techniques.

Once the time-based positioning architecture is deter-
mined, the major contributions to its accuracy are the algo-
rithm implemented, and the errors on time measurements, i.e.
ranging errors. Under the assumption of an efficient estimator
for the location, maximum capabilities of the positioning
architecture could be predicted a priori based on the effects
of ranging uncertainties: noise, clock errors, Non-Line-Of-
Sight (NLOS) propagation and multipath [12]. These fac-
tors are essentially influenced by sensor placement [13]–[15]
and this affection is crucial in LPS, where the localization
performance is maximized through an optimization of the
distribution of sensors.

The optimization of sensor placement for LPS has been
subjected to analysis in the past decades. First studies focused
on the reduction of the dimensionality of the problem [16].
Greedy-type algorithms were implemented in [17] and [18]
for computing the optimization of sensor positioning through
a linearization process. Recent approaches try to solve the
problem without simplifications, leading to NP-hard resolu-
tions [19], [20]. At this point, heuristic methods became pre-
dominant, with special relevance of Genetic Algorithms (GA)
[21]–[24]. Multi-objective optimizations (MOP) performed
by [25], [26] provide optimization for multiple criteria,
enabling compromise solutions. However, these works are
not able to perform a 3D optimization in real environments,
and the fitness function implemented only consider some of
the factors that cause location errors, which are mainly noise
and some cases where NLOS propagation is present.

The accuracy estimation of positioning has also been
widely studied. Originally, accuracy was evaluated through
the Geometric Dilution of Precision (GDOP), where ranging
variances are assumed homoscedastic [27], [28]. However,
this model is valid only for homogenous distances between
targets and sensors, which is infeasible for LPS [29]. This
leads to a heteroscedastic treatment of time measurement
variances [30], [31], which is accomplished via the Cramér-
Rao Lower Bound (CRLB). Martínez et al. provide in [32]
a closed-form expression for the CRLB in 2D and 3D
environments. Similarly, Isaacs et al. applied in [33] the
CRLB to a TDOA architecture. Previous works are related to

Line-Of-Sight (LOS) conditions, where NLOS is introduced
in the CRLB derivation in [34] and [35]. However, observed
models depend on several pre-established parameters and
can only be applied in certain environments. Earlier studies
only characterized the accuracy of the positioning based on
the presence of noise in the environment. This assumption
compromises the application of these models in actual 3D
situations, where NLOS propagation are induced in time
measurements. Linked to this, multipath effects due to the
presence of obstacles have not been addressed in the liter-
ature in order to minimize their impact in 3D environments,
which further weakens the representativeness of the described
methods in complex conditions of operations.

This paper is built on our previous work of the authors [36],
where sensor placement is optimized in 3D irregular scenar-
ios via GA.

The aim of this article is the 3D optimization of a variable
number of sensors for the A-TDOA architecture in 3D real
scenarios with a complete characterization of ranging errors.
For this purpose, we develop algorithms for LOS/NLOS
ray-tracing and multipath detection which allow the detection
of obstacles that obstruct positioning signals and/or create
destructive interference, leading to degradation or cancelation
of the LOS paths. In addition, we implement a new charac-
terization of the Cramér-Rao Bound (CRB) which includes
noise and NLOS propagation. The combination of CRB and
multipath identification enables a MOP process for estimat-
ing a priori maximum capabilities of A-TDOA architecture in
3D complex environments in terms of accuracy and stability.

We propose a method for multi-objective optimization
(MOP) that allows the minimization of the effect of adver-
sarial factors and the adaptability of time-based positioning
architectures to 3D environments. In addition, the combi-
nation of the new CRB model with the multipath detection
algorithm provides a trade-off of these parameters, especially
in indoor and urban areas, where the sensor placement could
be optimized for maximizing the architecture accuracy and
stability.

The remainder of this article is organized as follows.
In section 2, we present a LOS/NLOS ray-tracing algorithm
for measuring LOS and NLOS emitter-receiver distances
together with a multipath detection algorithm for 3D envi-
ronments. Section 3 presents the derivation of the CRB for
A-TDOA architecture for the combined presence of noise and
NLOS propagation. In Section 4, we discuss the configura-
tion of the MOP with the definition of the designed fitness
function. In Section 5 we report and discuss the results of
the application of the techniques and models described in
the article for the optimization of sensor distribution in a 3D
irregular scenario. Finally, section 6 concludes the paper.

