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1 Introduction

Kleene’s strong 3-valued matrix MK3 was defined in [22] in the context of

the treatment of partial recursive functions. The matrix MK3 (our label) can

be defined as shown in Definition 2.4 below. The connectives are conjunction,
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disjunction and negation. We can take either 2 as the only designated value

or else both 1 and 2. In the former case, 1 can be interpreted as neither truth

nor falsity; in the latter, as both truth and falsity. The value 2 is, of course,

truth, while 0 is falsity.

There are several possibilities for expanding the matrix MK3 with a condi-

tional connective. For example, we can define the conditional with disjunction

and negation similarly as in classical logic. Then, if 2 is the only designated

value, the set of valid formulas is empty, but if 1 and 2 are designated, all (and

only all) tautologies of classical logic are validated. Alternatively, the condi-

tional can be introduced by means of an independent function. In this way, for

example, Łukasiewicz’s 3-valued matrix MŁ3 or the 3-valued matrix MRM3

can be defined (MRM3 is the matrix determining the 3-valued extension of

the quasi-relevant logic RM; cf. [1], [9]). MŁ3 (resp., MRM3) is defined upon

MK3 with only one (resp., two) designated value.

In this paper, we shall consider all natural implicative expansions of MK3

with both one and two designated values. The notion of a natural conditional

is here understood as an extension of that introduced in [41] and can be defined

as shown in Definition 2.5. That is, given a matrix semantics, a conditional

is natural if the following conditions are fulfilled. (1) It coincides with the

classical conditional when restricted to the classical values  and  ; (2) it

satisfies Modus Ponens; and (3) it is assigned a designated value whenever

the antecedent and the consequent are assigned the same value. The original

definition in [41] differs from the one just given in condition (3), which reads

in [41] as follows: (3) it is assigned a designated value whenever the value

assigned to the antecedent is less than or equal to the value assigned to the

consequent. Let us briefly comment the motivation behind our weakening of

Tomova’s definition.

Traditionally, the conditional (or “implication”, as it is named in [43], cf.

pp. 277, ff.) is required to meet the following restriction of Tomova’s condition

(3): (30)  →  =  iff  ≤ , where  is the greatest element in the set of

logical values, no other designated elements being considered in this set (cf.,

e.g., [43], p. 277; or [28], pp. 179, ff.). But property (30) is only predicable of
strong logics. For instance, a logic needs to have the rule “verum e quodlibet”

(veq), “If , then  → ”, in order to fulfill (30) (cf. [43], pp. 227-228; “verum
e quodlibet” means “A true proposition follows from any proposition”). For

instance, only 4 of the 108 implicative expansions of MK3 considered in this

paper meet condition (30) (these are the ones built upon tables t90, t91, t120
and t121 in Appendix II).

In this sense, Tomova’s notion of a natural conditional can be viewed as

an attempt at extending the class of implications worthy of the name beyond

the restrictive limits imposed by condition (30). And certainly, there are very
interesting implicative expansions of MK3 satisfying Tomova’s definition, such

as, for example, the ones determining the paraconsistent logic Pac (cf. [20]),

the quasi-relevant logic RM3 (cf. [9]) or the intermediate logic with strong

negation named “the logic of the three-element algebra” in [23] (cf. tables

t211, t241 in Appendix I and t271 in Appendix II).
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Nevertheless, it has to be remarked that an important family of non-

classical logics, relevant logics, is not covered by Tomova’s definition: none

of the implicative expansion of MK3 complying with Tomova’s notion of a

natural conditional is free from paradoxes of relevance (cf. Appendix III). In

this respect, to extend the set of natural conditionals in order to include logics

without paradoxes of relevance can be seen as one of the motivations behind

the weakening of condition (3) in Tomova’s definition. Other properties of the

elements we introduce in the family of natural conditionals remain to be in-

vestigated, but one of them is clear, as it follows from the results recorded in

the following pages: their functional strength, which is precisely the aspect of

the logics here introduced we are interested in in the present paper.

Returning to the relevant (i.e., without paradoxes of relevance) logics de-

fined in the sections to follow, let us note a couple of remarks. Firstly, notice

that the condition (3) proposed by us allows to assign a non-designated value

to a conditional →  such that  ≤ , not only when  and  are designated

values, but also when  is a not designated one. These features frequently ap-

pear in matrices for relevant logics, as exemplified in Belnap’s matrix M0 (cf.

[6], [1]), a matrix of great importance in the development of relevant logic (cf.

[36]), for instance. Thus, we have defined 11 logics with the “variable-sharing

property” and 4 more with a related strong property we have named “quasi

variable-sharing property”. It has to be noted that none of these logics is in-

cluded in the quasi-relevant logic RM3, considered as the strongest member in

the (latto sensu) relevant logic family (cf. Appendix III). Secondly, it has to

be recalled that there are some many-valued logics with the “variable-sharing

property”. For example, the aforementioned Belnap’s matrix M0 and Meyer’s

Crystal lattice CL are axiomatized in [10]. But the meaning of the logical

values in these matrices is not easily interpreted from an intuitive point of

view. However, the meaning of the three values in the implicative expansions

of MK3 is crystalline, for instance, as interpreted in Belnap and Dunn’s “bi-

valent” semantics (cf. [7], [8], [12], [13]).

The aim of this paper is twofold. (1) To prove that the logics determined

by all natural implicative expansions of MK3 with only one designated value

are functionally equivalent to Łukasiewicz’s 3-valued logic Ł3 (cf. [24]). (2)

To prove that the logics determined by a certain class of natural implicative

expansions of MK3 with two designated values are functionally equivalent to

the paraconsistent logic J3 (cf., e.g., [11], pp. 18, ff.). (A more precise account

of this aim is provided at the end of the following section.)

2 Preliminary notions

In this section, we record some preliminary notions as used in the present

paper (of course, there are alternative definitions of these notions).

Definition 2.1 (Language) The propositional language consists of a denu-

merable set of propositional variables 0 1    and the following con-

nectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (negation). The
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biconditional (↔) and the set of wffs are defined in the customary way. 
etc. are metalinguistic variables. Sometimes we shall refer by P and F to the

set of all propositional variables and all formulas, respectively.

Definition 2.2 (Logical matrix) A (logical) matrix is a structure (V F)
where (1) V is a (ordered) set of (truth) values; (2)  is a non-empty proper

subset of V (the set of designated values); and (3) F is the set of -ary functions
on V such that for each -ary connective  (of the propositional language in

question), there is a function  ∈ F such that V → V. An M-interpretation
is a function from F to V according to the functions in F.
In this paper logics are prima facie considered as structures determined by

matrices. In particular, logics are defined as follows.

Definition 2.3 (Logics) Given a matrix M, a logic LM is a structure (L,
²M ) where L is a propositional language and ²M is a (consequence) relation

defined on L according to M as follows: for any set of wffs  and wff ,  ²M 

iff () ∈  whenever ( ) ∈  for all M-interpretations  (( ) ∈  iff

() ∈  for all  ∈  ). In particular, ²M  ( is M-valid) iff () ∈  for

all M-interpretations .

Next, Kleene’s strong 3-valued matrix is defined. Notice that we can choose

only 2 or else 1 and 2 as designated values. (Kleene uses 12 and 1 instead of
1 and 2, respectively. The latter have been chosen in order to use the tester in
[16], in case the reader needs one. Also, to put in connection the results in the

present paper with previous and subsequent work by us –cf. the concluding

remarks in section 8.)

