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Abstract
This article presents a robust and efficient methodology to study
three-dimensional thermoelastic contact problems under orthotropic friction
conditions, including the effects of non-linear thermal contact conductance and
convective boundary conditions at the interstitial contact zone. The proposed
methodology considers the boundary element method to compute the thermo-
mechanical influence coefficients and an augmented Lagrangian formulation
to ensure the fulfillment of all these thermomechanical contact conditions.
The resulting non-linear equation set have been solved by an efficient pro-
posed iterative Uzawa scheme. The proposed formulation has been validated
by comparison with some available results in the literature and later on, it is
considered to study how the thermoelastic contact variables are affected by
both: the non-linear interface thermal and the orthotropic friction conditions
in different engineering problems such as a brake disc-pad contact system.
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1 INTRODUCTION
Contact problems are clearly affected by the thermoelastic response of solids in contact. For instance, thermal loads or
temperature variations in two solids in contact produce thermal tractions that can change the contact conditions and
the contact zone due to the thermal distortion produced at the common interface. This thermal distortion affects not
only a non-uniform normal traction and temperature distributions, as well as to the non-contact regions. Moreover, in
engineering problems such as the design of machine components, it is also the great importance to consider effects from
frictional heating. In many contact problems, the friction properties are not dependent on the sliding direction, so friction
is assumed to be constant and modeled using the isotropic Coulomb law. However, in many engineering applications,
the distribution of the surface asperities and hollows are not identical in every point of the surface. Thus, for this kind of
cases, an anisotropic friction model has to be considered, obtaining a most realist frictional behavior. All of these leads to
an increase of the inherent non-linearity of the problem since the temperature field along the contact zone depends on
the pressure values and tangential displacements. So it is of great importance the approximation of the tangential contact
variables during the resolution process due to the difficulties involved in fulfilling the anisotropic friction law.

In the literature, it is possible to find different works which studied and developed different frictional models such
as References 1-5. Analytical solutions for some isotropic are presented in References 6,7. Moreover, other works on the
literature such as References 8-11 present a numerical formulations for orthotropic frictional contact problems.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
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2632 UBERO-MARTÍNEZ et al.

It is well known that contact problems involving friction are the most difficult ones to be solved in engineering, espe-
cially when considering more realistic friction models such as the one used in this work. A wide range of works of finite
element method (FEM) based on contact problems may be found in the literature: it has to be mentioned the works of
Wriggers et al.,12-14 Johansson et al.,15 Strömberg et al.,16-20 Patunso,21 Hüeber and Wohlmuth,22 and Seitz et al.23 in which
thermomechanical contact problems with friction and/or wear are studied.

The boundary element method (BEM) has been also recognized by its numerical suitability on three dimensional
interface interaction problems.24 Therefore, the BEM has been used to studied the thermomechanical contact problems
in different works such as References 25-35. Nevertheless, to the best author’s knowledge, the inclusion of the orthotropic
frictional law has been solved in References 36-42 for the resolution of contact problems using BEM for elastic, multifield
magneto-electro-elastic and piezoelectric conditions, FRP composites and wear. Only in References 27,43,44 has been
involved the isotropic friction model in 2D thermomechanical contact problems.

In this context, this work presents a numerical formulation to solve three-dimensional thermoelastic contact problems
under frictional contact conditions. Contrary to what previous works assume, in this work are considered the frictional
heating effects and an orthotropic frictional law. Additionally, non-linear thermal interface and interstitial convective
conditions are also simulated. So, to the best authors’ knowledge, it is the first time that a 3D thermoelastic contact
formulation considers both, non-linear interface thermal and orthotropic frictional contact conditions, simultaneously.
The thermomechanical influence coefficients are computed by means of the boundary element technique, whereas the
augmented Lagrangian formulation45-48 has been used to the contact modeling. Finally, the derived thermoelastic contact
problem is solved using an Uzawa iterative scheme46,49-51 which has been reformulated to consider the previous described
nonlinear interface thermoelastic contact conditions.

