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17

18 Abstract 

19 Therapeutic outcome results of the coadministration of several drugs in veterinary 

20 medicine is affected by, among others, the relationship between drugs and ATP-binding 

21 cassette (ABC) transporters, such as ABCG2. ABCG2 is an efflux protein involved in 

22 the bioavailability and milk secretion of drugs. The aim of this work was to determine 

23 the role of eprinomectin, a macrocyclic lactone (ML) member of avermectin class, as 

24 inhibitor of ABCG2. The experiments were carried out through in vitro inhibition 

25 assays based on mitoxantrone accumulation and transport assays in ovine ABCG2 

26 transduced cells using the antimicrobial drug danofloxacin and the anti-inflammatory 

27 drug meloxicam, both widely used in veterinary medicine and well known ABCG2 

28 substrates. 

29 The inhibition results obtained showed that eprinomectin was an efficient in vitro 

30 ABCG2 inhibitor, tested in mitoxantrone accumulation assays. In addition, this ML 

31 decreased ovine ABCG2-mediated transport of danofloxacin and meloxicam. To 

32 evaluate the role of eprinomectin in systemic exposure of drugs, pharmacokinetic assays 

33 based on subcutaneous coadministration of eprinomectin with danofloxacin (1.25 

34 mg/kg) or meloxicam (0.5 mg/kg) in sheep were performed obtaining a significant 

35 increase of systemic exposure of these drugs. Especially relevant was the increase of the 

36 systemic concentration of meloxicam, since coadministration with eprinomectin 

37 increased significantly the plasma concentration of meloxicam, obtaining an increase of 

38 AUC (0-72 h) value of more than 40%.

39 Keywords

40 ABCG2; danofloxacin; eprinomectin; macrocyclic lactone; meloxicam; sheep. 
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41

42 1. Introduction

43 Anthelmintic macrocyclic lactones (MLs) are antiparasitic drugs with notable broad-

44 spectrum activity widely used for treatment of both internal and external parasites in 

45 animals and humans. Due to their lipophilicity, they are distributed throughout the body 

46 in the blood and lymph circulations, which produces long persistence in the host 

47 organism and consequently a long period of protection against parasite infection. Of 

48 special relevance is the semisynthetic ML eprinomectin, which is a drug derived from 

49 the natural product avermectin B1(abamectin), whose efficacy in goats and sheep is 

50 very high and, additionally, it is not transported into milk (Rostang et al., 2020).

51 Among other factors, the interactions between MLs and ATP-binding cassette (ABC) 

52 transporters control the systemic exposition of these drugs (Lespine et al., 2012; Virkel 

53 et al., 2018). MLs, including eprinomectin, strongly interact with P-glycoprotein (P-gp), 

54 the multidrug resistance 1 (MDR1) transporter (Lespine et al., 2012) which has been 

55 clearly identified as the main factor that controls the body concentration of MLs, such 

56 as ivermectin (Lespine et al., 2012; Merola and Eubig, 2018).  Furthermore, 

57 milbemycins (such as moxidectin) and avermectins (such as ivermectin and doramectin) 

58 interact with the ABC transporter ABCG2 (Mealey, 2012; Real et al., 2011) which 

59 affects in vivo absorption, distribution and elimination of MLs. The coadministration of 

60 different drugs may promote alteration in disposition mediated by ABC transporters 

61 (Ballent et al., 2012; Mahnke et al., 2016; Virkel et al., 2018). ABCG2 expression in 

62 mammary gland is induced during lactation, and so plays an important role in the active 

63 secretion of many drugs into the milk of ruminants (García-Lino et al., 2019). The 

64 combination of drugs that interact with the ABCG2 transporter, including MLs, may 

65 affect their systemic exposure and their secretion into milk (Ballent et al., 2012).
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66 The aim of the present study, therefore, was to characterize eprinomectin as an inhibitor 

67 of the ABCG2 transporter using two different ABCG2 substrates, the antimicrobial 

68 drug, danofloxacin (Real et al., 2011) and an anti-inflammatory drug, meloxicam 

69 (Garcia-Lino et al., 2020). The assays were performed in vitro using ABCG2 transduced 

70 ovine cells in a transepithelial transport and mitoxantrone accumulation assay, and in 

71 vivo using lactating Assaf sheep in a pharmacokinetics assay.