Definition 2.4 (Kleene’s strong 3-valued matrix) The propositional lan-

guage consists of the connectives ∧∨¬. Kleene’s strong 3-valued matrix, MK3
(our label), is the structure (V F) where (1) V = {0 1 2} and it is ordered
as shown in the following lattice

(2)  = {1 2} or  = {2}; (3) F = {∧ ∨ ¬} where ∧ and ∨ are
defined as the glb (or lattice meet) and the lub (or lattice joint), respectively,

and ¬ is an involution with ¬(2) = 0 ¬(0) = 2 and ¬(1) = 1. We display
the tables for ∧, ∨ and ¬:

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

¬ 0
0 2
1 1
2 0
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The notion of an MK3-interpretation is defined according to the general

Definition 2.2.

The logic determined by MK3 can be named here K31 (only one designated

value) or K32 (two designated values) (cf. [13], §2.4 on these logics). Then, all

logics defined in this paper are natural implicative expansions of either K31

or else K32.

In what follows, natural conditionals and the natural implicative expan-

sions of MK3 considered in this paper are defined (there are stricter definitions

of a natural conditional; cf. e.g., [3]). Following Tomova [41], we define “natural

conditionals” as follows.

Definition 2.5 (Natural conditionals) Let V and  be defined as in De-

finition 2.4. Then, an →-function on V defines a natural conditional if the

following conditions are satisfied:

1. → coincides with (the →-function for) the classical conditional when re-
stricted to the subset {0 2} of V.

2. → satisfies Modus ponens, that is, for any   ∈ V, if →  ∈  and  ∈ ,

then  ∈ .

3. For any   ∈ V, →  ∈  if  = .

Remark 2.6 (Natural conditionals in Tomova’s original paper) We

note that natural conditionals are defined in [41] exactly as in Definition 2.5

except for condition (3), which reads there as follows: For any   ∈ V,  →
 ∈  if  ≤ .

Proposition 2.7 (Natural conditionals in 3-valued matrices) (a) Two

designated values: Let L be a propositional language and M be a 3-valued matrix

where V is defined exactly as in MK3 and  = {1 2}. Now, consider the 54 →
functions defined in the following general table, where  (1 ≤  ≤ 3) ∈ {0 1 2}
and 1 ∈ {1 2}:

TI

→ 0 1 2
0 2 1 2
1 0 1 2
2 0 3 2

The set of functions contained in TI is the set of all natural conditionals

definable in M.

(b) One designated value: Now, let M and V be as above but  = {2}.
Consider the → functions in the following general table, where  (1 ≤  ≤
3) ∈ {0 1 2} and 1 ∈ {0 1}:

TII

→ 0 1 2
0 2 1 2
1 2 2 3
2 0 1 2

The set of 54 functions contained in TII is the set of all natural conditionals

definable in M.
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Proof It is obvious.

The 54 tables in TI are displayed in Appendix I. They are divided in two

groups: 27 tables in TIII and 27 tables in TIV. For  (1 ≤  ≤ 27), tables in
TIII (resp., TIV) are referred to by t2 (resp., t1), since →(1 1) = 2 (resp.,
→(1 1) = 1). (Tables TIII and TIV are displayed below, at the end of the

section).

The 54 tables in TII are displayed in Appendix II. For  (1 ≤  ≤ 27),
tables in TII are referred to by t0 (resp., t1) if →(2 1) = 0 (resp., →(2 1) =
1).
Concerning TII, all tables are new except t90, t91, t180, t181, t270 and

t271, which appear in Tomova’s table TII
0 recorded below. Concerning TI, the

30 tables t1 through t10, t13, t16, t19, t22 and t25 (with  ∈ {1 2}) are
the new tables introduced by us, the rest of the tables in TI also appearing in

Tomova’s table TI0 defined below.

Remark 2.8 (Natural conditionals in 3-valued matrices II) If the original defi-

nition of a natural conditional in [41] is adopted instead of Definition 2.5, then

the set of natural conditionals in 3-valued matrices is as follows.

(a) Two designated values: The set of 24 functions contained in Table I0

TI0
→ 0 1 2
0 2 1 2
1 0 2 3
2 0 1 2

where  (1 ≤  ≤ 3) ∈ {1 2} and 1 ∈ {0 1 2}.
(b) One designated value: The set of 6 functions contained in Table II0

TII0
→ 0 1 2
0 2 2 2
1  2 2
2 0  2

where  ∈ {0 1 2} and  ∈ {0 1}.
It is clear that all tables in TI0 (resp., TII0) are contained in TI (resp., TII),

although, of course, not conversely.

Tomova’s 24 tables in TI0 are t11, t12, t14, t15, t17, t18, t20, t21,
t23, t24, t26, t27 (with  ∈ {1 2}), displayed in Appendix I. As pointed out
above, Tomova’s 6 tables in TII0 are t90, t91, t180, t181, t270 and t271, which
appear in Appendix II.

Definition 2.9 (Natural implicative expansions of MK3) Consider the

matrix MK3 and let M be an expansion of it built by adding any →-function.
It is said that M is an implicative expansion of MK3. Then, M is a natural

implicative expansion of MK3 if → is any of the →-functions (defining one
of the conditionals) in TI or TII (in Proposition 2.7).

We shall use the following referential convention.
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Definition 2.10 (T-logics) By a T-logic ( ∈ {    }) we mean
the logic LM, M being a natural implicative expansion of MK3 built from a

→-function in table T. That is, by a T-logic, we refer to the logic determined
by the natural implicative expansion of MK3 defined by an →-function in T.
(Tables TIII and TIV are displayed below.)

Next the notions of “propositional connectives definable in a logic” and

“functionally equivalent logics” are defined.

Definition 2.11 (Connectives definable in a logic) Let L be a logic deter-

mined by the matrix M (cf. Definition 2.3). An -ary connective  is definable in

L iff there is a formula  in L in which only connectives of L occur and at most

the propositional variables 1   and such that for any M-interpretation ,

((1  )↔ ) ∈ .

Definition 2.12 (Functional inclusion) The logic L is functionally in-

cluded in the logic L0 iff every primitive or definable connective of L is a
primitive or definable connective of L0.

Definition 2.13 (Functional equivalence) The logics L and L0 are func-
tionally equivalent iff L is functionally included in L0 and L0 is functionally
included in L.

To end the section, let us review the aims of the paper stated in its intro-

duction. It will be proved:

1. The 54 TII-logics are functionally equivalent to Łukasiewicz’s 3-valued logic

Ł3 (cf. [24]).

2. Consider the general table TIII contained in Table I:

TIII

→ 0 1 2
0 2 1 2
1 0 2 2
2 0 3 2

where  (1 ≤  ≤ 3) ∈ {0 1 2}. The 27 TIII-logics are functionally equiv-
alent to the paraconsistent logic J3 (cf., e.g., [11] or [20]).

3. Finally, consider the general table TIV contained in Table I:

TIV

→ 0 1 2
0 2 1 2
1 0 1 2
2 0 3 2

where  (1 ≤  ≤ 3) ∈ {0 1 2}. We have (a) the 27 TIV-logics are func-
tionally included in any of the TIII-logics; (b) the converse of (a), however,

does not hold: none of the TIII-logics is definable from the TIV-logics; (c)

the TIV-logics are not in general functionally equivalent to each other.
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As pointed out above, all Tomova’s tables with two designated values ap-

pear either in TIII or else in TIV (cf. Appendix I).