II. LOS/NLOS RAY-TRACING AND MULTIPATH
DETECTION ALGORITHMS
The presence of objects in the proximity of emitter-receiver
links could lead to over-reduction of the signal power that
reaches the receptor, originated by NLOS conditions [37],
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and/or the generation of different paths which adversely
affect the detection process and could generate destructive
interference, i.e. multipath [38]. These effects significantly
deteriorate the accuracy of positioning and, consequently,
they must be detected and quantified.

We propose two algorithms to characterize the properties
of communication channels in 3D complex environments,
where NLOS conditions and multipath are present. Firstly,
we implement a ray-tracing algorithm that estimates the LOS
and NLOS distances associated with a generic communi-
cation link between an emitter and a receiver. We develop
this technique under the requirements of 3D applications in
complex irregular environments.

The algorithm is based on the spatial discretization of the
emitter-receiver link for each communication of the posi-
tioning architecture, i.e. we divide the line between emitter
and receiver in a number of evaluation points. For each
of these points, the algorithm compares the height of the
line that join the emitter and the receiver with the elevation
of the surface and/or obstacles in the environment. If the
subtraction of link heights and surface/obstacles elevation is
positive, any object interferes with the emitter-receiver link
in that point. Otherwise, some object is obstructing the posi-
tioning signal. The application of this evaluation for every
point of the discretization in each positioning link allows not
only the detection of obstructions, but also the quantification
of the LOS and NLOS distances associated with each link.
The description of the ray-tracing LOS/NLOS algorithm is
shown in Figure 1.

FIGURE 1. 3D LOS/NLOS ray-tracing algorithm.

The only parameters needed to initialize the algorithm are
the emitter and receiver locations, the base/ground surface
elevation and the spatial resolution required for the analysis.
This methodology allows the calculation of LOS and NLOS
distances, which directly impacts on the uncertainties of time

measurements and the global accuracy of the positioning
process.

The second algorithm proposed is a new technique that
enables the identification and evaluation of all regions
that could potentially produce adverse multipath effects in
receivers. The presence of multipath leads to two problems
in receivers: the appearance of destructive interferences that
cancel the communications signal and the introduction of
multiple signals that overlap preventing the detection of the
LOS path [38].

Destructive interferences are modeled by the Fresnel zone,
which is defined in 3D space as the ellipsoid where any object
located totally or partially inside generates a reflected signal
that nullifies the original transmission. The ellipsoid is built
based on the emitter and receiver locations –the focus of the
ellipsoid- and the radius at any point of the communications
link is calculated as follows [39]:

RFr =

√
nFrλdEdR
dE + dR

(1)

where RFr is the Fresnel zone radius at the point at study,
nFr is the nth Fresnel zone radius, λ is the wavelength of
the communication signal, dE indicates the distance between
the emitter and the point at analysis, and dR represents the
distance between the receiver and the point which radius is
being calculated.

In multipath environments, reflected multiple signals
might reach the receptor antenna with certain delays. This
phenomenon is characterized based on the delay spread (τds),
which defines the maximal mutual delay between signals of
different paths. The delay spread is closely related to the
signal correlation spread (τc ≈ 1

/
B), which characterizes the

negligibility of resemblance in the time domain between two
time-shifted copies of the same signal [38]. Thus, if consecu-
tive multipath signals arrive at the receptor in a period of time
lower than the delay spread, which is equal to the correlation
spread in the most critical case, they will overlap and the
signals cannot be distinguished. This feature is critical during
the discrimination of the first signal, LOS path, in positioning
systems where multipath is involved. Every reflected path
with a travel distance lower than LOS path distance plus the
correlation spread distance (τcc) cause a multipath fading and
the impossibility of employing this communication link for
positioning [38].

Similarly to the Fresnel zone, it is possible to generate a
3D region in space where any object located inside could
originate paths that are not distinguished from the LOS path,
Minimum NLOS path zone. Formally, this is represented as
an ellipsoid where the emitter and the receiver act as the
ellipsoid focus, defined as:

R12path =

√√√√d212_min

[
1−

(
d2P

d2LOS + d
2
12_min

)]
d12_min = dLOS + τcc ≈ dLOS +

c
B

(2)
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where R12_path is the radius of the multipath ellipsoid section,
d12_min is the minimum distance of the reflected paths below
which they are not discernible from LOS path, dLOS indicates
the direct distance in LOS conditions between emitter and
receiver, dP is the distance between the center of the ellipsoid
and the point of analysis, c is the signal propagation velocity,
and B is the signal bandwidth.
Based on these two factors, we propose an algorithm

to detect the presence of obstacles that could generate
destructive interference and/or non-discriminated minimum
reflected paths. This technique relies on the evaluation of the
Fresnel and Minimum NLOS path ellipsoids. Figure 2 illus-
trates the proposed methodology. Firstly, both ellipsoids are
obtained through the calculation of their semi-major and
semi-minor axis. Based on the larger ellipsoid, corresponding
to the most critical condition of multipath, the algorithm
discretized its semi-major axis with a similar procedure to
that of the ray-tracing algorithm. In each of these points, a
perpendicular plane section to the major axis is performed
in order to obtain an ellipsoid section based on the radius of
Eq. 1 or 2, depending on the selected ellipsoid. This ellipsoid
section is discretized (e.g. black spheres in Figure 2) and
projected onto the base surface for obtaining the region of the
base surface/obstacles that could interfere with the ellipsoid.
Once this zone is delimited, a set of extra evaluation points
are defined in the base surface/obstacles to complete the
multipath analysis points (e.g. brown spheres in Figure 2).
The elevation of these points is compared with the height of
the plane that contain the ellipsoid section (e.g. green and
red spheres in Figure 2). In the case of higher point elevation
than ellipsoid section high, the algorithm detects an obstacle
that could create adverse multipath effects in the system. The
complete multipath algorithm is presented in Figure 3.

FIGURE 2. Graphical operation of the 3D Multipath detection Algorithm.
Example of multipath analysis for two distinct ellipsoid sections of an
emitter-receiver link. Obstacles zones are characterized through grey
tones, symbolizing in this case the ground surface.

FIGURE 3. 3D Multipath detection algorithm.

The multipath algorithm inputs are the emitter and receiver
location, the spatial resolution required and the princi-
pal parameters needed for modeling Fresnel and Minimum
NLOS path zones. An example of the combined operation of
LOS/NLOS ray-tracing and multipath detection algorithms is
displayed in Figure 4.

The methodologies proposed to detect disruptive phenom-
ena on positioning signals are valid for any irregular 3D
region, as they only depend on the discretized points of the
environment and the definition of the set of hyper-parameters
relative to the demanded spatial resolution for the solution
of the task at hand. They do not require extra characteriza-
tion of the given environment. This fact is mandatory for
the optimization of the location of LPS sensors in complex
environments.

III. CRB DERIVATION WITH LOS/NLOS
IMPLEMENTATION FOR A-TDOA ARCHITECTURE
The CRB allows for the determination of the minimum val-
ues of variance associated with any unbiased estimator of
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FIGURE 4. Ray-tracing and Multipath detection algorithms application.
Red zones indicate the presence of objects that could induce multipath.
The reference surface in presented in grey tones. Black spheres indicate
the location of the sensors.

a deterministic parameter. In the positioning context, it is
widely applied, especially as an indicator of the maximum
achievable location accuracy according to the characteristics
of the positioning systems employed [40]. CRB has been
traditionally implemented in the estimation of uncertainties
induced by the presence of White Gaussian Noise (WGN) in
the communication channel [31]. However, noise is only one
of the main sources of ranging uncertainties [12], becoming
particularly important clock error measurements [41] and
Non-Line-Of-Sight (NLOS) propagation in the deployment
of LPS.

The objective of this section is the generation of a generic
CRB model that estimates 3D location accuracy when noise
and NLOS propagation are considered. In this work, the CRB
derivation is applied to an A-TDOA architecture, as the best
candidate in terms of accuracy, stability and complexity for
an LPS application, due to the elimination of clock errors
caused by synchronism between sensors. Target Sensor (TS)
represents the position of the object to locate. Coordinate
Sensor (CS) refers to the A-TDOA sensor that is capable
of accomplishing time measurements. Worker Sensors (WS)
encompass every transponder sensor of A-TDOA architec-
tures without internal clocks for time estimation.