72 2. Materials and methods

73 2.1. Reagents and drugs

74 Mitoxantrone (MXR), eprinomectin, danofloxacin, meloxicam and difloxacin were 

75 purchased from Sigma-aldrich (St. Louis, MO). Isoflurane Isovet® was purchased from 

76 Braun (Barcelona, Spain). For the pharmacokinetic studies, eprinomectin solution 

77 (Eprecis®) was purchased from Ceva Salud Animal (Barcelona, Spain), danofloxacin 

78 solution (Advocin® 2.5 %) was purchased from Zoetis (Madrid, Spain) and meloxicam 

79 solution (Metacam® 20 mg/ml) was purchased from Boehringer Ingelheim.

80 2.2. Cell cultures

81 Madin-Darby Canine Kidney (MDCKII) cells were kindly provided by A. H. Schinkel 

82 (The Netherlands Cancer Institute, Amsterdam, The Netherlands). Stably-transduced 

83 MDCKII cells with ovine variant of ABCG2 were generated and characterized by our 

84 research group in previous studies (González-Lobato et al., 2014). Culture conditions 

85 were as previously described (González-Lobato et al., 2014).

86 2.3. Accumulation assay

87 In vitro accumulation assays were carried out as previously described (Pavek et al., 

88 2005) using MXR as a fluorescent substrate. 
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89 Relative cellular accumulation of MXR of at least 5000 cells was determined by flow 

90 cytometry using a CyAn cytometer (Beckam Coulter, Fullerton, CA). Flow cytometry 

91 data were processed and analyzed using SUMMIT version 4.3 software (Innovation 

92 Drive, For Collins, CO). ABCG2 inhibition increases accumulation of MXR and thus 

93 increases MF. Inhibitory potencies of eprinomectin were calculated as previously 

94 described (Pavek et al., 2005) in MDKCII and oABCG2 cells according to the 

95 following equation: inhibitory potency = (MF with eprinomectin – MF without 

96 eprinomectin) / (MF with Ko143 – MF without eprinomectin). 

97 2.4. Transport assays

98 Transepithelial transport assays using Transwell plates were carried out as described 

99 elsewhere (Perez et al., 2013) with minor modifications. The effect of eprinomectin as 

100 inhibitor in transport assay was tested using two ABCG2 substrates at concentrations 

101 used in previous in vitro studies, danofloxacin (10 µM) (Real et al., 2011) and 

102 meloxicam (30 µM) (Garcia-Lino et al., 2020). Parental MDCKII and ABCG2 ovine 

103 transduced subclones cells were grown for 3 days after seeding on microporous 

104 polycarbonate membrane filters at a density of 1.0 x 106 cells per well. To check the 

105 tightness of the monolayer, transepithelial resistance was measured in each well using a 

106 Millicell ERS ohmmeter (Millipore). Two hours before the start of the experiment, 

107 medium at both the apical and basolateral sides of the monolayer was replaced with 2 

108 ml of OptiMEM medium, and either with or without the eprinomectin as inhibitor. The 

109 experiment was started (t= 0) by replacing the medium in either the apical or basolateral 

110 compartment with fresh OptiMEM medium, either with or without eprinomectin and 

111 containing meloxicam or danofloxacin. Cells were incubated at 37 ºC in 5% CO2 and 

112 100 µL aliquots of culture media were taken at 2 h and 4 h in the opposite compartment 

113 and this volume was replaced with fresh medium. The presence of danofloxacin or 
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114 meloxicam in the opposite compartment was presented as the fraction of total substrate 

115 added at the beginning of the experiment. Active transport across MDCKII monolayers 

116 was expressed by the relative transport ratio (R), defined as the percentage apically 

117 directed transport percentage divided by the percentage basolaterally directed 

118 translocation percentage, after 4 h.

119 2.5. Animals 

120 Animals were housed on the Experimental Farm of the University of León, Spain, and 

121 handled according to institutional guidelines complying with European legislation. 

122 (2010/63/EU). Experimental procedures were approved by the Animal Care and Use 

123 Committee of the University of León and the Junta de Castilla y León ULE_011_2016 

124 and ULE_008_2016.

125 2.6. Pharmacokinetic studies

126 Twenty-four lactating Assaf sheep (3–4 months in lactation) and weighing 70 to 85 kg 

127 were used. The animals were parasite-free and drinking water was available ad libitum. 

