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ABSTRACT Asynchronous Time Local Positioning Systems are emerging as a decisive tool for high-
demanded accuracy applications. Its relevance relies on the unnecessary synchronism of the system devices
and the ad-hoc node deployment for fitting the design requirements in irregular scenarios. In this paper,
we provide a new methodology for obtaining optimized cost-effective asynchronous node deployments
based on system accuracy, enhanced primary and emergency operating conditions and security robustness.
In addition, we perform a deep analysis of the NP-Hard node location problem and we propose a new
Cramér-Rao Bound (CRB) error characterization considering Line-of-Sight (LOS) and Non-Line-of-Sight
(NLOS) system connections and clock instabilities for evaluating the quality of a node deployment.
We apply a Genetic Algorithm optimization in an irregular scenario of simulations to display this innovative
methodology with a trade-off between resolution in the search in the space of solutions and the achievement
of time-effective results. Results show that deployments with 4 and 5 coordinator sensors fulfill the design
requirements in the proposed scenario in both primary and emergency conditions (1.14 and 1.70 meters and
0.89 and 1.47 meters of mean errors respectively) while 5 coordinator sensor configurations outperform
4 coordinator sensor configurations in system security robustness proving their preeminence in this study.

INDEX TERMS Asynchronous positioning systems, CRB, clock errors, genetic algorithm, LOS, NLOS.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSS) provide global
coverage with a constellation of satellites in the space. Their
usage is widespread since they reach acceptable accuracy
for localizing objects in the earth with the available number
of satellites under coverage in a determined target location.
However, their signals simply deteriorate by crossing large
buildings [1], by facing obstacles in their paths [2], by suffer-
ing ionospheric adverse effects [3] or by unstable synchro-
nization effects on GNSS devices [4].

Consequently, new deployments of sensors in local and
defined spaces with the aim of enhancing accuracy have
attracted research interest over the last few years. These
deployments are known as Local Positioning Systems (LPS)
which enable to locate targets for high demanded accuracy
applications such as indoor localization [5], precision farming
[6], precision landings [7], or autonomous navigation [8].
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LPS conception allows the proximity between targets and
sensors to reduce adverse effects on the physical proper-
ties measured to compute location. LPS are distinguished
and classified by the physical property measured: time [9],
angle [10], power [11], phase [12], frequency [13] or combi-
nations of them [14], [15].

Among these systems, Time-Based Positioning Systems
have the better combination between accuracy, stability,
robustness and easy-to-implement hardware design. Time
measurements can be collected from two different strategies:
total time-of-flight measurements and relative time-of-flight
measurements.

Total time-of-flight systems, usually known as Time of
Arrival (TOA) [16], perform their target position determi-
nation through the distance traveled by the signal from the
emitter to the receivers. They require the complete synchro-
nization among the clocks of the system (i.e. targets and
sensors) to compute the time measurements. At least four
receivers are required to unequivocally determine the 3D
target cartesian coordinates in these systems.
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Relative time-of-flight systems, usually known as Time
Difference of Arrival (TDOA) [17], measure the distance
difference of the signal path traveled from the emitter to the
architecture sensors. These systems make use of at least five
sensors to unequivocally determine 3D target position deter-
mination even though we have proven [ 18] that by optimizing
the location of the sensors the problem can be solved with four
receivers.

Since the time differences are computed without
considering the emission time in TDOA architectures,
the synchronism of the clock of the receivers is enough to
compute the system measurements. Furthermore, the syn-
chronism of the receivers is optional in asynchronous TDOA
configurations which have emerged over the last few years
enabling the avoidance of the synchronization process among
all the receivers by centralizing the time measurements in
a single clock of a coordinator sensor (CS). This process
reduces the uncertainty and allows more stable target location
calculations.

Asynchronous Time Difference of Arrival (A-TDOA) [19]
and Difference-Time Difference of Arrival (D-TDOA) [20]
represent these elliptical asynchronous [21] methods and its
accuracy was studied in [22] showing a better overall perfor-
mance of the A-TDOA for LPS applications.

Asynchronous systems reduce uncertainties but increase
the paths traveled by their signals since the emission of
the positioning signal from the worker sensors (WS) to the
coordinator sensors (CS) must also be considered. Hence,
noise errors are increased in the asynchronous systems and
clock errors are reduced with regard to synchronous LPS.
We studied this problem in [23] and determined that the
overall error was greater in synchronous LPS applications.

Therefore, asynchronous LPS provide greater accuracy
and stability for high-demanded autonomous applications.
This consideration relies on an optimized node deployment
since bad sensor configurations in the space increase the
global architecture errors due to the accumulated error of non-
optimized paths and time measurements.

This fact contributes to enhance the importance of the
sensor locations in LPS. This is the main advantage of LPS
since the designer can locate the sensors to maximize the
system properties in a defined space. However, the designer
deals with a complex NP-Hard problem [24], [25] which has
been widely studied in the literature [26]-[28]. Because of
the dimensions of the space of solutions, heuristic methods
are applied to find an appropriate and optimized solution in
acceptable time [29]-[31].

The cost function of the problem is commonly the reduc-
tion of the uncertainties of the system errors. For this pur-
pose, a characterization of the noise and clock errors is
needed in each possible target location inside the coverage of
the LPS.