The article is organized as follows: the basic governing equations are presented in Section 2. The non-linear thermoe-
lastic contact conditions, including the anisotropic frictional law is presented in Section 3. In Section 4, a short description
of the boundary element discrete equations and the solution procedure is presented. Section 5 is dedicated to the validation
of the proposed formulation by comparison with benchmark problems. Moreover, additional engineering problems are
also presented and discussed in detail in this section. Finally, the article concludes with the summary and the concluding
remarks.

2 GOVERNING EQUATIONS

Let consider two 3D isotropic bodies occupying each one the region Ωl
⊂ R3 (l = A,B) with a piecewise smooth bound-

ary Γl, in a Cartesian coordinate system (x1, x2, x3) (see Figure 1). Both bodies are under quasi-static thermoelastic contact
conditions. The boundary Γl is divided in two different parts to define the mechanical and the thermal boundary con-
ditions. The first one divides Γl into two separations: Γl = Γl

u ∪ Γl
t, being the elastic displacements ui imposed on Γl

u and
the traction ti prescribed on Γl

t. The second division is: Γl
𝜃

on which the temperature 𝜃 is prescribed, Γl
q with heat flux q

impose and Γl
ic which is defined as: Γl

ic = Γ
l
i ∪ Γc, that is, Γc being the common contact zone and Γl

i being the interstitial
region of each solid, that surrounds the contact zone, where convective heat transfer conditions are considered.

The thermomechanical equilibrium equations of the problem considering the absence of body forces are written as:

kt 𝜃,ii = 0 in Ωl
,

𝜎ij,j = 0 in Ωl
, (1)

where kt is the thermal conductivity, 𝜃 is the temperature, and 𝜎ij are the components of Cauchy stress tensor. In this
work, the summation convention is used.

The constitutive equation in Ωl for isotropic thermoelasticity can be written as:

𝜎ij = 𝜆𝜀kk𝛿ij + 2𝜇𝜀ij − (3𝜆 + 2𝜇)𝛼t(𝜃 − 𝜃o)𝛿ij, (2)

where 𝜆 and 𝜇 are the Lamé coefficients, 𝛼t is the thermal dilatation coefficient, 𝜃o is the reference temperature, and 𝜀ij is
the infinitesimal strain tensor defined by

𝜀ij = (ui,j + uj,i)∕2 in Ωl
. (3)
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F I G U R E 1 The physical setting

Prescribing thermal and mechanical boundary conditions on Γl. The Dirichlet boundary conditions are

𝜃 = 𝜃 on Γl
𝜃
,

ui = ui on Γl
u. (4)

and the Neumann boundary conditions are given by
q = q on Γl

q,

𝜎ijnj = ti on Γl
t. (5)

with n being the outward unit normal to the boundary (see Figure 1) and the heat flux q is defined as q = qini, being
qi = −kt𝜃,i.

For a well-posed problem either tractions or displacements and either temperatures or heat fluxes must be pre-
scribed at each boundary zone outside Γl

ic. However, special considerations should be taken into account for the boundary
conditions on Γl

ic.
On the interstitial region Γl

i a heat interchange between the bodies due to a fluid contained in the separation zones
between them is considered. So the boundary

q = q̃i on Γl
i,

𝜎ijnj = ti on Γl
i, (6)

where n being the outward unit normal to the boundary (see Figure 1) and q̃i depends on whether convective boundary
conditions are considered, that is, q̃i = hf (𝜃 − 𝜃f ). On these expressions, “hf ” is the convection coefficient. On the other
hand, it should be mentioned that the examples solved on this work assume 𝜎ijnj = 0 on Γl

i.