128 The experimental design was performed with animals divided into four groups:  (1) the 

129 first group (n=6) received a single SC injection at a therapeutic dose of (1.25 mg/kg) 

130 Advocin® (2.5%); (2) the second group (n=6) was injected SC with 1.25 mg/kg of 

131 Advocin® (2.5%) and co-administrated with a single SC dose of eprinomectin 

132 (Eprecis®) at 0.5 mg/kg based on previous studies (Rostang et al., 2020); (3) the third 

133 group (n=6) received a single SC injection at therapeutic dose (0.5 mg/kg meloxicam) 

134 of Metacam® (20 mg/mL); (4) and the fourth group (n=6) was injected SC with 0.5 

135 mg/kg of Metacam® 20 mg/kg and co-administrated with a single SC dose of 

136 eprinomectin (Eprecis®) at 1 mg/kg based on previous studies (Lifschitz et al., 2008; 

137 Rehbein et al., 2014).
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138 Blood samples were collected from the jugular vein and milk samples were collected 

139 after complete milking of the gland before each treatment at 0.25, 1, 2, 3.75, 6.25, 8, 

140 9.5, 12, 24, 32 and 48 h after danofloxacin administration and at 0.5, 1, 2, 4, 6, 8, 10, 

141 12, 24, 36, 48 and 72 h after meloxicam administration. Plasma was separated by 

142 centrifugation at 3000 x g for 15 min. Plasma and milk samples were stored at -20 ºC 

143 until HPLC analysis.

144 2.7. High Performance Liquid Chromatography

145 The chromatographic system used in samples analysis consisted of a Waters 2695 

146 separation module and a Waters 2998 UV photodiode array detector. 

147 Conditions for HPLC analysis of danofloxacin were modified in accordance with Perez 

148 et al. (2011). Standard samples in the appropriate drug-free matrix were prepared 

149 yielding a concentration range from 0.019 to 5 µg/ml, with coefficients of correlation > 

150 0.99. The Limits of Quantification (LOQs) were 0.039 µg/ml for transport samples, 

151 0.006 for plasma samples and 0.1 µg/ml for milk samples. The Limits of Detection 

152 (LODs) were 0.012 µg/ml for transport samples, 0.002 µg/ml for plasma samples and 

153 0.042 µg/ml for milk samples. The extraction recovery levels for concentration in the 

154 standard curve were 82% for plasma and 85% for milk samples. 

155 Conditions for HPLC analysis of meloxicam have been described previously (Garcia-

156 Lino et al., 2020). Standard samples in the appropriate drug-free matrix were prepared 

157 yielding a concentration range from 0.019 to 15 µg/ml, with coefficients of correlation 

158 > 0.99.  The LOQ was 0.01 µg/ml and the LOD was 0.005 µg/ml for transport samples; 

159 the LOQ was 0.02 µg/ml and the limit of LOD was 0.008 µg/ml for plasma samples; 

160 LOQ 0.02 µg/ml and LOD 0.007 µg/ml for milk samples. The extraction recovery 

161 levels for concentration in the standard curve were 88% for plasma and 90% for milk 

162 samples. 
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163 2.8. Pharmacokinetic calculations

164 The peak concentration (Cmax) and time-peak concentration (Tmax) were read from the 

165 plotted concentration-time curve for each animal. The area under concentration-time 

166 curves (AUC) from time zero to time of last sampling and to infinity were calculated 

167 using the trapezoidal method. Mean residence time (MRT) was calculated by the linear 

168 trapezoidal rule without extrapolation to infinity, using the formula: MRT = 

169 AUMC/AUC, where AUMC was the area under the momentum curve. These 

170 calculations were made using the PK Solutions computer program (Farrier, 1997) and 

171 determined by non-compartmental analyses. 

172 2.9. Statistical analysis

173 Comparisons between groups were performed by the Student’s t-test (normal variables) 

174 and the Mann-Whitney U test (not normally distributed variables). All analyses were 

175 carried out on the assumed significance level of p ≤ 0.05 using SPSS Statistics software 

176 (v. 24.0; IBM, Armonk, New York, NY, USA). The results are shown as mean ± 

177 standard deviation (SD).