Firstly, Position Dilution of Precision (PDOP) was used
as the tool to characterize the system errors [32]. How-
ever, it represents a homoscedastic noise consideration which
do not deal with LPS applications since distances between
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targets and receivers may vary notably. Therefore, a het-
eroscedastic noise consideration is needed and Cramér-Rao
Bound (CRB) has been used to model it [33], [34]. CRB
represents the minimum achievable error of a positioning sys-
tem by any algorithm in a determined location. Traditionally,
CRB models have considered path degradations on signals
[35]. In one of our recent papers we completed this model by
adding a characterization of the clock errors to the covariance
matrix of the system [23].

This model considers initial-time offset to compute the
effect of the delay between the reference clock used for syn-
chronization and the clocks of the rest of the coordinator sen-
sors of the architecture -which has no effect in asynchronous
LPS-, the clock drift which introduces a cumulative error in
the time measurements with the instability in the frequency
of the clocks and the temporal resolution of the architecture
sensor clocks. In addition, a path loss propagation model is
introduced to characterize the White Gaussian Noise (WGN)
present in the communication channel.

This combined model for the optimization of the node loca-
tion has shown that asynchronous LPS reach better accuracy
performance in terms of stability and reduction of the system
errors. Consequently, we use A-TDOA in this paper to fit the
LPS high-demanded accuracy needs.

Nevertheless, asynchronous architectures have a firm
dependence on CS performance since all the time measure-
ments are computed on it. This causes that a possible mal-
function of the CS disables the complete system operation
making the localization temporarily unavailable. This disad-
vantage is solved in this paper through an optimized node
location which do guarantee at least two CS under coverage
in each possible target location.

We previously started this approach with the optimization
of the node location in synchronous LPS applications con-
sidering possible sensor failures in the architecture sensors
[31]-each of them are CS, i.e. TOA or TDOA methodologies-.
We later demonstrated [36] that a sub-optimal design of the
nominal performance of the localization system can reach
optimal behavior in failure conditions-temporal unavailabil-
ity of an architecture sensor- with a minimal accuracy lost on
the nominal conditions.

However, each of our past studies have particularized in
a small-scale positioning system performance optimization.
If the scenario becomes larger, a greater number of sensors
are needed to reach the accuracy required for every possi-
ble target location [35]. However, the increased number of
sensors employed also affect the global costs of the system.
Particularly, the higher complexity of the CS in design, equip-
ment and operation affects in a greater extent to the A-TDOA
architecture overall costs. For this reason, the usage of the
minimum number of CS makes this asynchronous system
cost-effective while the necessity of at least two CS under
coverage makes it available in CS failure conditions. In addi-
tion, the best combination of WS in each target location must
be selected to reach the best operating conditions in each
system coverage position.
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In this paper, we propose a methodology to deploy an opti-
mized cost-effective distribution of coordinator and worker
sensors in large-scale asynchronous LPS applications (e.g.
coverage of more than 1 km2 or required combinations of
more than the minimum architecture sensors to cover the
entire TLE with the accuracy bounds desired) by considering
CS availability and accuracy in each target position under
coverage. This includes the optimization for nominal and
eventual failure operating conditions of the system CS in each
possible target location and the finding of the optimized loca-
tion and the appropriate combination of WS for maximizing
accuracy in the space of coverage of the system.

The remainder of the paper is organized as follows: we
introduce a detailed description of the A-TDOA architec-
ture, the definition of the node distribution problem and the
methodology to reach a cost-effective node deployment in
asynchronous architectures in Section 2, the combined noise
and clock CRB model for the optimization is presented in
Section 3, the Genetic Algorithm settings for this combined
optimization and the results of the optimization are intro-
duced in Section 4 while Section 5 discuss and conclude the

paper.

Il. PROBLEM DEFINITION

Asynchronous Positioning Systems (APS) provide a stable
and cost-effective performance of LPS in high-demanded
accuracy applications. Its robustness is based on its capability
of computing the time measurements in a single clock of a
coordinator sensor. This fact reduces the overall error of the
time local positioning systems [23] by decreasing the clock
errors in optimized node locations.

However, these systems require that their signals travel
longer distances which may produce significant signal
degradations. Therefore, not any sensor deployment con-
figuration can be used for improving the performance of
APS since an effective link between target-CS and WS-
CS must be assumed. This link is more effective if Line-
of-Sight (LOS) connections between signal emitter and
receivers are favoured and adverse phenomena on signals are
avoided [35].

Furthermore, in APS, all the time measurements are com-
puted in the CS which makes the system unavailable in case
there is not a CS under coverage in a space location. As a
consequence, if a CS is not available there is not possibility
of determining the Target Sensor (TS) location in APS even if
the number of sensors available exceeds the minimum num-
ber of receivers to provide a solution of the TDOA problem
solved in APS (i.e. more than the required number of WS
needed in the TDOA problem and unavailability of a CS to
compute the time measurements).

In this paper, we provide an enhanced genetic algorithm
optimization of the node location of the A-TDOA architecture
by guaranteeing the availability of the CS in all the space
possible target locations and by reducing the overall errors
and the costs of the system through a novel methodology in
evaluating the beauty of the node distributions. In this section,
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we present the A-TDOA architecture, the node location prob-
lem and the particularities of the novel evaluation method
used for the optimization.