Due to the diversity of target-sensor distance typical of
LPS, the derivation of the CRB is subjected to a heteroscedas-
tic treatment of the process estimation variances [30]. In this
regard, in [42] a distance-dependent modeling for a generic
matrix form of the CRB was proposed:

FIMmn

=

(
∂h (TS)
∂TSm

)T
R−1 (TS)

(
∂h (TS)
∂TSn

)
+
1
2
tr
(
R−1 (TS)

(
∂R (TS)
∂TSm

)
R−1 (TS)

(
∂R (TS)
∂TSn

))
(3)

FIM is the Fisher Information matrix where m and n
sub-indexes are the parameters to estimate –TS Cartesian
coordinates-. Distance relations among sensors and targets
are expressed by the h(TS) vector, the construction of which
depends on the positioning architecture implemented. In the
case of an A-TDOA architecture:

hA−TDOAi = ‖TS −WS i‖

+‖TS − CS‖ − ‖WS i − CS‖ i = 1, . . . ,NWS
(4)

∂hA−TDOAi
∂TSm

=
TSm −WS im
‖TS −WS i‖

+
TSm − CSm
‖TS-CS‖

(5)

where NWS is the number of WS in the architecture. The
covariance matrix –R(TS)- introduced all factors that con-
tribute to the generation of uncertainties during the posi-
tioning process. In the case of A-TDOA architecture, time
measurements are uncorrelated [10] and off-diagonals matrix
elements are null.

Noise and NLOS propagation are joined together based
on a Log-normal path loss propagation model with differ-
ent characteristics for LOS and NLOS signals [43], based
on the assumption of uncorrelated noise measurements at
different sensors [42]. In the following equations, the vari-
ances expressions for noise andNLOS propagation effects are
computed:

σ 2
A−TDOAi =

c2

B2 (PT/Pn)
PL (d0)
dnLOS0

[(
diLOS + diNLOS x

)nLOS
+
(
dTSLOS + dTSNLOS

x)nLOS
+
(
dCSLOS

+dCSNLOS x
)nLOS ]

diLOS = ‖TS −WS i‖LOS
diNLOS = ‖TS −WS i‖NLOS
dTSLOS = ‖TS − CS‖LOS
dTSNLOS = ‖TS − CS‖NLOS
dCSiLOS = ‖WS i − CS‖LOS
dCS iNLOS = ‖WS i − CS‖NLOS

x = nNLOS/nLOS i = 1, . . . ,NWS (6)
∂σA−TDOAi2

∂TSm
=

c2

B2 (PT/Pn)
PL (d0)
dnLOS0

nLOS

×

{[(
diLOS + d

x
iNLOS

)nLOS−1
×

(
TSm −WS im|LOS
‖TS −WS i‖LOS

+ xdiNLOS x − 1

×
TSm −WS im|NLOS
‖TS −WS i‖NLOS

)]
+
[(
dTSLOS

+dTSNLOS x
)nLOS−1 (TSm−CSm|LOS

‖TS−CS‖LOS
+xdTSNLOS x − 1

×
TSm − CSm|NLOS
‖TS-CS‖NLOS

)]}
(7)

where PT is the transmission power, Pn is the mean noise
level calculated based on Johnson-Nyquist equation, d0 is the
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reference distance for the Log-normal path loss model,
PL(d0) is the path loss referred to d0, nLOS and nNLOS are the
path loss exponents for the LOS andNLOS conditions respec-
tively, and NWS is the number of A-TDOA WS. Every dis-
tances dLOS and dNLOS are calculated through the LOS/NLOS
ray-tracing algorithm proposed in Section 2.

Lastly, the global accuracy is computed based on the
Root Mean Squared Error (RMSE) of the diagonal compo-
nents of the inverse of the FIM (J). This metric is widely
applied in positioning systems [30], [31] due to the direct
knowledge of the radius of global uncertainty in the final
target location induced by each Cartesian component of the
estimation.

RMSE =
√
tr(J) =

√
σ
(
T̂S
)

(8)

IV. MULTI-OBJECTIVE OPTIMIZATION
The global accuracy of time-based positioning architectures
can be maximized in any environment through the optimiza-
tion of the sensor distribution. Based on the combined model
presented in Sections 2 and 3 for estimating time measure-
ment uncertainties, we can perform this optimization for 3D
irregular scenarios in the presence of noise, NLOS propaga-
tion andmultipath. The 3D irregular scenario is designedwith
a random definition of Node Location Environment (NLE)
and Target Location Environment (TLE) [36], to simulate
general real scenarios. This allows the optimization of the
node deployment in the NLE and the determination of the
vehicle navigation areas in the TLE separately.