178 3. Results

179 3.1. Inhibitory potency of eprinomectin in mitoxantrone accumulation assays

180 To demonstrate the potential inhibitory effect of eprinomectin in ovine ABCG2, the 

181 ability of these compound to reverse the reduced MXR accumulation in cells transduced 

182 with ovine variant of ABCG2 was tested in flow cytometry experiments. As expected, 

183 MTX accumulation was significantly lower in the ovine variant of ABCG2 transduced 

184 cells compared to the parental cells because ABCG2 is actively transported this 

185 substrate outside the cells (Fig. 1).  When cells were treated with Ko143, accumulation 

186 of MTX in the ovine variant of ABCG2 transduced cells increased by ABCG2 
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187 inhibition with Ko143 and thus increased the fluorescence to levels similar to those in 

188 the parental cells (Fig. 1). No significant differences between parental cells treated and 

189 non-treated with Ko143 inhibitor were observed. 

190 The presence of eprinomectin inhibited ovine ABCG2, thus increasing the accumulation 

191 of MXR in ABCG2 transduced cell in a concentration dependent manner (Fig. 1). The 

192 highest inhibitory potency (63%) appeared at 10 µM for ovine ABCG2. Therefore, 

193 these results demonstrated that eprinomectin plays an important role as inhibitor of 

194 ovine ABCG2.

195 3.2. Inhibition of in vitro transport of danofloxacin and meloxicam by eprinomectin

196 To further characterise the inhibitory properties of the eprinomectin in ovine ABCG2, 

197 transepithelial transport assays were carried out with MDCKII cells transduced with the 

198 ovine variant of ABCG2 using a model substrate of ABCG2, danofloxacin (10 µM), and 

199 a new described ABCG2 substrate, meloxicam (30 µM) (Table 1 and 2, respectively). 

200 The translocation in MDCKII parental cells treated with danofloxacin at 10 µM  in the 

201 apical and basolateral directions was similar, with a similar relative basal-apical:apical-

202 basal transport ratio (Ratio BL-AP/ AP-BL close to 1, according with Real et al. (2011). 

203 In the ovine variant of ABCG2 transduced cells, translocation in the apical direction 

204 was drastically decreased and translocation in the basolateral direction was increased, 

205 resulting in a transport ratio BL-AP/ AP-BL of higher than 12 at 4 h (Table 1). A 

206 significant decrease in this relative transport ratio of danofloxacin, more than 80%, was 

207 observed in the ovine ABCG2-transduced cells when eprinomectin was added at a 

208 concentration of 5 µM (12.44 ± 6.89 vs 2.29 ± 0.25*). Ovine ABCG2 mediated 

209 transport was almost completely reverted at a concentration of 10 µM of eprinomectin 

210 with a relative transport ratio equal to that of the parental cells (1.08 ± 0.05 vs 0.86 ± 
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211 0.05). These differences were not observed in the parental MDCKII cells, thus 

212 indicating that the observed effect is ABCG2 specific. 

213 Similar results were obtained in the transephitelial transport of meloxicam at 30 µM 

214 (Table 2). Relative efflux transport ratio at 4 h was significantly higher in the ovine 

215 ABCG2-transduced cells compared to the parental cells (24.85 ± 4.6* vs 1.06 ± 0.08). 

216 These results show that meloxicam is an in vitro substrate of the ovine ABCG2 variant. 

217 When eprinomectin was added, the apical to basal transport in cells transduced with 

218 ovine ABCG2 decreased compared to the cells without eprinomectin, presenting a 

219 reduction of 32% in the transport ratio of meloxicam in treatment with eprinomectin at 

220 5 µM and of 78% at 10 µM.  These differences were not observed in parental MDCKII 

221 cells.