Aim (1) is fulfilled in sections 3 and 4, while aims (2) and (3) are met in

sections 5, 6 and 7. In section 8, we point out some remarks on the results

obtained and some suggestions for further work that might enhance the results

here obtained. We include two appendices displaying the general tables TI and

TII (tables in TII are listed in Appendix I; tables in TIII and TIV, in Appendix

II). In Appendix III, we study the behaviour of the 108 logics considered in

this paper w.r.t. the “variable-sharing property” and related properties.

3 The 6 tables in TII0 are definable from each other

Let M be a natural implicative expansion of MK3 (cf. Definition 2.9). As

remarked above (cf. Definition 2.3), by LM, we refer to the logic determined

by M. Then, for simplicity reasons, we proceed as follows. Let M and M0 be
two natural implicative expansions of MK3. We show that LM is functionally

included in LM0 by proving that the →-function in M is definable in M0.
Consequently, the proofs of definability of some table by another given in

the following pages have to be understood in this sense and as given in the

context of two or more natural implicative expansions of MK3. In this and

the following section, by t0, t1, or simply, t (1 ≤  ≤ 54), we refer to the
tables in Appendix II.

In this section we prove that the 6 tables in TII0 (cf. Remark 2.8) are
definable from each other. This fact is proved by Tomova in [40] (cf. also [39],

[41], [42] and [21]). A new proof is provided below for both keeping the paper

self-contained and using some of the tools employed in our proof in subsequent

sections.

For the reader’s convenience we write the six tables below

tŁ3.

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

tŁ30.

→ 0 1 2
0 2 2 2
1 1 2 2
2 0 0 2

tG3.

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

tS5.

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 0 2

tC0.

→ 0 1 2
0 2 2 2
1 2 2 2
2 0 0 2

tC1.

→ 0 1 2
0 2 2 2
1 2 2 2
2 0 1 2

The labels of the tables are explained as follows: tŁ30 is Ł3-implicative

table tŁ3 when 1 = 0; C refers to the fact that tC0 and tC1 verify the axioms
and rule of classical implicative propositional logic as firstly defined in [25] (C0
and C1 indicate that 1 = 0 and 1 = 1, respectively); G3 refers to Gödel’s
3-valued logic G3, the conditional of which is given by tG3 (cf. [5] on Gödel’s

logics and [29] on 3-valued Gödel logic G3); and, finally, S5 refers to the fact
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that tS5 verify the axioms and rule of the positive fragment of Lewis’ S5 as

axiomatized by Hacking [18].

Next, we proceed into proving the interdefinability of the six tables. But

before we need a preliminary lemma.

Lemma 3.1 (Additional negations) Consider any expansion of MK3 by

addition of any of the 729 →-functions defined in the following general truth-
table:

→ 0 1 2
0 1 2 2
1 3 2 4
2 0 5 6

where  (1 ≤  ≤ 6) ∈ {0 1 2}. Then, the additional negation connectives •¬
and

◦¬ given by the truth-tables
•¬

0 2
1 2
2 0

◦¬
0 2
1 0
2 0

are definable.

Proof Set, for any wff ,
•¬ = → ¬ and

◦¬ = ¬(¬→ ).

Remark 3.2 (On the additional negations) The negation connectives ¬, •¬ and
◦¬ are instances of the three main negation functions considered in [17] (Sec-
tion 5.2). That is, Łukasiewicz-type negation, Gödel-type negation, and “dual

Gödel-type negation”, which are, respectively:

non1() = 1− 

non0() = 1 if  = 0; 0, otherwise

non*() = 1 if   1; 0 if  = 1

Gottwald notes ([17], p. 85) that non0 and non* are “extremes examples

in the sense that for each negation function  it holds non0 ≤  ≤ non*”.
Then, we have:

Theorem 3.3 (Interdefinability of the six tables in TII0) The six tables
in TII0 are interdefinable from each other.

Proof We note the following preliminary remarks: by
G3→ we refer to the con-

ditional defined by tG3, other superscripts being read similarly; we use the

additional negations defined in Lemma 3.1; in the proof to follow,  and 

refer to any wffs; in case a tester is needed, the reader can use that in [16]. We

have

1. tG3⇒ tŁ3: 
Ł3→  = ¬ ∨ ( G3→ )
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That is, the conditional 
Ł3→ , characteristic of Łukasiewicz’s 3-valued logic

Ł3 and defined by the table tŁ3, is definable by tG3 with the scheme ¬∨( G3→
). The items to follow are read similarly.

2. tŁ3⇒ tS5: 
S5→  = (

•¬ Ł3→ •¬) ∧ ( ◦¬ Ł3→ ◦¬)
3. tS5⇒ tG3: 

G3→  =  ∨ ( S5→ )

Therefore, by 1, 2 and 3, we have:

4. tG3⇔ tŁ3⇔ tS5

That is, tG3, tŁ3 and TS5 are definable from each other. Similar expressions

to follow are read similarly.

5. tŁ3⇒ tŁ30: 
Ł30→  =

•¬ •¬ ∨ [ •¬ ∧ ( Ł3→ )]

6. tŁ30 ⇒ tŁ3: 
Ł3→  =  ∨ ( Ł30→ )

So, by 4, 5 and 6, we obtain

7. tG3⇔ tŁ3⇔ tŁ30 ⇔ tS5

Then, we prove

8. tC1 ⇒ tC0: 
C0→  =

•¬ •¬ ∨ [ •¬ ∧ ( C1→ )]

9. tC0 ⇒ tC1: 
C1→  =  ∨ ( C0→ )

10. tG3⇒ tC1: 
C1→  =

•¬ ∨ ( G3→ )

11. tC1 ⇒ tS5: 
S5→  = (

•¬ C1→ •¬) ∧ ( ◦¬ C1→ ◦¬)
So, finally, by 7, 8, 9, 10 and 11, we have:

12. tG3⇔ tŁ3⇔ tS5⇔ tŁ30 ⇔ tC1 ⇔ tC0

as was to be proved.

We note that the proof given above could have been slightly simplified by

using the precompleteness of Ł3 (cf. [14], where this property of Ł3 was firstly

proved; cf. also [4]).

4 The 54 tables in TII are definable from each other

We prove that the 54 tables in TII are definable from each other. As pointed

out above, by t0, t1, or simply, t (1 ≤  ≤ 54), we refer to the tables in
Appendix II. We begin by proving the following proposition.

Proposition 4.1 (The 27 tables in TII with 1 = 0 are definable by
t9)

The 27 tables in TII with 1 = 0 are definable by t9 (tS5).
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Proof Once remarks similar to those at the beginning of the proof of Theorem

3.3 are made, we have:

1. t9, t18 and t27 are tS5, tŁ30 and tC0, respectively, which are interdefinable

by Theorem 3.3.