A. A-TDOA ARCHITECTURE

APS techniques have been proposed over the last few years
[19], [20]. They reach great stability and accuracy since
they reduce the number of clocks needed for the position
determination by centralizing all the system measurements
in a single clock of a CS. This approach is especially suitable
for LPS applications since the incremental distance traveled
by their signals do not affect the overall accuracy more than
the effect of the clock errors in LPS. However, APS are not
appropriate for GNSS since the signal travel longer paths than
in synchronous configurations and the signal degradation
would be higher than the benefits of the reduction of the clock
errors in GNSS.

Therefore, the usage of APS fits with high accuracy
demands in precision local applications. Among the APS
architectures, we demonstrated [22] that A-TDOA provides
less uncertainty in different sensor configurations. For this
reason, we apply this architecture to reach a cost-effective
accuracy APS.

A-TDOA is a passive positioning system that uses the TS
as a repeater of the positioning signals which are emitted
by the WS. It requires at least four WS (3D positioning) to
send different positioning signals that will be received, after
TS retransmission, in the CS (tgnyp;). Furthermore, the same
signal emitted by the WS arrives directly to the CS (ts7arTi)-
The time difference between the arrival of the two positioning
signals is the time computed for each time difference of each
pair WS-CS. The process finishes when each signal of each
WS is processed in the CS and the time measurements are
accomplished.

A — TDOA; = ¢ (tgnp; — tszarr;) — | IWSi — CS|| (1)

where A-TDOA; represents the time measurement of the WS;,
c is the speed of the radioelectric waves and ||WS; — CS||
is the distance between the WS; and the CS which is known
since the position of the nodes is fixed.

The procedure allows the usage of a single clock in the CS
and its accuracy and robustness is highly dependent on the
sensor distribution in the space. In Figure 1, the increase in the
path traveled by the positioning signal is shown. Therefore,
the introduction of path loses on signals must be reduced
through an optimized node location to make the A-TDOA
architecture competitive.

B. NODE LOCATION PROBLEM AND DEFINITION OF THE
SCENARIO OF SIMULATIONS

The node location problem has been widely studied in the
localization field since the appropriate deployment of sensors
has a direct impact in the performance of the Wireless Sensor
Networks (WSN) [26], [28], [37], [38]. One of the main
advantages of WSN is the freedom to locate sensors in space
in order to maximize system properties.
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FIGURE 1. Asynchronous Time Difference of Arrival System (A-TDOA)
communications scheme with m Coordinator Sensors (CS) and n Worker
Sensors (WS) under coverage with the Target Sensor (TS).

cs;

The problem of the node distribution has proven to be NP-
Hard [24], [25] in the complexity of the space of possible
solutions. Firstly, this node distribution was treated through
linearizations of the problem in grid searches to reduce the
overall complexity [39]. Then, non-linear approaches were
considered through greedy-type algorithms [40]. However,
these solutions do not estimate the complete combination of
sensors in space and this problem is not suitable for using
greedy algorithms since a deep exploration of the space of
solutions is suggested to find acceptable solutions.

Subsequently, the advancement in processing capability
enabled the usage of heuristic methods to find more refined
solutions to the node location problem. Simulated annealing
[29], [41], particle swarm optimization [42], Tabu search
methodologies [43], firefly algorithm optimizations [44] but
specially Genetic Algorithms (GA) [18], [26], [27], [31], [35]
have been used to determine suitable node locations. For this
reason, we use in this paper a Genetic Algorithm to solve the
node location problem.

However, regardless the heuristic method used for the
optimization there is a task to particularly considering for
enhancing the performance of localization networks: while
communication networks rely exclusively on the position of
the nodes since they are the only active element of the system,
LPS also require the interaction with the TS. Therefore, each
possible TS location in the coverage region must be evaluated
in the fitness function used for optimization. We defined
in [31] the difference between the space available for the
sensors to be located, Node Location Environment (NLE),
and the possible TS navigation environment, Target Location
Environment (TLE). The existence of the NLE increases the
overall optimization process complexity. The computational
complexity of a problem is defined through the order of
the number of operations needed to explore all the space of
solutions [45] to reach a solution.

Therefore, the complexity of the node location problem of
k sensors in localization is:

k—1
O (NLP) = [1‘[ (e — i)} nreO(ffre) ()

i=0
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where O(NLP) is the complexity order of the node location
problem, k is the number of sensors of the problem, nyyg is
the number of possible locations of each sensor in the space,
ntLg the number of possible TS locations and O(ffrg) is the
complexity order of the fitness function evaluation in every
possible TLE.

Eq. 2 shows that the larger the number of possibilities
for the sensors to be located in the space and the larger the
number of sensors displayed, the greater the computational
complexity of the global problem. In addition, this complex-
ity increases with the number of operations in the fitness
function of each possible TS location for each combination
of sensors.

Each of these initial parameters must be selected to guar-
antee a sufficient exploration of the space of solutions and not
overcomplicate the computational complexity of the problem.
For this study, we define each of these parameters in Table 1:

TABLE 1. Parameters to define the complexity of the node location LPS
problem.

Parameter Value
NyLg 1000
k 12/13/14
NrLg 1000

Possible sen-
sor distribu-
tions

9.36 * 1035/9.25 * 1038 /9.13 % 10*?