222 These results clearly show that eprinomectin is a good in vitro inhibitor of ovine 

223 ABCG2.

224 3.3. Effect of eprinomectin on plasma pharmacokinetics and milk secretion of the 

225 antimicrobial danofloxacin and the anti-inflammatory drug meloxicam 

226 To further demonstrate the in vivo ABCG2 inhibitory role of eprinomectin in clinically 

227 relevant drug-drug interactions, the effect of the co-administration of eprinomectin with 

228 danofloxacin and with meloxicam was studied in pharmacokinetic and milk secretion 

229 assays. A higher significant plasma concentration of both drugs, danofloxacin and 

230 meloxicam, was found in groups of animals coadministered with eprinomectin at 

231 several times: at 4 h after danofloxacin co-administration (Fig. 2) and at 6, 8, 10, 12, 24 

232 and 30 h after meloxicam administration (Fig. 3). In addition, differences in plasma 

233 pharmacokinetic parameters were observed (Table 3 and Table 4). The value of AUC 

234 (0-48 h) increased significantly and was almost 1.3-fold higher in animals 
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235 coadministered with eprinomectin/danofloxacin compared with control animals. In 

236 sheep co-treated with meloxicam, plasma Cmax and Tmax were significantly higher for 

237 eprinomectin-treated animals compared to control animals. In addition, AUC (0-72 h) 

238 was almost 40% higher in animals co-administered with eprinomectin compared with 

239 the control group. No differences in milk concentration or pharmacokinetic parameters 

240 of danofloxacin and meloxicam were found (Tables 2 and 3; Figs. 2 and 3).

241 These results clearly show that the coadministration of eprinomectin influences the 

242 systemic distribution of danofloxacin and meloxicam without variation in milk drug 

243 concentration.

244

245 4. Discussion

246 Interaction with ABC transporters is recognized as a mechanism responsible for 

247 pharmacologically relevant in vivo drug-drug interactions. An unintentional result may 

248 be therapeutic failure or toxicity. However, a positive outcome is also possible and one 

249 drug may increase the systemic exposure of another one. Therefore, drug-drug 

250 interaction may occur after drug coadministration (Virkel et al., 2018). Interaction 

251 between commonly used drugs in veterinary medicine, such as fluoroquinolones 

252 antibacterial drugs, tyrosine kinase inhibitors and some anthelmintic benzimidazoles, 

253 with ABC transporters, including ABCG2, has been studied in depth (Barrera et al., 

254 2013; Mealey, 2012; Virkel et al., 2018). In this study, eprinomectin is described for the 

255 first time as an efficient in vitro and in vivo inhibitor of ABCG2 transporter; drug-drug 

256 interaction mediated by ABCG2 is reported with the coadministration of this 

257 macrocyclic lactone and the ABCG2 substrates danofloxacin and meloxicam.

258 In the MXT accumulation assays, inhibitory potency higher than 50% (IC50) was 

259 reported at 10µM in ovine ABCG2, which confirms eprinomectin as a good inhibitor 

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649



12

260 for ovine ABCG2 (Weiss et al., 2007). Other macrocyclic lactones have been described 

261 as in vitro ABCG2 inhibitors (Lespine et al., 2012). This role as inhibitor of 

262 eprinomectin was corroborated using transport assays testing interaction with 

263 danofloxacin, a model substrate of ABCG2, and meloxicam a novel substrate of 

264 ABCG2 (Garcia-Lino et al., 2020). In both cases, a reduction in the relative transport 

265 ratio was observed in ovine ABCG2-transduced cells versus cells in the presence of 

266 eprinomectin (Table 1 and 2). Eprinomectin has been previously described as a strong 

267 inhibitor of P-gp transporter (Lespine et al., 2012). Nevertheless, this is the first time 

268 that eprinomectin has been described as an in vitro ABCG2 inhibitor. Inhibition of in 

269 vitro transport of danofloxacin by macrocyclic lactones has been described previously 

270 with studies using ivermectin at 50 µM in human ABCG2- and murine Abcg2-

271 transduced cells (Real et al., 2011). However, our results show that eprinomectin 

272 completely inhibits transport of danofloxacin mediated by ABCG2 in ovine ABCG2-

273 trasduced cells at a 5-fold lower concentration (10 µM). 