2. Secondly, we set the following definition:

t3: 
t3→  =

•¬ •¬ ∨ ( S5↔ )

That is, table t3 is definable by means of the scheme
•¬ •¬ ∨ ( S5↔ ). The

items to follow are read similarly.

t7: 
t7→  =

◦¬ ∨ ( S5↔ )

t12: 
t12→  = (¬ ∧ ◦¬) ∨ [ •¬ •¬ ∨ ( S5↔ )]

t15: 
t15→  =

•¬ •¬ ∨ ( Ł30↔ )

t16: 
t16→  =

◦¬ ∨ ( Ł30↔ )

t17: 
t17→  = ¬ ∨ ( S5↔ )

t21: 
t21→  = (

•¬ ∧ ◦¬) ∨ [ •¬ •¬ ∨ ( S5↔ )]

t25: 
t25→  =

◦¬ ∨ ( C0↔ )

t26: 
t26→  = ¬ ∨ ( C0↔ )

3. Finally, the rest of the tables are defined by either union (∪) or intersection
(∩) of the tables previously defined. (The union (intersection) of two tables
is defined by the disjunction (conjunction) of the respective schemes defining

them). We have:

t2: t3 ∩ t17
t1: t2 ∩ t7
t8: t2 ∪ t7
t5: t8 ∩ t15
t4: t5 ∩ t7
t6: t5 ∪ t3
t10: t12 ∩ t16
t13: t15 ∩ t16

t14: t2 ∪ t13
t11: t12 ∩ t14
t19: t21 ∩ t25
t20: t21 ∩ t26
t22: t13 ∪ t19
t23: t13 ∪ t20
t24: t15 ∪ t21

For example, consider t2: t3 ∩ t17. t30 and t170 are

t30.

→ 0 1 2
0 2 0 2
1 0 2 2
*2 0 0 2

t170.

→ 0 1 2
0 2 2 2
1 1 2 1
*2 0 0 2

Now, by using the ∧-function in MK3 we have ∧(2 2) = 2 ∧(0 2) =
0 ∧(2 2) = 2 ∧(0 1) = 0 ∧(2 2) = 2 ∧(2 1) = 1 ∧(0 0) = 0 ∧(0 0) =
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0 and ∧(2 2) = 2. That is, the table corresponding to (
t30→ ) ∧ ( t170→ )

is:

t20.

→ 0 1 2
0 2 0 2
1 0 2 1
*2 0 0 2

By leaning on Proposition 4.1, we can prove:

Proposition 4.2 (The 27 tables in TII with 1 = 1 are definable by
t9)

The 27 tables in TII with 1 = 1 are definable by t9 (tS5).

Proof Consider the table t•∧
•∧ 0 1 2
0 0 0 0
1 0 0 0
2 0 1 2

defined by the scheme (∧)∧ •¬ •¬. And let t be any of the 27 tables with
1 = 0. Then, t0∪ t•∧ = t1; that is, t0∪ t•∧ defines a table that is exactly as
t0 save for →(2 1), which is 1 instead of 0 (1 = 1 instead of 1 = 0). Thus,
given any of the 27 tables with 1 = 0, the corresponding table with 1 = 1 is,
as shown, immediately defined (we note that tS51 (= tG3), tŁ3 and tC1 are

t91, t181, and t271, respectively).

By the propositions just proved, we have the following:

Corollary 4.3 (The tables in TII are definable from the tables in

TII0) The 54 tables in TII are definable from any of the tables in TII0.

Proof Immediate by Theorem 3.3, Proposition 4.1 and Proposition 4.2.

On the other hand, we prove:

Proposition 4.4 (The tables in TII0 are definable from those in TII)

The six tables in TII0 are definable from any of the tables in TII.

Proof By Theorem 3.3, it suffices to prove that t9 (tS5) is definable by any

of the 54 tables in TII. Let t be any of these 54 tables. Then, t9 (tS5) is

definable as follows


S5→  = (

•¬ t→ •¬) ∧ (◦¬ t→ ◦¬)
Therefore, we conclude:

Theorem 4.5 (Interdefinability of the 54 tables in TII) The 54 tables

in TII are definable from each other.



The class of all natural implicative expansions... 13

Proof Immediate by Corollary 4.3 and Proposition 4.4.

Furthermore, we have:

Theorem 4.6 (Functional equivalence of the 54 TII-logics) The 54

TII-logics are functionally equivalent to Łukasiewicz logic Ł3.

Proof Immediate by Theorem 4.5, as the 54 →-functions are interdefinable,
given the matrix MK3, and one of these functions defines the conditional of

Ł3.

5 The 27 tables in TIII are definable from each other

We prove that the 27 tables in TIII (cf. Section 2) are definable from each

other. By t (1 ≤  ≤ 27), we refer to the 27 first tables in Appendix I.
Consider the following tables:

ta.

} 0 1 2
0 2 0 0
1 0 2 0
2 0 2 2

tb.

¯ 0 1 2
0 2 1 0
1 0 2 0
2 0 0 2

tc.

•∧ 0 1 2
0 0 0 0
1 0 0 0
2 0 1 2

Table tc is used un Proposition 4.2 above. Concerning tables ta and tb, we

prove:

Lemma 5.1 (Auxiliary tables ta and tb) The auxiliary tables ta and tb

are definable by t21.

Proof We follow the conventions used on Sections 3 and 4 above. Firstly, we

prove that t24 is definable by t21.

t24: 
t24→  =  ∨ ( t21→ )

That is, the conditional 
t24→  defined in table t24 is definable with the

scheme  ∨ ( t21→ ) by t21. The items to follow along this section are read
similarly. Tables ta and tb are defined as follows:

ta: } = (
•¬ •¬ ∧ ◦¬ ◦¬) ∨ ( t21↔ )

tb: ¯ = [
◦¬ ∨ ( t21↔ )] ∧ [¬ ∨ ( t24↔ )]

Then, we can prove the following proposition.

Proposition 5.2 (The 27 tables in TIII are definable by t21) The 27

tables in TIII are definable by t21.

Proof
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1. Firstly, we set the following definitions:

t3: 
t3→  =

•¬ •¬ ∨ ( t21↔ )

t6: 
t6→  =

•¬ •¬ ∨ ( t24↔ )

t15: 
t15→  =  ∨ ( t21↔ )

t19: 
t19→  =

◦¬ ∨ ( t21↔ )

t23: 
t23→  =

◦¬ ∨ ( t24↔ )

t27: 
t27→  =

◦¬ ◦¬ ∨ ( t21↔ )

(Notice that the proofs for t3 and t19 already appeared in Proposition 4.1.)

2. Next, the rest of the tables are defined by either union (∪) or intersection (∩)
of the tables previously defined. (The union (intersection) of two given tables

is defined by the disjunction (conjunction) of the respective schemes defining

them; cf. Proposition 4.1). We have:

t1: t3 ∩ t19
t2: t3 ∩ t23
t4: t1 ∪ tc
t5: t2 ∪ tc
t7: t1 ∪ ta
t8: t2 ∪ ta
t9: t3 ∪ ta
t10: t1 ∪ tb
t11: t2 ∪ tb
t12: t3 ∪ tb

t13: t10 ∪ tc
t14: t11 ∪ tc
t16: t10 ∪ ta
t17: t11 ∪ ta
t18: t12 ∪ ta
t20: t2 ∪ t19
t22: t19 ∪ tc
t25: t19 ∪ ta
t26: t20 ∪ ta

3. Finally, the proof of Proposition 5.2 follows by Lemma 3.1 and Lemma 5.1,

(1) and (2).

The converse of Proposition 5.2 is also provable.