This is achieved with the Genetic Algorithm (GA) devel-
oped in [36], which allows maximum flexibility during the
deployment of architecture sensors. The GA introduced a
binary codification of individuals with a scaling technique for
achieving 3D adaptation to the NLE region, partial optimiza-
tions for reducing grid resolution and free decision in selec-
tion techniques (i.e. Tournament, Roulette and Ranking),
elitism and mutation.

This optimization of the node deployment in A-TDOA
architectures with noise, NLOS propagation and multipath
uncertainties must provide an effective connection between
the TS and at least four WSs and one CS to determine the
target location. The appearance of critical multipath effects
and cancelation of LOS paths causes the unavailability of
the necessary number of sensors to determine TLE points.
Thus, the introduction of more WSs and CSs is required in
these cases. The use of a higher number of sensors increases
the overall costs of the architecture while also increasing the
accuracy.

The main objective of this article is the determination of
the best sensor distribution for the combined minimization of
noise and NLOS uncertainties and the multipath disruptive
effects for multiple number of sensors.

Consequently, a MOP process has been adopted. There are
two general approaches in performing MOP [44]: the com-
bination of individual functions with methods to characterize
the optimization preferences into a single objective, and the

determination of entire Pareto Fronts (PFs) where the final
decision is carried out based on a trade-off between crucial
parameters [26]. In practice, Pareto optimal sets are preferred
to single solutions due to the complexity of the weight selec-
tion in the combination of functions and their capability of
representing all the spectrum of optimal solutions, which is
typical in real-world problems. We refer at [26] and [44]
for extensive details on the mathematical framework of the
deployed Genetic Algorithm.

For these reasons, we performed a MOP based on the char-
acterization of the PF for the combined minimization of CRB
and multipath effects. This process has been accomplished
for a different number of sensors, each of them with their
own PF. The fitness function ff of the GA MOP is based on a
maximization approach:

ff = c1ff 1 + c2ff 2 ∓ (c1 + c2) ff 3 (9)

where c1 and c2 are vectors of coefficients for obtaining
PF and individual fitness functions are expressed through
the following relations. The sum of c1 and c2 components
guarantees the limitations and the accomplishment of the
objectives of the optimization regardless of the environment
and the characterization of the MOP process. ff1 introduces
global accuracy in the MOP fitness function:

ff 1 =

(
RMSEref −

∑KTLE
k=1 RMSEk
KTLE

)4

RMSE4
ref

(10)

where KTLE indicates the number of analyzed points in the
TLE region, RMSEk is the RMSE of the point of the dis-
cretization of TLE in which accuracy is being analyzed, and
RMSEref is the RMSE fixed as accuracy reference for the
optimization. The RMSEref parameter controls three aspects:
a) the confinement of all values of the ff1 function in the
interval [0,1] for alluring subsequent MOP process, b) the
provision of a mode for a progressive penalization in ff1
function as RMSE values become higher, and c) the char-
acterization of all conditions where the minimum number of
sensors for a univocal positioning in an A-TDOA architecture
is not available. These aspects are accomplished through the
definition of a value of the RMSEref larger than the maxi-
mum expected in the environment for any sensor distribution.
In this case, previous studies showed that 100 meters are the
optimum value for the RMSEref parameter for guaranteeing
a correct incremental penalization for low accuracy sensor
placements, and this error bound is not reachable in any
circumstances of operation (in different scenarios, this value
should be adjusted).

The term ff2 represents the contribution of the multi-
path effect, which is introduced in the main fitness function
as:

ff 2 =

∑KTLE
k=1

(
1−

∑3NWS+1
j=1 Mj

3NWS+1

)
KTLE

(11)
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where NWS is the total number of WS, and Mj indicates the
ratio between multipath detected points (1 positive, 0 neg-
ative) and the total number of analyzed points for each
communication link associated to A-TDOA architecture –
NWS links target-WS, NWS links WS-CS and NWS+1 links
target-CS–. This evaluation is based on the assumption of
one CS for the A-TDOA architecture deployed. The possi-
ble values for ff2 are contained in the interval [0,1], where
higher quantities indicate less presence of multipath effects.
The component ff3 of the MOP fitness function expresses
the penalization factor associated with forbidden censoring
regions, i.e. inner zone to NLE region limits, or incapacity
of 3D positioning when less than five sensors received the
positioning signals with a power that exceeds the sensibility
of the receivers (SNRmin), resulting in the unavailability for
positioning in each point of the TLE region. The component
ff3 also allows the reward in ff values when sensors are situ-
ated in certain regions of interest or the sensors configuration
presents homogeneity in the number of sensors for the TLE
region. The component ff3 is expressed as:

ff 3 =

∑N
i=1 Ri
N

+

∑KTLE
k=1

(
PCSk + PWSk −

Dif k
100

)
KTLE

Dif k =


1−


(
1
4

)
−

(
1

Mdk

)
(
1
4

)
 , if

∑KTLE
k=1 PWSk
KTLE

= 0

0, if

∑KTLE
k=1 PWSk
KTLE

6= 0

Mdk = max‖(PWS )− min‖(PWS ) (12)

where Ri indicates if penalization is applied or not (value
of 1 or 0, respectively) for each sensor location in the case of
forbidden sensor placement. PCS represents the penalization
due to the unavailability of CS in every point k of the TLE
region. In this way, PCS indicates the penalization at each
point of the TLE when at least four complete links (i.e. 1 CS
and 4 WS, assuming a ‘‘receive and retransmit’’ technique
for the A-TDOA system [10]) are not accomplished. Lastly,
Dif relates the difference between the maximum and the
minimum number of possible positioning links in the TLE
region, applied if PWS is null in every point of the TLE zone.
The Dif parameter acquires a special relevance, since it

penalizes sensor distributions with high heterogeneity in the
number of possible links for each point of the TLE region.
This circumstance induces stagnations in the accuracy value
in the GA optimization, leading to reach sub-optimal sensor
distributions. Therefore, the minimization of the Dif magni-
tude is accomplished by sensor placements where the number
of possible positioning links in each point of the TLE region
is comparable (and adaptable to the environment conditions).

The combined ff3 function ensure the progressive penaliza-
tion of individuals, facilitating the learning process of the GA
and enabling a correct exploration of the possible solutions
space. All the variables of the ff3 function are confined in the
interval [0,1].

The focus on the interval of possible values of individ-
ual fitness functions allows the adequate characterization of
c1 and c2 weight vectors. This enables the attainment of
a proper PF for every number of sensors involved in the
positioning architecture.

V. RESULTS
The configuration parameters for the modeling of the noise
presence and NLOS propagation is reported in Table 1. Their
selection has been made on an attempt of representing a LPS.

TABLE 1. Parameters selected for the combined model for noise, clock
errors and NLOS propagation. Values selected are based on [41], [43], [45].

The configuration variables of the multipath detection
algorithm are shown in Table 2. The selection of the
parameter values reported in Table 1 and Table 2 are an
example of configuration according to the environment
characteristics and a generic positioning technology. The
proposed technique could be adapted to the analysis of
any 3-D irregular environment and the simulation of dis-
tinct operating conditions through the modification of the
hyper-parameters presented in Tables 1 and 2. In this sense,
the positioning technology implemented and the parameters
for modeling LOS/NLOS environments are defined based on
Table 1 magnitudes. The estimation and characterization of

TABLE 2. Parameters and magnitudes selected for the multipath
detection algorithm.
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multipath phenomena is provided through the calibra-
tion of Table 2 parameters according to the environment
particularities.

For the values of the parameters related to the ellipsoid
discretization process, we took into account the trade-off
between spatial resolution and processing time. It should be
pointed out that the multipath detection remains practically
the same with finer relative spatial resolutions than presented
in Table 2.

For the configuration of the GA we chose Tournament 2
as selection procedure, single-point crossover, and 2% of
elitism. Due to the complexity of the optimization environ-
ment and the proclivity to local maxima, a highly mutation
percentage of 7% has been set. This characterization grants
the maximization of the MOP fitness function with minimum
number of generations to converge, a situation that is reached
when the maximum value of the fitness function remains
unchanged for three generations and at least 80% of individ-
uals are similar.

The characteristics of this optimization, where the envi-
ronment causes that a great number of solutions are not
valid, leads to the application of a pre-processing during the
construction of the initial population of the GA. In this regard,
we use a random search based on seeking solutions where the
value of ff1 is higher than 0 for constructing the initial popu-
lation. This guarantees the correct progressive improvement
of the quality of the individuals and the avoidance of local
optimizations.

We constructed a 3D scenario for simulations, where NLE
and TLE regions are defined as presented in Figure 5.

FIGURE 5. Environment of optimization. TLE region is represented in blue
color.