Overall Num-
ber of opera-
tions

k-1
[n(nNLE =) ] *Nrpg * O(f froe)

i=0

Table 1 shows the high complexity of the node location
problem in LPS, suggesting the implementation of a heuristic
approach to find an acceptable solution in a reasonable time,
as it has been widespread in the literature. For this reason,
the designer must select the parameters involved in the opti-
mization process carefully, specially the number of evaluated
target sensor positions in space (n7zg) and the possible space
locations for the architecture sensors (nyzg) since a trade-off
between the resolution in the search of the space of solutions
leading to improved results of the problem and the reduction
of the overall complexity of this NP-Hard problem must be
balanced. The designer must also control the complexity of
the fitness function which will depend on the characteristics
of the optimization. As a result of the diversity of the goals for
the designer solving the node location problem, the number
of operations is not quantified in this table favouring the gen-
eralization of the problem and will depend on the constraints
and algorithms for determine the quality of the optimization
selected.

The selection of these parameters must be based on the
scenario of simulations in which the node optimization is
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z(m)

X (m)

FIGURE 2. 3D irregular scenario of simulations. Gray zones represent the
base surface for the optimization. Orange regions define the TLE zone,
which extends in elevation from the base surface from 0.5 to 5 meters.
The rest of the base surface is intended to the NLE, with constraint in the
minimum and maximum height regarding the reference surface from 3 to
10 meters respectively.

performed. Based on [31], we define a 3D scenario in an
attempt to figure out the real-operating conditions of LPS
(i.e. complex orographic scenarios with LOS/NLOS environ-
ments and subareas of target navigation such as roads for
autonomous vehicles). This scenario is shown in Figure 2
with the definition of the TLE and NLE.

TLE and NLE regions have been defined towards the
objective of depicting any possible condition or complex
scenario of application, which substantiates the flexibility
and versatility of the proposed methodology, and allows the
implementation of this procedure in difficult outdoor and
indoor environments. In this case, the designed environment
for simulations shows a terrestrial LPS application, where the
TLE varies deeply in elevation and its projection over the
reference surface is highly irregular. However, this modeling
can be applied to characterize outdoor and indoor positioning,
with terrestrial or aerial optimizations.

The NLE and TLE regions are modeled following a dis-
cretization procedure, based on a trade-off between accuracy
in the evaluation of sensor distributions and the number of
analyzed points -which directly influences the overall number
of operations (Table 1) and the algorithm complexity-. The
best results for the TLE region are reached through a spa-
tial discretization of 10 meters for x and y coordinates, and
1.5 meters for z coordinate. With this configuration, exper-
iments revealed that the mean optimization metrics remain
almost constant for higher spatial resolutions, saving pro-
cessing time. Regarding the NLE, the spatial discretization is
variable, derived from the process of scaling proposed in [31],
enabling resolutions for 0.5 to 1 meter for a high accuracy
sensor deployment.

The novelty of the optimization proposed in this paper
is based on the consideration of the noise and clock errors,
the additional path losses typical in NLOS environments,
and the effective coverage of the sensors for the position
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determination through the CSs availability over the TLE. All
these considerations constitute the fitness function evaluation
in each TLE position and its definition is proposed in the next
subsection.

C. METHODOLOGY FOR THE COST-EFFECTIVE NODE
DEPLOYMENT IN A-TDOA SYSTEMS
Each heuristic optimization is based on a fitness function
in which each parameter considered for reaching optimized
solutions must be represented. In this subsection, we define
each parameter and develop the final form of the fitness func-
tion to evaluate the beauty of the node distribution examined
in all the TLE.

The constraints for the cost-effective node deployment in
the A-TDOA architecture are:

o Optimization of the clock errors in the CS, through
the combined minimization of the magnitudes of the
time measurements in the CS for each A-TDOA sensor
combination.

« Optimization of the path losses of the positioning signals
in the travel from TS-CS and WS-CS, using the com-
bined minimization of distances and NLOS disruptions
in each A-TDOA signal path.

o Selection of the adequate combination of sensors from
all available for location determination in each TLE area,
ensuring the maximization of the performance of the
A-TDOA architecture in terms of accuracy.

« Optimization of the availability of the system under CS
failures, i.e. guaranteeing two CS for positioning in each
location of the TLE region, holding high-demanding
requirements of accuracy in both configurations.

« Elimination of sensor deployments that interferes or
occupies some forbidden regions, e.g. the TLE region
or some specific zones.

The attainment of these objectives is performed through
a sequential TLE (seq-TLE) approach, where all optimiza-
tion parameters are evaluated for each analysis point of
the TLE, repeating the procedure throughout the remaining
TLE region. This methodology avoids repeated calculations,
becoming especially suitable for large and complex TLE
areas, where high-density point representations are needed
for accurate results.

In this sense, the first step of the fitness function charac-
terization is the selection of the most suitable CS for each
A-TDOA sensor deployment (i.e. GA individuals). The elec-
tion is based on the following criteria: “‘the most suitable CSs
selection (initially all sensors in the GA individual are candi-
dates to be CS) for each sensor deployment in the environ-
ment is the one which maximizes the number of TLE points
in coverage combining different CS and ensuring at least four
WS connected to each of them”. In fact, for attaining CS
condition failures, this statement is modified for guaranteeing
at least two CS available in each TLE analysis point. The
obtainment of the coverage quantification for each CS-TLE
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point link is performed through the LOS/NLOS algorithm
described in reference [35].

Once this process is finished, the best configuration of CS
and WS for each sensor distribution of the GA is selected.
Then, the seq-TLE process is performed for every individual
(i.e. A-TDOA different sensor deployment) of the GA.