Proposition 5.3 (The table t21 is definable from the tables in TIII)

The table t21 is definable from any of the tables in TIII.

Proof Let t be any table in TIII. Then, t21 is definable as follows:


t21→  = (

•¬ t→ •¬) ∧ ( ◦¬ t→ ◦¬)
Therefore, we conclude:

Theorem 5.4 (Interdefinability of the 27 tables in TIII) The 27 tables

in TIII are definable from each other.

Proof Immediate by Proposition 5.2 and Proposition 5.3.

Theorem 5.5 (TIII-logics are functionally equivalent) The 27 TIII-

logics are functionally equivalent to each other.

Proof Immediate by Theorem 5.4.
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6 The 27 tables in TIV

The conditional tables upon which some of the most well-known 3-valued

paraconsistent logics such as Pac, J3, RM3, Sobociński’s, Jaskowski’s or Sette’s

logics (cf. [11], [20], [19], [38], [37] about these logics) are defined do not appear

among the 27 tables in TIII. Nevertheless, the referred tables can be defined

from any of the tables in TIII. Actually, from each one of the 27 tables in

TIII, t, we easily obtain a corresponding table t1 differing from t only in

→(1 1) which equals now 1 instead of 2. In order to prove this fact, we need
an auxiliary lemma.

Lemma 6.1 (Auxiliary tables td, te and tf) Consider the following aux-

iliary tables

td.

Pac→ 0 1 2
0 2 2 2
1 0 1 2
2 0 1 2

te.

¡ 0 1 2
0 0 0 0
1 0 1 0
2 0 2 2

tf.

~ 0 1 2
0 2 2 2
1 0 1 2
2 0 2 2

These tables are definable by any of the tables in TIII.

Proof By Theorem 5.4, it suffices to prove that td, te and tf are definable by

t21. The required definitions are:


Pac→  =

◦¬ ∨
¡ = [( ∨ ◦¬) ∧ ◦¬ ◦¬] ∧ [ •¬ •¬ ∨ ( t21↔ )]

~ = (
Pac→ ) ∨ (¡) (that is, tf = td ∩ te)

We remark that td is the table upon which the logic Pac is defined (cf. [11],

pp. 18, ff. Cf. Definition 7.1 below).

By leaning on Theorem 5.4, we can define the 27 tables with →(1 1) = 1.

Proposition 6.2 (The 27 tables in TIV) For each table t in TIII, there

is a corresponding table t1 differing from t only in the value →(1 1), which
is now 1 instead of 2. Each one of these new tables is definable from any table

in TIII.

Proof (1) Let t be a table in TIII with →(2 1) = 2. Then, the table t
∩ tf is the required table t1. In this way, the corresponding tables to t7-t9,
t16-t18 and t25-t27 in TIII are defined. (2) Let t be a table in TIII with

→(2 1) = 0 or →(2 1) = 1. Then, the table t ∩ td is the required table
t1. In this way, the corresponding tables to t1-t6, t10-t15 and t19-t24 in TIII

are defined. Finally, from Theorem 5.4, it follows that the tables in TIV are

definable from any of the tables in TIII.

Concerning the 27 tables with →(1 1) = 1, we note the following propo-
sitions:
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Proposition 6.3 (Tables in TIII and in TIV are not interdefinable)

None of the tables in TIII (where →(1 1) = 2) is definable from the tables in

TIV (where →(1 1) = 1).

Proof It is immediate, since for each one of the tables in TIV, we have:

→(1 1) = ∧(1 1) = ∨(1 1) = ¬(1) = 1. So, →(1 1) = 2 is not defin-
able.

Proposition 6.4 (Tables in TIV are not interdefinable) Contrary to

what is the case with tables in TIII, tables in TIV are not in general definable

from each other.

Proof Tables t1-t10, t13, t16, t19, t22 and t25 in TIII (cf. Remark 2.8) are

not considered by Tomova [41]. The rest of the tables in TIII are treated by

her. Among the latter, she remarks t15 and t14 and t12, which are labelled

T1, T2 and T3, respectively. Now, in the lattice she defines, T1, T2 and T3

are not equivalent.

7 The tables in TII and TIII and the logics J3 and Ł3

In what follows, we briefly discuss the relations the logics Ł3 and J3 maintain

with TII-logics and TIII-logics w.r.t. functional equivalence.

We recall that the 54 TII-logics are functionally equivalent to Ł3 (Theorem

4.6) and that the 27 TIII-logics are functionally equivalent to each other (cf.

Theorem 5.5).

Then, we begin by defining the logic J3.

Definition 7.1 (The logics Pac and J3) The logic Pac (Paraconsistent

logic) is LMt241, that is, the logic determined by the natural implicative ex-

pansion, Mt241, of MK3. (Notice that t24 (with →(1 1) = 1) is table td in

Lemma 6.1.) Then, the logic J3 is defined by adding the negation
◦¬ to Pac

(cf. Lemma 3.1; cf. [11], pp. 18, ff.)

Now, we prove:

Theorem 7.2 (TIII-logics are functionally equivalent to J3) The 27

TIII-logics are functionally equivalent to J3.

Proof As td (i.e., t24 with →(1 1) = 1) and
◦¬ are definable from any table

in TIII (by Lemma 3.1 and Lemma 6.1), it suffices to prove that, any table in

TIII is definable by td and
◦¬. Now,  t27→  is defined as follows: 

t27→  =
◦¬ ◦¬∨ ( td→ ). So, it is a consequence of Theorem 5.4 that any table in TIII

is definable by td and
◦¬.

On the other hand, it is well known that J3 and Ł3 are functionally equiv-

alent (cf., e.g., [11] or [20] and references therein). But, anyway, let us give

here a simple proof of this fact.
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Proposition 7.3 (J3 and Ł3 are functionally equivalent) The logic J3

and Łukasiewicz’s 3-valued logic Ł3 are functionally equivalent.

Proof J3 is functionally included in Ł3: by Lemma 3.1,
◦¬ is definable; so, by

Lemma 6.1, table td (the conditional table of Pac) is also definable. Conse-

quently, J3 is functionally included in Ł3 by Definitions 2.3 and 7.1 (this fact

can also be proved by using the precompleteness of Ł3; cf. the remark at the

end of section 3). On the other hand, consider now the following table:

¥ 0 1 2
0 2 0 0
1 1 0 0
2 0 0 0

This table is definable as follows: ¥ = ¬∧ ◦¬. Then, given that all
tables in TIII are definable by td and

◦¬, the Ł3-table is definable as follows:


Ł3→  = (
t24→ ) ∨ (¥). So, Ł3 is functionally included in J3.

Finally, we have:

Theorem 7.4 (TII-logics and TIII-logics are functionally equivalent)

The 54 TII-logics and the 27 TIII-logics are functionally equivalent to Ł3.

Proof Immediate by Theorems 4.6, 5.5, 7.2 and 7.3.

8 Concluding remarks

The paper is ended with some remarks on the results obtained and some

suggestions for further work in the same line.

1. In [41], Tomova establishes the lattice defining the relations between nat-

ural implicative expansions of not only Kleene’s strong logic, but also those

extending Kleene’s weak logic (cf. [22], §64) and Kleene’s “intermediate”

logic (cf. [15]). The proofs are referred to her doctoral dissertation [39].

Concerning Kleene’s strong logic, she just considers the 30 natural condi-

tionals described in Remark 2.8 above.