The TLE region height modeled is of size from
1 to 10 meters with regards to the base surface elevation. The
spatial discretization of the TLE is 10 meters in x-y cartesian
coordinates and 2 meters in z coordinate. The resolution
selected provides a correct evaluation of sensor distribution
properties without the need of analyzing an excessive num-
ber of points. This is due to the continuity of accuracy and
multipath conditions which are characteristic for finer grids

than selected. In regard to theNLE region, theGA coding [36]
enables the adaptation of the length of chromosomes to region
limits. This factor provides a spatial resolution that varies in
the range of 0.5 to 1 meters, depending on the specific local
characteristics of the environment. In terms of elevation, the
NLE region has a limited minimum height of 3 meters for
reducing multipath and interference effects and a restricted
maximum magnitude of 15 meters in order to reduce the size
of sensor supports.

The results achieved for the optimization of the PFs for a
distinct number of sensors are shown in Figure 6.

FIGURE 6. Pareto Fronts for 8 and 9 sensors.

On the one hand, an increase in the number of sensors
deployed in the scenario directly leads to a reduction in the
location uncertainties and in adverse multipath phenomena.
On the other hand, the architecture cost expressed via the
number of spread sensors also enhances. Table 3 shows the
relation between optimization parameters for the PF of 8 sen-
sors in terms of MOP fitness function components ff1 and ff2:

TABLE 3. Example of individual fitness functions in the PF in the case
of 8 sensors.

In Figures 7 and 8, we report the accuracy evaluation and
multipath analysis for 5 A-TDOA sensors. The selected dis-
tribution is relative to an equal weighting of MOP parameters
for CRB and multipath.

It is observed in Figure 7 that 5 sensors cannot provide
high-accuracy positioning for the complete TLE region.
This is due to the unavailability of at least 5 sensors in cover-
age for each analyzed point in the scenario of simulations (ff3
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FIGURE 7. CRB 5 sensors for MOP with equal coefficient for CRB and
Multipath. Grey tones indicate the reference surface and black spheres
the location of the A-TDOA architecture sensors.

FIGURE 8. Multipath evaluation for 5 sensors in the case of MOP with
equal coefficient for CRB and Multipath. Values represent the ratio
between multipath detected points and total analyzed points for each
zone in the TLE region.

value do not exceed zero). Multipath adverse effects shown
in Figure 6 present a similar behavior, where multipath
impacts cannot be minimized in the entire domain, espe-
cially at communication links between targets and sensors.
Problems associated with the deployment of 5 A-TDOA
sensors can be overcome with the introduction of additional
sensors, as shown in Figures 9 and 10, where the CRB
and multipath evaluation for an A-TDOA architecture with
9 sensors are displayed (in this configurations ff3 value exceed
zero and the homogeneity term -Dif- is applied to the GA
optimization).

Lastly, the results shown in Figures 7, 8, 9 and 10 indicate
that the location of the CS for the A-TDOA architecture, and

FIGURE 9. CRB 9 sensors for MOP with equal coefficient for CRB and
Multipath.

FIGURE 10. Multipath evaluation for 9 sensors in the case of MOP with
equal coefficient for CRB and Multipath. Values represent the ratio
between multipath detected points and total analyzed points for each
zone in the TLE region.

all systems with at least one centralized sensor for perform-
ing time measurements, is critical for accurate operation of
the positioning system. The methodology presented in this
manuscript provides a real-based estimation of the capabili-
ties of the positioning architectures in 3D real environments
prior to its real implementation.

VI. CONCLUSION
In this paper, we propose a new combined model for measur-
ing positioning architectures accuracy, where the effects of
noise and NLOS propagation are quantified in the CRB. For
that purpose, we implemented a ray-tracing LOS/NLOS algo-
rithm for determining LOS and NLOS distances in each com-
munication link in 3D environments. In addition, the most
critical multipath effects, i.e. destructive interference and
inability to distinguish LOS path, are detected by means of
a novel algorithm that operates in the 3D space.

We implemented this characterization of principal ranging
errors in the A-TDOA architecture, developing a MOP pro-
cess for optimizing sensor placement based on the combined
minimization of ranging errors and multipath impacts. This
optimization has been performed in a 3D real scenario for a
variable number of architecture sensors.

The results that we achieved show that the designed
methodology provides a method for estimating a priori the
maximal accuracy capabilities of the A-TDOA architecture
in 3D complex environments. In addition, the procedure
allows to determine the minimum number of sensors to
achieve a required accuracy demand, taking into account a
trade-off between accuracy, multipath presence and cost of
the system.
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