The optimization of noise and clock errors, together with
the optimization of LOS/NLOS path losses of the positioning
signals in the travel from TS-CS and WS-CS are assumed
through the minimization of the CRB for each point of the
TLE provided for each CS in the distribution. The CRB mixed
model for combined positioning uncertainties is derived from
our previous works [23], [35], which is detailed in Section 3.
This model is directly applied when at least one CS and a
minimum of four WS are available for positioning, otherwise
a 300 meters’ accuracy error is fixed (this hyperparameter is
adjustable according to accuracy requirements and stands out
for a non-valid operating condition, where CRB model is not
implementable).

The quantification of uncertainties induced by noise and
clock errors and NLOS signal propagation is performed for
every combination of one CS and multiple WS in each point
of analysis of the TLE region. This ensures the attainment
of the best valid configuration for every block of CS with
multiple CS available in each TLE point -e.g. if there are one
CS and 6 WS, the best configuration in terms of accuracy can
be reached with all WS available or with some of them (if
some of the deployed WS present NLOS conditions in this
zone in particular)-.

Concerning to the optimization of the system CS fail-
ure conditions, the fitness function provides a method for
progressively penalizing those sensor distributions where
the positioning cannot be provided by at least two dif-
ferent CS (although these CS can share multiple WS),
which is mandatory for the availability of APS under fail-
ure conditions. The penalization is based on the quantifi-
cation of available CS-WS groups for location in each
TLE point, assigning a penalization —2n7rg to each TLE
point where at least two CS are not available. This method
guarantees the completion of the failure condition require-
ments since softer penalizations encourage the achieving
of sensor distributions with zones with a high-density
of distinct CS coverage and regions with only one CS
available.

The last parameter of the optimization is the penaliza-
tion factor relative to the deployment of sensors in for-
bidden areas, and/or the enhancement sensor distributions
in certain regions of interest. In this specific problem,
sensors cannot be located inside the TLE region, as an
actual representation of LPS terrestrial applications of posi-
tioning, where sensors must be outside the road/travel
of vehicles.

The above optimization approach leads to the following
fitness function, where all summands are constrained in the
interval [0-1], enabling a flexible optimization weighting and
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ensuring a correct characterization of the process.

ff = Cuff | + Coffy — (C1 + C2) (fFacs + £ k)

Krie [ (RMSEref —RMSECSl) ]2

k=1 RMSE o7
] =
KriE
ZKTLE (RMSE . —RMSEcs;) 12
k=1 RMSE o
ffa= X
TLE
C abs[nt g —sum(Evalcsy)] 2
¥ 3 nrLe(nrLe+1)
2CS =
C3+Cy
C abs[nr g —sum(Evalcsy)] 2
4 nrLe(nrLe+1)
C3+ Cy
YR
fr= 3)

N

where ff| and ff> are respectively the fitness function accuracy
representation for the primary and secondary CS in each TLE
point, coefficients C; and C, allow distinct ponderations of
Jffi and ff> for the optimization process, ff>cs is the penal-
ization due to unavailability of CS in each analyzed region
of the TLE, ffz represents the penalization factor proper of
invalid sensor placements, nyr g is the number of studied
points that characterized the TLE, RMSE,, is the reference
Root Mean Square Error (RMSE) for normalizing the ff| and
1> (prefixed to 300 meters, as the possible lower accuracy
condition in the problem), RMSEcg; and RMSEcs; are the
vectors that contain the accuracy evaluation in terms of the
RMSE—detailed in Section 3- for the primary and secondary
CS in each TLE analysis point, C3 and Cy are the coefficients
related to the weighting of the ponderations of the summands
of the ff>cs function, Evalcs; and Evalcsy are respectively
the vectors that quantifies the existence of one or two CS in
each TLE analysis point-with their correspondent minimum
of four WS (shared or not)-, assuming a value of -2K7 g
when these conditions are not fulfilled since the analysis of
each point of the TLE returns 0 in unavailability conditions
and 1 in available configurations, N is the number of sen-
sors deployed (CS and WS), and R is the penalization for
void sensor locations (0 for valid placement, 1 for forbidden
colocation).

lIl. CRAMER-RAO BOUND MODEL FOR THE COMBINED
NOISE AND CLOCK ERROR MODEL

Cramér-Rao Bound (CRB) is a maximum likelihood estima-
tor based on the inverse of the Fisher Information Matrix
(FIM). Its usage in the localization field has been widely
considered for the characterization of the architecture errors
in positioning systems [46]-[48]. This statistical operator
provides the lowest error in localization regardless of the
algorithm used for the position determination. Therefore, the
analysis of this parameter allows us to characterize the beauty
of a node deployment since the better distribution of sensors
in space allows the reduction of the CRB values in the TLE.
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For this purpose, a characterization of the WGN present
in the communications channel must be considered. Partic-
ularly, in LPS, the heteroscedasticity of the noises resulted
from different range of signal travels is essential to attain
valuable results [33]. This fact is introduced in the covariance
matrix of the system. Kaune et al [49] develop a matrix
form of the FIM to generally compute the system architecture
errors with distance-dependent noises:

T
o= <8h (TS)> R (TS) <8h (TS))

X, 0xp

i <R—1 (TS) (—8R (TS)) R (TS) <8R (TS)»
2 0Xm dxy,
“

where m and n are the parameters to be estimated -TS Carte-
sian coordinates-, h(TS) the vector containing the system
path travel measured in the architecture at study through the
time measurements in a CS and R(TS) the covariance matrix
containing the uncertainties of the system -in this case clock
and path errors-.