2. Most of the logics summarily treated in this paper have not, to our knowl-

edge, been considered previously in the literature. However, there are fa-

mous logics between them. Among the tables in Appendix I, we have, for

example, the following: t272 is the conditional table of Sette’s P1 (cf. [37],

negation is interpreted by
◦¬); t211 is the conditional table of Sobociński’s

S3 (cf. [38]) or the quasi-relevant logic RM3 (cf. [1], [9]). In both cases,

negation is interpreted by ¬; t241 is Jaskowski’s table for the conditional
(cf. [19]). If negation is interpreted by ¬, we have the logic Pac, which has
appeared in a number of works (perhaps firstly in [2]; cf. [11], pp. 18, ff. or

[20] and references therein). Finally, notice that the tables such as those for

Priest’s LP (cf. [27]) do not appear in Appendices I and II, since it violates

condition (2) in Definition 2.5, requiring the verification of Modus Ponens.
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3. We remark that Definition 2.5 do not cover the class of all implicative

expansions of MK3 determining logics which either functionally include

or are functionally equivalent to Ł3. Consider, for example, the following

general table ( = {1 2}), where  ∈ {0 1 2} (1 ≤  ≤ 3):

TV

→ 0 1 2
0 2 1 2
1 0 2 2
2 0 3 1

By using table
•∧ (cf. Proposition 4.2), we have TV ∪ t •∧ = TVI, where

 ∈ {0 1 2} (1 ≤  ≤ 2) and 1 ∈ {1 2}.

TVI

→ 0 1 2
0 2 1 2
1 0 2 2
2 0 1 2

But TVI is contained in TIII, whence the logics determined by TV func-

tionally include Ł3 (cf. Theorems 5.4, 7.2 and 7.3). So, condition (1) in

Definition 2.5 can be weakened. In this sense, it would be interesting to

investigate to what extent Definition 2.5 can be weakened while still con-

taining implicative expansions of MK3 determining logics functionally in-

cluding Ł3 or functionally equivalent to Ł3.

4. Let us generally name TIV0-logics the 15 new logics in TIV introduced

by us. By using a Belnap-Dunn bivalent semantics (cf. [7], [8], [12], [13]),

Hilbert-style axiomatic systems corresponding to TI0-logics (resp., TII0-
logics; resp., TIV0-logics) are defined in [31] (resp., in [35]; resp., in [33])
in a general and unified way (cf. also [30], [32], [34] and [26]). That is,

LM being a TI0-logic or a TII0-logic or a TIV0-logic, a proof-theoretical
relation ` is built in the said papers such that for any set of wffs  and

wff ,  ²M  iff  `  is proved. We wonder whether this result can be

extended to all TI-logics and TII-logics.

5. It will be interesting to build the lattice defining the relations between the

27 TIV-logics.

A Appendix I. The 27 tables in TI

The 54 tables in TI are divided in two groups: 27 tables in TIII and 27 tables in TIV. The

27 tables in TIII are the following (designated values are starred). We refer to the tables in

this set by t2 or simply by t (1 ≤  ≤ 27).

t1.

→ 0 1 2
0 2 0 2
*1 0 2 0
*2 0 0 2

t2.

→ 0 1 2
0 2 0 2
*1 0 2 1
*2 0 0 2

t3.

→ 0 1 2
0 2 0 2
*1 0 2 2
*2 0 0 2
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t4.

→ 0 1 2
0 2 0 2
*1 0 2 0
*2 0 1 2

t5.

→ 0 1 2
0 2 0 2
*1 0 2 1
*2 0 1 2

t6.

→ 0 1 2
0 2 0 2
*1 0 2 2
*2 0 1 2

t7.

→ 0 1 2
0 2 0 2
*1 0 2 0
*2 0 2 2

t8.

→ 0 1 2
0 2 0 2
*1 0 2 1
*2 0 2 2

t9.

→ 0 1 2
0 2 0 2
*1 0 2 2
*2 0 2 2

t10.

→ 0 1 2
0 2 1 2
*1 0 2 0
*2 0 0 2

t11.

→ 0 1 2
0 2 1 2
*1 0 2 1
*2 0 0 2

t12.

→ 0 1 2
0 2 1 2
*1 0 2 2
*2 0 0 2

t13.

→ 0 1 2
0 2 1 2
*1 0 2 0
*2 0 1 2

t14.

→ 0 1 2
0 2 1 2
*1 0 2 1
*2 0 1 2

t15.

→ 0 1 2
0 2 1 2
*1 0 2 2
*2 0 1 2

t16.

→ 0 1 2
0 2 1 2
*1 0 2 0
*2 0 2 2

t17.

→ 0 1 2
0 2 1 2
*1 0 2 1
*2 0 2 2

t18.

→ 0 1 2
0 2 1 2
*1 0 2 2
*2 0 2 2

t19.

→ 0 1 2
0 2 2 2
*1 0 2 0
*2 0 0 2

t20.

→ 0 1 2
0 2 2 2
*1 0 2 1
*2 0 0 2

t21.

→ 0 1 2
0 2 2 2
*1 0 2 2
*2 0 0 2

t22.

→ 0 1 2
0 2 2 2
*1 0 2 0
*2 0 1 2

t23.

→ 0 1 2
0 2 2 2
*1 0 2 1
*2 0 1 2

t24.

→ 0 1 2
0 2 2 2
*1 0 2 2
*2 0 1 2

t25.

→ 0 1 2
0 2 2 2
*1 0 2 0
*2 0 2 2

t26.

→ 0 1 2
0 2 2 2
*1 0 2 1
*2 0 2 2

t27.

→ 0 1 2
0 2 2 2
*1 0 2 2
*2 0 2 2

Then, the 27 tables in TIV are obtained by replacing 1 → 1 = 1 by 1 → 1 = 2 in
each one of the tables recorded in the list above. We refer to the tables in this set by t1
(1 ≤  ≤ 27). Thus, for example, T81 is:

t81.

→ 0 1 2
0 2 0 2
*1 0 1 1
*2 0 2 2
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B Appendix II. The 54 tables in TII

The 27 tables in which 1 = 0 are the following (designated values are starred). We refer to
the tables in this set by t0 (1 ≤  ≤ 27).

t1.

→ 0 1 2
0 2 0 2
1 0 2 0
*2 0 0 2

t2.

→ 0 1 2
0 2 0 2
1 0 2 1
*2 0 0 2

t3.

→ 0 1 2
0 2 0 2
1 0 2 2
*2 0 0 2

t4.

→ 0 1 2
0 2 1 2
1 0 2 0
*2 0 0 2

t5.

→ 0 1 2
0 2 1 2
1 0 2 1
*2 0 0 2

t6.

→ 0 1 2
0 2 1 2
1 0 2 2
*2 0 0 2

t7.

→ 0 1 2
0 2 2 2
1 0 2 0
*2 0 0 2

t8.

→ 0 1 2
0 2 2 2
1 0 2 1
*2 0 0 2

t9.

→ 0 1 2
0 2 2 2
1 0 2 2
*2 0 0 2

t10.

→ 0 1 2
0 2 0 2
1 1 2 0
*2 0 0 2

t11.

→ 0 1 2
0 2 0 2
1 1 2 1
*2 0 0 2

t12.