274 According to our positive results obtained in the in vitro assays, the extent of in vivo 

275 ABCG2-mediated drug-drug interaction involving eprinomectin and veterinary ABCG2 

276 substrates has been determined in sheep (Figs. 2 and 3). Interaction between ABCG2 

277 and eprinomectin was confirmed in an in vivo setting when eprinomectin was 

278 coadministered to sheep together with the antimicrobial danofloxacin (Fig. 2) and with 

279 the anti-inflammatory drug meloxicam. The pharmacokinetics of danofloxacin and 

280 meloxicam reported in this study were similar to those reported previously (Real et al., 

281 2011; Woodland et al., 2019). Our results show that plasma availability, and 

282 consequently the therapeutic potential, of danofloxacin and meloxicam increases with 

283 the co-administration with eprinomectin (Figs. 2 and 3). An increase in plasma 

284 concentration of danofloxacin was previously observed with a combined administration 
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285 with ivermectin in sheep, causing an increase in plasma AUC values and half-life of this 

286 drug (Ballent et al., 2012). However, a decreased concentration of danofloxacin in milk 

287 was observed with the coadministration of ivermectin, a P-gp and ABCG2 inhibitor 

288 (Real et al., 2011). Our results after co-administration of both drugs with eprinomectin 

289 show no significant differences in concentration in milk compared with control animals. 

290 The low binding with lipoproteins that eprinomectin has compared to other MLs, such 

291 as ivermectin, may be among the causes of its low presence in milk (Lespine et al., 

292 2012)and therefore in the mammary gland, probably reducing its ability to interact 

293 locally with ABCG2. It should be noted that the increase in plasma concentration of 

294 meloxicam produced by the co-administration of eprinomectin could have important 

295 therapeutic applications due to the therapeutic potential of meloxicam in small 

296 ruminants (Colditz et al., 2019). 

297 In conclusion, the role of eprinomectin as an inhibitor of ovine ABCG2, both in vitro 

298 and in vivo, has been demonstrated. Co-administration of eprinomectin in sheep results 

299 in an increase in plasma concentration of the antimicrobial drug danofloxacin and the 

300 anti-inflammatory drug meloxicam, producing a synergic effect of these drugs. These 

301 new findings establish that eprinomectin, an effective antiparasitic, with no withdrawal 

302 period in milk, affects systemic exposure of other drugs by inhibition of ABCG2 

303 transporter.
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404 Table 1. Percentage of transport of danofloxacin (10 µM) towards apical (BL-AP 

405 transport) or basal (AP-BL transport) compartments in MDCK parental cells and their 

406 ovine ABCG2-transduced cells in the absence or presence of eprinomectin at 5 µM or 

407 10 µM (n= 4–7). 

408 Results are means  SDs.

409 a p ≤ 0.05, significant differences from parental MDCKII cells

410 b p ≤ 0.05, significant differences from MDCKII ovine ABCG2 cells without eprinomectin. 

411

Time(h) BL-AP
(% transport)

AP-BL
(% transport)

Ratio
BL-AP/
AP-BL

2 14.72  1.59 15.02  3.42

MDCKII
4 25.76  1.86 26.44  4.09 0.98 0.09

2 39.54  4.42 2.76  2.86
Danofloxacin

MDCKII ovine 
ABCG2

4 58.65  3.39 5.58  2.13 12.44  6.89a

2 12.20  1.02 9.88  1.96

MDCKII
4 20.05  1.18 22.09  0.86 0.91  0.03

2 21.74  0.89 5.97  2.69

Danofloxacin + 
Eprinomectin (5µM)

MDCKII ovine 
ABCG2

4 32.87  3.74 14.38  0.39 2.29  0.25b

2 11.06  1.28 13.82  3.50

MDCKII
4 21.93  4.60 25.74  5.85 0.86  0.05

2 12.06  1.68 9.65  0.49

Danofloxacin + 
Eprinomectin (10µM)

MDCKII ovine 
ABCG2

4 24.36  4.46 22.57  4.87 1.08  0.05b
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412 Table 2. 

413 Percentage of transport of meloxicam (30 µM) towards apical (BL-AP transport) or basal 

414 (AP-BL transport) compartments in MDCK parental cells and their ovine-ABCG2 

415 transduced cells in the absence or presence of eprinomectin at 5 µM or 10 µM (n= 4–7). 

416 Results are means  SDs.

417 a p ≤ 0.05, significant differences from parental MDCKII cells

418 b p ≤ 0.05, significant differences from MDCKII ovine ABCG2 cells without eprinomectin. 