Particularizing for the A-TDOA architecture, the h(TS)
vector is constituted as follows:

ha-tpoa; = ITS — WSi|| + ||TS — CSj|| — [|WS; — CS]|
i=1,2...,Nys j=1,2,....Ncs (5

being Nws the number of WS under coverage for each CS and
Ncs the total number of CS under coverage.

The construction of the covariance matrix, R(TS), depends
on the error characterization introduced. Traditional studies
considered path degradation in signal propagation in LOS
environments through path loss models [33]. We introduced
in our recent articles a new model for quantifying the clock
errors [23] and also the NLOS propagation errors in complex
LPS scenarios [35] in the covariance matrix along with tradi-
tional noise uncertainties.

In this paper, we combine these two models to provide a
more accurate approximation of the actual errors of A-TDOA
systems. According to Kaune et al. [49], the time measure-
ments in TDOA systems are assumed to be uncorrelated.

In this way, the covariance matrix is constructed for the
A-TDOA architecture by considering LOS and NLOS propa-
gation travels by the positioning signal on a Log-Normal Path
Loss Model which especially fits LPS demands in complex
environments [50] and clock error considerations [20] for a
generic CS “m™:

2 PL(dy)

2 _ . X
OA~TDOA; =y Py ginios [(dips +4d;
B B, %o

)nLOS
INLOS

+ (dTSLOS + d%{SNLQS )”LOS

+(dcs ros T déS NLOS ) os ]

l
1
+7 I; { \(T; + Trs,, — Tcs,,)

— floorrg ((T; + Trs,, — Tcs,,) Nesn) 62} (6)
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x = (nyLos)/(nLos) where c is the speed of the radioelectric
waves, B the signal bandwidth, Py the transmission power
of the positioning signal, P, the mean noise power level
obtained through the Johnson-Nyquist relation, dqy the dis-
tance of reference from which the application of the Log-
Normal Path Loss Model can be used, PL (dp) the path-loss in
the reference distance;nyps and nyzos the coefficients of the
path loss exponents; d;, drs and dcs; are the distances from
the TS to the WS;, from the TS to the CS,,, considered for the
position determination and from the WS; to the CS,, respec-
tively; / the number of iterations of a Monte Carlo simulation
to correctly estimate the temporal variance associated with
the time system errors, T; the total time of flight from the TS
to the WS;, Trs,, the time from the emission of the positioning
signal in the TS and its arrival in the CS,,, T¢s,, the time of
signal travel from the WS; to the CS,,, 1, the clock drift of
the CS,, and flooryg the truncation of the error in the clock
based on their resolution parameters.

This variance model provides the uncertainties in a defined
TS location based on the clock characteristics and the signal
travel from the WS and the CS under coverage used for the
position determination. The trace of the inverse of the FIM
directly defines the RMSE of the TS location in the TLE
considered [33]:

RMSE = @)

being n the number of parameters to estimate, in this case
each of the TS Cartesian Coordinates (2 and 3 for 2D and 3D
positioning respectively).

IV. RESULTS

The implementation of the previous optimization technique
for locating A-TDOA sensors in the 3D scenario pre-
sented in Section 2, yields the following results. Firstly,
the configuration parameters of the A-TDOA architecture,
the characteristics of the CS clocks used in the system
and the GA optimization hyperparameters are provided and
justified. Subsequently, simulations for a distinct number
of sensors are provided, enabling different comparisons in
terms of availability and accuracy of sensor distributions
with a variable number of CS and WS deployed. With this
procedure, a methodology for cost-effective sensor optimiza-
tions of asynchronous LPS is granted, enabling trade-off
solutions based on the design requirements for high-accuracy
applications.

A. PARAMETER AND HYPERPARAMETER
CONFIGURATION FOR THE SIMULATIONS

The operation setting of the A-TDOA architecture employed
for all simulations is provided in Table 2. The handled selec-
tion criteria are based on a generic representation of position-
ing systems [50], [51], aiming a flexible characterization of
technologies and highlighting the application of the described
optimization technique in several circumstances.
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TABLE 2. A-TDOA parameter configuration for the simulations. Noise
characterization is performed based on [50], and clock error
modeling is configured relying on [20].

Parameter Magnitude
Frequency of emission 1090 MHz
Transmission power 400 W
Mean noise power -94 dBm
Receptor sensibility -90 dBm
Bandwidth 100 MHz
Clock frequency 1 GHz
Frequency-drift U{-15,15} ppm
Time-Frequency product 1
LOS Path loss exponent 21
NLOS Path loss exponent 4.5
TLE Coverage Area 0.12 km2

TABLE 3. Setup of the GA hyperparameters and fitness function
coefficients for the simulations.

GA hyperparameter Setup
Population size 120
Selection technique Tournament 2

Crossover technique

Single-point

Mutation technique Single-point
Elitism percentage 2.5%
Mutation percentage 7 %
300 generations or
Stop criteria 80 % of equals
individuals
C; - C, coefficients value 1
C; - C, coefficients value 1

The GA and fitness function configuration are presented
in Table 3. Similarly to the spatial resolution selection for the
TLE and NLE regions defined in Section 2, the setup of the
GA hyperparameters is accomplished under the compromise
between accuracy representations and restrained algorithm
complexity with controlled processing time. The selection
process of these hyperparameters has been similar to the
methodology followed in [31] but different results were
obtained since any different scenario of simulations require
a particular fine-tuning for achieve practical results. The fol-
lowing hyperparameters are the best-founded configuration
that allows the fulfillment of these factors.