→ 0 1 2
0 2 0 2
1 1 2 2
*2 0 0 2

t13.

→ 0 1 2
0 2 1 2
1 1 2 0
*2 0 0 2

t14.

→ 0 1 2
0 2 1 2
1 1 2 1
*2 0 0 2

t15.

→ 0 1 2
0 2 1 2
1 1 2 2
*2 0 0 2

t16.

→ 0 1 2
0 2 2 2
1 1 2 0
*2 0 0 2

t17.

→ 0 1 2
0 2 2 2
1 1 2 1
*2 0 0 2

t18.

→ 0 1 2
0 2 2 2
1 1 2 2
*2 0 0 2

t19.

→ 0 1 2
0 2 0 2
1 2 2 0
*2 0 0 2

t20.

→ 0 1 2
0 2 0 2
1 2 2 1
*2 0 0 2

t21.

→ 0 1 2
0 2 0 2
1 2 2 2
*2 0 0 2

t22.

→ 0 1 2
0 2 1 2
1 2 2 0
*2 0 0 2

t23.

→ 0 1 2
0 2 1 2
1 2 2 1
*2 0 0 2

t24.

→ 0 1 2
0 2 1 2
1 2 2 2
*2 0 0 2

t25.

→ 0 1 2
0 2 2 2
1 2 2 0
*2 0 0 2

t26.

→ 0 1 2
0 2 2 2
1 2 2 1
*2 0 0 2

t27.

→ 0 1 2
0 2 2 2
1 2 2 2
*2 0 0 2

Then, the 27 tables in which 1 = 1 are obtained by replacing 2→ 1 = 1 by 2→ 1 = 0
in each one of the tables recorded in the list above. We refer to the tables in this set by 1
(1 ≤  ≤ 27). Thus, for example, t171 is:
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t171.

→ 0 1 2
0 2 2 2
1 1 2 1
*2 0 1 2

C Appendix III

It is proved that all implicative expansions of MK3 defined by Tomova are not relevant

logics in the sense that they lack the “variable-sharing property” (vsp). However, 11 of

the implicative expansions of MK3 we have introduced are relevant, as they have the vsp.

Also, we examine the behavior of the 108 logics considered in the present paper w.r.t. two

vsp-related properties, the “quasi variable-sharing property” (qvsp) and the “weak relevant

property” (wrp).

The vsp, the qvsp and the wrp are defined as follows (cf. Definition 2.3).

Definition C.1 (Variable-sharing property –vsp) Let L be a logic defined upon the

matrix M. L has the “variable-sharing property” (vsp) if in all M-valid wffs of the form

→ ,  and  share at least a propositional variable.

Definition C.2 (Quasi variable-sharing property –qvsp) Let L be a logic defined

upon the matrix M. L has the “quasi variable-sharing property” (qvsp) if in all M-valid wffs

of the form  → ,  and  share at least a propositional variable or else both  and 
are M-valid.

Definition C.3 (Weak relevant property –wrp) Let L be a logic defined upon the

matrix M. L has the “weak relevant property” (wrp) if in all M-valid wffs of the form → ,
 and  share at least a propositional variable or else both ¬ and  are M-valid.

To the best of our knowledge, the qvsp is a new property introduced here for the first

time. As far as we know, the wrp is first defined in [1] (cf. p. 117), while the vsp is a well-

known property (cf. [6], [1] and references in the last item). Nevertheless, notice that the

vsp and the wrp are customarily defined leaning upon the notion of L-theoremhood, not

upon that of M-validity. Of course, both versions of the vsp and the wrp are equivalent

in the presence of a soundness and completeness theorem, as it is the case with the logics

mentioned in the first paragraph of this third appendix (cf. conclusion 7 below).

Next, we proceed to the examination of the 108 logics considered in the paper w.r.t. the

properties just defined.

Proposition C.4 (TII-logics, the vsp, the qvsp and the wrp) Let L be a TII-logic-

Then, L lacks the vsp, the qvsp and the wrp.

Proof Immediate since the wff ¬( → ) → ¬( → ) is, for any propositional variables ,
, M-valid in any implicative expansion of MK3, M, built upon any table in TII.

Proposition C.5 (TIII-logics, the vsp, the qvsp and the wrp) Let L be a TIII-logic.

Then, L lacks the vsp, the qvsp and the wrp.

Proof Immediate by using the wff ¬( → ) → ¬( → ) similarly as in the precedent
proposition.

Thus, concerning the three properties we are interested in in this appendix, we are

left with the 27 tables in TIV. In what follows, some facts about TIV-logics w.r.t. these

properties are proven. Let us refer by TIV (1 ≤  ≤ 27) to the TIV-logic built upon t.

Proposition C.6 (TIV-logics and the vsp I) Let L be the logic TIV where  ∈
{5 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27}. Then, L lacks the vsp.
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Proof (a) TIV ( ∈ {5 6 8 9}). By using the wff ( → ) → ( → ) (,  are distinct
propositional variables) verified by tables t5, t6, t8 and t9.

(b) TIV ( ∈ {11 12 14 15 17 18 20 21 23 24 26 27}). By using the wff ¬(→ )→
( → ) (,  are distinct propositional variables) verified by tables t11, t12, t14, t15, t17,
t18, t20, t21, t23, t24, t26 and t27.

Proposition C.7 (TIV-logics and the qvsp I) Let L be the logic TIV where  ∈
{11 12 14 15 17 18 20 21 23 24 26 27}. Then, L lacks the qvsp.

Proof By using the wff (∧¬)→ (∨¬) (,  are distinct propositional variables) similarly
as in the preceding proposition.

Proposition C.8 (TIV-logics and the wrp I) Let L be the logic TIV where  ∈
{5 6 8 9 14 15 17 18 23 24 26 27}. Then, L lacks the wrp.

Proof By using the wff ( → ) → ( → ) (,  are distinct propositional variables)
similarly as in Propositions C7 and C8.

On the other hand, we have the following propositions.

Proposition C.9 (TIV-logics and the vsp II) Let L be the logic TIV where  ∈
{1 2 3 4 7 10 13 16 19 22 25}. Then, L has the vsp.

Proof (a) TIV ( ∈ {1 4 7 10 13 16 19 22 25}). Let M be the implicative expansion of

MK3 determining the logic L. Suppose that there are wffs  and  such that  →  is

M-valid but  and  do not share propositional variables. Let  be an M-interpretation
assigning 1 (resp., 0) to each propositional variable in  (resp., ). Then () = 1 and
() ∈ {0 2}, since {1} and {0 2} are closed under →∧∨ and ¬. Consequently, ( →
) = 0, contradicting the M-validity of → .

(b) TIV ( ∈ {1 2 3}). The proof is similar to that of case (a) by using now the fact

that →(0 1) = →(2 1) = 0.

Proposition C.10 (TIV-logics and the qvsp II) Let L be the logic TIV where  ∈
{5 6 8 9}. Then, L has the qvsp.

Proof Let M be the implicative expansion of MK3 determining the logic L. Suppose that

there are wffs  and  not having propositional variables in common and such that → 
is M-valid but either  or  is not.