419

Time(h) BL-AP
(% transport)

AP-BL
(% transport)

Ratio
BL-AP/
AP-BL

2 30.71  2.89 27.71  2.43

MDCKII
4 38.59  2.39 36.62  2.62 1.06  0.08

2 43.31  4.96 2.43  1.40
Meloxicam

MDCKII ovine 
ABCG2

4 62.87  4.72 2.77  0.75 24.85  4.62a

2 29.34  0.49 21.83  2.58

MDCKII
4 38.32  2.02 35.36  1.49 1.08  0.01

2 50.70  1.44 3.14  0.36

Meloxicam + 
Eprinomectin (5µM)

MDCKII ovine 
ABCG2

4 66.01  4.74 4.27  0.57 15.69  3.21b

2 25.11  3.96 17.72  0.96

MDCKII
4 36.70  1.55 33.00  1.36 1.11  0.04

2 43.61  0.98 6.94  2.99

Meloxicam + 
Eprinomectin (10µM)

MDCKII ovine 
ABCG2

4 62.40  3.93 13.81  6.61 5.33  2.35b
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420 Table 3. 

421 Mean (±SD) pharmacokinetic parameters in plasma of sheep after subcutaneous 

422 administration of danofloxacin at a dosage of 1.25 mg/kg in sheep coadministered with 

423 eprinomectin (0.5 mg/kg s.c.)

Danofloxacin Danofloxacin + Eprinomectin 

AUC (0-48 h) 1.40 ± 0.04 1.80 ± 0.23*

Cmax (µg/mL) 0.16 ± 0.05 0.2 ± 0.06

Tmax (h) 2.67 ± 0.93 2.27 ± 1.26
Plasma

MRT (h) 9.66 ± 3.22 9.15 ± 2.39

AUC (0-48 h) 16.2 ± 2.96 15.41 ± 1.79

Cmax (µg/mL) 2.00 ± 0.81 1.88 ± 0.37

Tmax (h) 2.66 ± 2.08 4.5 ± 1.71
Milk

MRT (h) 6.38 ± 0.32 6.7 ± 0.49

Milk/plasma AUC 11.9 ± 4.49 10.19 ± 2.51

424

425 * p ≤ 0.05, significant differences from control group 

426
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427 Table 4. 

428 Mean (±SD) pharmacokinetic parameters in plasma of sheep after subcutaneous 

429 administration of meloxicam at a dosage of 0.5 mg/kg in sheep coadministered with 

430 eprinomectin (1.0 mg/kg s.c.)

Meloxicam Meloxicam + Eprinomectin

AUC (0-72 h) 23.7 ± 3.94 33.1 ± 6.77*

Cmax (µg/mL) 1.53 ± 0.29 1.83 ± 0.24*

Tmax (h) 4.33 ± 0.82 6.00 ± 0.00*
Plasma

MRT (h) 16.9 ± 0.85 17.6 ± 3.89

AUC (0-72 h) 4.33 ± 0.92 5.13 ± 1.87

Cmax (µg/mL) 0.48 ± 0.23 0.37 ± 0.08

Tmax (h) 4.33 ± 0.82 4.50 ± 1.97
Milk

MRT (h) 13.8 ± 4.05 18.08 ± 7.68

Milk/plasma AUC 0.19 ± 0.03 0.17 ± 0.02

431

432 * p ≤ 0.05, significant differences from control group 

433
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435 Figures legends

436 Fig 1. Effect of eprinomectin on accumulation of mitoxantrone (10 µM) at 1.25, 2.5, 5, 

437 7.5 or 10 µM in parent MDCKII cells and in their ovine ABCG2 transduced cells. 

438 Results (units of fluorescence, median); error bars indicate SD. (n=3-6). Inhibitory 

439 potency (%) of eprinomectin in ovine ABCG2-transduced cells is also represented. 

440

441 Fig 2. Concentrations in plasma and milk (embedded) vs. time curves for danofloxacin 

442 obtained from lactating Assaf sheep treated with a single dose of Advocin® at 1.25 

443 mg/kg (sc) and coadministered with Eprecis® at 0.5 mg/kg (sc). Each point represents a 

444 mean; bars indicate standard deviation (n=5-6). (*) p ≤ 0.05.

445

446 Fig 3. Concentrations in plasma and milk (embedded) vs. time curves for meloxicam 

447 obtained from lactating Assaf sheep treated with a single dose of Metacam® at 0.5 

448 mg/kg (sc) and co-administered with Eprecis® at 1 mg/kg (sc). Each point represents a 

449 mean; bars indicate standard deviation (n=5-6). (*) p ≤ 0.05.
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