The proposed GA and fitness function configuration search
for an optimization where primary and secondary CS posi-
tioning would be practically homogenous, in other words,
the importance of the accuracy of the normal operating
conditions is comparable to the importance of the fail-
ure operating conditions in the optimization. The impor-
tance of the constraints of the optimization can be modified
through the variation of the fitness function coefficients value
(C1-C2-C3-Cy).
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FIGURE 3. Accuracy evaluation in meters for the primary CS (i.e. normal
operation) in each TLE point for the optimization with three CS. CS and
WS are characterized by brown and purple spheres, respectively.

B. ACCURACY AND AVAILABILITY ANALYSIS

In this section, A-TDOA sensor distributions with different
number of CS are studied under the parameters of accuracy
and availability of performance in CS failure conditions. The
proposed scenario, together with the environment modeling
presented in Table 2, represents a complex framework where
the guarantee of two CS available — and at least four WS con-
nected with these CS— for primary and secondary positioning
in every TLE zone presents difficulties. Due to the complex
orography and the challenging propagation of positioning
signals between different side of the central hill with higher
ground elevation, at least three CS are theoretically needed
for ensuring positioning services in CS failure conditions
and satisfy the availability requirement. Furthermore, exper-
iments carried out show that at least nine WS are needed to
deploy and establish a valid connection with CS and ensuring
aminimum of four WS for primary and secondary positioning
(shared or not).

Based on these factors, in the following paragraphs,
the results for the optimization of accuracy and the fulfillment
of availability requirements are presented for three, four, and
five CS. All of these optimizations are performed with nine
additional WS. Figures and Tables are provided to capture all
the information of the simulations.

Firstly, the results of the optimization for three CS and
nine WS are given. Figures 3 and 4 present the accuracy
evaluation, in terms of the RMSE, for the primary and sec-
ondary or emergency CS (sub-optimal configuration as a con-
sequence of a temporal unavailability of the primary-the most
accurate- CS) handled for positioning in each discretized
TLE point.

Figure 4 reveals an important feature. The deployment
of only three CS does not allow the guarantee of double
CS availability in every point of the TLE for the designed
environment. Even there are some regions where secondary
positioning is possible, the fact that in some areas position-
ing service in emergency conditions cannot be provided can
assume a serious drawback for high-robustness applications
(e.g. autonomous navigation).
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FIGURE 4. Accuracy evaluation in meters for the secondary CS
(i.e. emergency operation) in each TLE point for the optimization
with three CS.

Primary RMSE for 4 CS and 9 WS
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FIGURE 5. Accuracy evaluation in meters for the primary CS (i.e. normal
operation) in each TLE point for the optimization with four CS.

Secondary RMSE for 4 CS and 9 WS 0
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FIGURE 6. Accuracy evaluation in meters for the secondary CS (i.e.
emergency operation) in each TLE point for the optimization with four CS.

After analyzing previous outcomes, the optimized sen-
sor distribution with four CS and nine WS is presented
in Figures 5 and 6 for primary and secondary CS positioning.

Conversely to the three CS optimization, Figures 5 and 6
show that the deployment of four A-TDOA CS with the
corresponding nine WS allows high performance in accuracy
for primary and secondary positioning. However, the system
performance in normal an emergency can be improved with
the increase of CS, as it is displayed in Figures 7 and 8.
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Primary RMSE for 5 CS and 9 WS
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FIGURE 7. Accuracy evaluation in meters for the primary CS (i.e. normal
operation) in each TLE point for the optimization with five CS.
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FIGURE 8. Accuracy evaluation in meters for the secondary CS (i.e.
emergency operation) in each TLE point for the optimization with five CS.

As it can be inferred, an increase in the number of CS
entails a boost in primary and secondary positioning accu-
racy, reaching the desired requirements for high-accuracy
applications. In this sense, a cost-effective node deployment
can be achieved with this optimization methodology, through
the trade-off between accuracy, availability, and the number
of sensors deployed (which directly influences the total cost
of the LPS).

In addition to the accuracy evaluations, in Figures 9 and 10
the number of WS per TLE point is presented for the four
and five CS configurations (those which enables a secondary
positioning in all the environment). The importance of the
WS location is crucial, both in accuracy and in positioning
availability (not only double CS are required in each TLE
zone, also a minimum of four WS linked to each CS).

Here resides the complexity of the optimization since the
cost-effective methodology for asynchronous node deploy-
ments presented in this paper for achieving valuable and
stable accuracy results must not only deal with the location of
the CSs in optimized positions but also consider the relative
location of the WSs in space defining a combined optimiza-
tion which is critical for obtainment the required accuracy
needed for LPS applications.

Figures 9 and 10 show the variability of the number of WS
in coverage for each TLE area, as a result of the accuracy
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Number of WS per TLE point
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FIGURE 9. The number of available WS for each TLE studied point for the
optimized sensor distribution of four CS.