(a)  is not M-valid: Then, there is an M-interpretation  such that () = 0. Let
0 be exactly as  except that for each propositional variable  in , 0() = 1. Clearly,
0() = 1 since {1} is closed under →∧∨ and ¬, and 0() = 0 since  and  do not

share propositional variables. Then, 0(→ ) = 0, contradicting the M-validity of .
(b)  is not M-valid: Then, there is an M-interpretation  such that () = 0. Let 0

be exactly as  except that for each propositional variable  in , 0() = 1. Similarly as
in case (a), 0() = 1, 0() = 0, and then 0(→ ) = 0, contradicting the M-validity of
→ .

Proposition C.11 (TIV-logics and the wrp II) Let L be the logic TIV where  ∈
{11 12 20 21}. Then, L has the wrp.

Proof Let M be the implicative expansion of MK3 determining the logic L. Suppose that

there are wffs  and  not having propositional variables in common and such that → 
is M-valid but either ¬ or  is not. The proof that, given the suppositions just stated,

 →  is actually not M-valid is similar to that of the preceding proposition leaning now

on the fact that →(1 0) = →(2 1) = 0.

The results we have obtained are summarized below.

1. All TII-logics and TIII-logics lack the vsp, the qvsp and wrp (Propositions C4 and C5).
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2. The only TI-logics having the vsp are TIV-logics. In particular, the following 11 TIV-

logics: TIV where  ∈ {1 2 3 4 7 10 13 16 19 22 25} (Propositions C4, C5, C6 and
C9).

3. The only TI-logics having the qvsp are TIV-logics. In particular, the following 4 TIV-

logics, in addition to the 11 TIV-logics having the vsp: TIV where  ∈ {5 6 8 9}
(Propositions C4, C5, C7 and C10).

4. The only TI-logics having the wrp are TIV-logics. In particular, the following 4 TIV-

logics, in addition to the 11 TIV-logics having the vsp: TIV where  ∈ {11 12 20 21}
(Propositions C5, C6, C8 and C11).

5. Tomova’s 30 tables are generally defined in tables TI0 and TII0. The tables with two
designated values are also defined in TIII and TIV. Tomova’s 24 tables in TIII and TIV

are the following: t11, t12, t14, t15, t17, t18, t20, t21, t23, t24, t26 and t27. All these

TIII-logics and TIV-logics lack the vsp and the qsvp. Also, all lack the wrp, except

TIV11, TIV12, TIV20 and TIV21 (cf. 1, 2, 3 and 4 above; notice that TIV21 is the

quasi-relevant logic RM3 –cf. [9], [1] and references therein).

6. The 78 new tables we have introduced together with Tomova’s 30 tables are generally

defined in tables TI (30 new tables) and TII (48 new tables). The tables with two

designated values are also defined in TIII and TIV. These 30 tables are the following:

t1 through t9, t10, t13, t16, t19, t22 and t25. Of these, the new 15 TIV-logics are the

only members in the set of 108 logics considered in this paper with either the vsp or the

qvsp: TIV ( ∈ {1 2 3 4 7 10 13 16 19 22 25}) has the vsp; TIV ( ∈ {5 6 8 9}) has
the qvsp.

7. As pointed out in the Concluding remarks (section 8), Hilbert-style axiomatic systems

corresponding to Tomova’s logics and the 15 new TIV-logics we have introduced are

defined in a general and unified way in [31], [35] and [33].

The appendix is ended by remarking that none of the new 15 TIV-logics (with either

the vsp or the qvsp) we have introduced is included in RM3, the 3-valued extension of the

logic R-Mingle, commonly considered as the strongest logic in the relevant logic family (cf.

[3], p. 276). (But notice that RM3 –cf. table TIV21– does not have the vsp.)

Proposition C.12 (The 15 new TIV-logics are not incl. in RM3) Let L be the logic

TIV where  ∈ {1 2 3 4 5 6 7 8 9 10 13 16 19 22 25}. Then, L is not included in RM3.

Proof Let L be any of the TIV-logics except TIV3, TIV6, TIV9. Then, the rule “If ∧¬,
then ¬( → )” holds in L. Next, “If  ∧ ¬, then ¬( → )” holds in TIV3 and TIV6
and the thesis (∧)→ (→ ) holds in TIV9. However, both aforementioned rules and
the thesis just quoted fail in RM3.

Acknowledgements - This work is supported by the Spanish Ministry of Economy, In-

dustry and Competitiveness [FFI2017-82878-P]. - We sincerely thank three referees of the

Journal of Logic, Language and Information for their comments and suggestions on a pre-

vious draft of this paper.

References

1. Anderson, A. R., Belnap, N. D. Jr. (1975). Entailment. The Logic of Relevance and

Necessity, vol I. Princeton, NJ: Princeton University Press.

2. Asenjo, F. G. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic,

7(1), 103-105. https://doi.org/10.1305/ndjfl/1093958482

3. Avron, A. (1991). Natural 3-Valued Logics—Characterization and Proof Theory. Journal

of Symbolic Logic, 56(1), 276-294.



24 Gemma Robles, José M. Méndez

4. Avron, A. (1999). On the expressive power of three-valued and four-

valued languages. Journal of Logic and Computation, 9(6), 977-994.

https://doi.org/10.1093/logcom/9.6.977

5. Baaz, M., Preining, N, Zach, R. (2007). “First-Order Gödel Logics”. Annals of Pure

and Applied Logic 147, 23-47.

6. Belnap, N. D. Jr. (1960). Entailment and relevance. The Journal of Symbolic Logic,

25(2), 144-146.

7. Belnap, N. D. Jr. (1977). How a computer should think. In G. Ryle (Ed.), Contemporary

Aspects of Philosophy (pp. 30—55). Oriel Press Ltd., Stocksfield.

8. Belnap, N. D. J.r (1977). A useful four-valued logic. In G. Epstein & J. M. Dunn (Eds.),

Modern Uses of Multiple-Valued Logic (pp. 8—37). D. Reidel Publishing Co., Dordrecht.

9. Brady, R. T. (1982). Completeness Proofs for the Systems RM3 and BN4. Logique et

Analyse, 25, 9-32.

10. Brady, R. T. (ed. ). (2003). Relevant Logics and Their Rivals, vol. II. Ashgate, Aldershot.

11. Carnielli, W., Coniglio, M., Marcos, J. (2007). “Logics of Formal Inconsistency” (in D.

Gabbay and F. Guenthner (Eds.), Handbook of Philosophical Logic, vol. 14, Springer),

1-93.

12. Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and “coupled trees.”

Philosophical Studies, 29, 149-168.

13. Dunn, J. M. (2000). Partiality and its Dual. Studia Logica, 65, 5-40,

https://doi.org/10.1023/A:1026740726955.

14. Finn, V. K. (1969). O predpolnote klassa funktsii, sootvetstvuyushchego trekhznachnoi

logike J. Łukasiewicza (The precompleteness of the class of functions that corresponds

to the three-valued Logic of J. Łukasiewicz). Nauchno-tekhnicheskaya informatsiya. Ser.

2, vol. 10, 35-38 (in Russian).

15. Fitting, M. (1992). Kleene’s three valued logics and their children. Fundamenta Infor-

maticae 20, 113-131.

16. González, C. (2012). MaTest. Retrieved from http://ceguel.es/matest (last accessed

09/07/2019).

17. Gottwald, S. (2001), A Treatise on Many-Valued Logics (Studies in Logic and Compu-

tation). Research Studies Press.

18. Hacking, I. (1963). What is strict implication?. Journal of Symbolic Logic, 28, pp. 51-71.
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