Number of WS per TLE point
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FIGURE 10. The number of available WS for each TLE studied point for
the optimized sensor distribution of five CS.

and availability optimizations in the 3D irregular environment
with deep land slopes. It can be observed that areas where the
reference base and TLE regions experiment larger changes
in geometry or orography, concentrate a higher density of
WS in an attempt of maintaining the required accuracy and
availability objectives of LPS applications since generally
the more sensors in coverage the better accuracy achieved
(especially if they reach LOS and proximity links with
the TS).

Lastly, in Table 4 a summary of the main performance
results and characteristics of the analyzed sensor configura-
tions is provided.

Table 4 highlights the superiority of the five CS opti-
mization in terms of accuracy (both mean and minimum
magnitude) for the primary and secondary positioning. Also,
the maximum percentage of use of CS is reduced, i.e. this sen-
sor deployment allows more homogeneity in the importance
of the different CS involved (related to the security robustness
of the system). Conversely, the three CS optimization cannot
guarantee the positioning service in emergency conditions,
due to the inexistence of combined coverage of pairs of CS for
every TLE zone. Finally, the four CS distribution represents
the minimum number of deployed sensors (CS and WS) that
can accomplish the high accuracy and availability demands
in this environment.

154680

TABLE 4. Accuracy and availability comparison between sensor
configurations with three, four, and five CS (in meters). Primary
conditions (P) are referred to as normal operation, while secondary
conditions (S) represent emergency positioning service.

Sensor distribu-

. 3CS 4CS 5CS
tions
Mean P 1.91 1.14 0.89
RMSE S 81.67 1.70 1.47
Minimum P 11.73 3.89 3.66
RMSE S 300 4.99 421
Max CS P 41 % 40 % 32 %
use (%) S - 39 % 35 %
P 39 % 47 % 47 %
Max WS (5WS) (5WS) (5WS)
use (%) S ) 46 % 48 %
(5 WS) (5WS)

V. CONCLUSIONS

Local Positioning Systems are attracting high research inter-
est in high-demanded accuracy applications such as indoor
and outdoor autonomous navigation.

Among these local systems, those based in time mea-
surements allows the design of robust, accurate and easy to
implement hardware architectures. The main system errors
of these architectures are provided by ineffective links among
target and sensors and inappropriate synchronism of the sys-
tem devices. As a consequence, asynchronous time local
positioning systems have emerged over the last few years.
The asynchronous time systems are based on the collection
of the time measurements in a single clock of a coordinator
sensor avoiding the necessity for overall system synchro-
nization but increasing the signal paths. Thus, the increase
of the signal uncertainties must be offset by the reduction
of the clock uncertainties in the system overall performance
which can be achieved by optimizing the sensor distribution
in space.

The sensor location problem is deeply analyzed in this
paper, showing the high-complexity of the NP-Hard node
deployment for which a trade-off between resolution in the
search of the space of solutions and time-effective optimiza-
tions must be considered.

However, the specificities of the asynchronous node
deployment make this task even more complicated. For this
purpose, we propose a new optimized cost-effective method-
ology to deploy both coordinator sensors and worker sensors
in space by entailing the overall system accurate performance
in nominal and emergency conditions (i.e. primary coor-
dinator sensor unavailability). We provide an optimization
framework in search of at least two coordinator sensors under
coverage in every possible target location and the guarantee of
at least four worker sensors under coverage for each coordina-
tor sensor (which can be shared for the same target location).
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Furthermore, we apply an algorithm for the usage of the
best combination of coordinator sensors and worker sensors
since not always the maximum number of available con-
nections among coordinator and worker sensors can provide
the best accurate results (e.g. imbalanced signal degradations
among nodes).

The analysis of the combined effect of the clock and noise
uncertainties in the time measurements is performed through
the Cramér-Rao Bound which provides the minimum achiev-
able error by any positioning algorithm in every possible
target location. We propose a Cramér-Rao Bound model con-
sidering LOS and NLOS signal links through a Log-Normal
Path Loss model with the addition of the clock drift and
truncation errors present in the coordinator sensor clock. This
allows us to measure the architecture accuracy for a defined
node distribution.

The optimization of the node location is performed through
a Genetic Algorithm approach by looking for an enhanced
node deployment which focuses on accuracy, connection
effectivity, emergency localization and security robustness
for making the system cost-effective fulfilling the design
requirements.

In an attempt for representing real-operating conditions
of a Local Positioning System we have defined a simula-
tion scenario containing deep variances in elevation over the
ground reference surface forcing NLOS connections over the
different possible target locations.

The optimization considers three different configurations
with 3, 4 and 5 coordinator sensors and 9 worker sensors
(i.e. minimum WS number for achieving full coverage in this
scenario). The finding of the optimal number of coordina-
tor sensors for the fulfillment of the cost-effective security-
enhanced node deployment and its relation with the worker
sensors location is the main objective of this paper.

Results show that deployments with 3 coordinator sen-
sors are not able to reach full coverage increasing the over-
all errors of the system. Optimized four coordinator sensor
deployment can attain the design objective with an accept-
able mean error of 1.14 meters and 1.70 meters in primary
and emergency conditions while optimized five coordinator
sensor deployment can reach 0.89 meters and 1.47 meters
mean errors respectively. Both conditions satisfy the design
main objective but five coordinator sensor deployments show
a less critical usage of the system coordinator sensors in
both primary and emergency conditions which is crucial
for the security robustness of the system making the five
coordinator sensor deployment have a superior cost-effective
performance.
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