3 THERMOMECHANICAL CONTACT CONDITIONS

3.1 Mechanical contact conditions

Assuming small displacements assumption, a common normal unit normal vector nc = (nA
3 − nB

3 )∕||n
A
3 − nB

3 || is calcu-
lated on the common contact area Γc (see Figure 2). Thus the nonlinear mechanical boundary conditions on Γc can be
determinated as

𝜎ijncj = pi on Γc, (7)
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2634 UBERO-MARTÍNEZ et al.
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F I G U R E 2 Local coordinate system for each contact pair of elements

where pi is the contact traction. Assuming no friction contact conditions, the contact traction pi has to satisfy the
Signorini’s conditions on Γc:

gn ≥ 0, pn ≤ 0, gn pn = 0, (8)

where pn = p ⋅ nc and gn = (go + un), being go = (xA − xB) ⋅ nc the initial gap between the bodies (see Figure 2) and un =
(uA − uB) ⋅ nc is the relative displacement.

These normal contact constrains (8) can be reformulated in a more compact form as:

pn − PR−(p
∗
n) = 0, (9)

where PR−(⋅) is the normal projection function (PR−(⋅) = min(0, ⋅), p∗n = pn + rngn is the augmented normal traction,
where rn is a penalization parameter (rn ∈ R+).

An orthotropic friction law37,51 is considered, which is a more appropriate frictional constitutive law. The generic form
of such orthotropic Friction Cone (Cf ) is given by

f (pt, pn) = ||pt||𝜇 − |pn| = 0, (10)

where pt = p − pnnc and || • ||𝜇 denotes the elliptic norm

||pt||𝜇 =
√

(
pe1∕𝜇1

)2 +
(

pe2∕𝜇2
)2
, (11)

being 𝜇1 and 𝜇2 the principal friction coefficients in the directions {e1, e2}.
The Coulomb friction restriction (||pt||𝜇 ≤ |pn|) can be summarized as:

||pt||𝜇 < |pn|⇒ ġt = 0 on Γc,

||pt||𝜇 = |pn|⇒ pt = −|pn|M
2ġt∕||ġt||

∗
𝜇 on Γc, (12)

In the expressions above, the tangential slip velocity (ġt = vt), whose module is defined as vs = ||ġt||, can be assumed for
quasistatic contact problems as ġt ≈ Δgt = go,𝜏 − ut (i.e., go,𝜏 is the tangential translation and ut = u − unnc). In Equation
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UBERO-MARTÍNEZ et al. 2635

(12), the value for the tangential contact traction was presented in Reference 37 assuming an associated sliding rule, the
norm || • ||∗

𝜇
is dual of || • ||𝜇

||ġt||
∗
𝜇 =

√

(𝜇1ġe1 )2 + (𝜇2ġe2)2, (13)

and M is a diagonal matrix:

M =

[
𝜇1 0
0 𝜇2

]

. (14)

The frictional contact constraints (12) can be also formulated using contact operators as:

pt − PE
𝜌
(p∗t ) = 0, (15)

where p∗t = pt − rtM
2ġt (rt ∈ R+) is the augmented tangential traction and PE

𝜌
(•) ∶ R2 → R2 is the tangential projection

function defined in Reference 37 as

PE
𝜌
(p∗t ) =

{
p∗t if ||p∗t ||𝜇 < 𝜌,
𝜌 p∗t ∕||p

∗
t ||𝜇 if ||p∗t ||𝜇 ≥ 𝜌,

(16)

with 𝜌 = |PR−(p
∗
n)|.

3.2 Thermal contact conditions

The thermal interface contact conditions are derived, according to References 16,19, from the general energy balance of
the contact interface in assumption of zero heat capacity of the interfaces and orthotropic friction (10). So the energy
balance for the contact interface can be written as

qA + qB + |pn| ||ġt||
∗
𝜇 = 0, (17)

where the heat fluxes are given by:

qA = 𝜑A(𝜃A − 𝜃o), qB = 𝜑B(𝜃B − 𝜃o). (18)

In the expression above, 𝜑l (l = A,B) represents the thermal contact conductance and 𝜃o is the intrinsic temperature of
Γc. From Equations (17) and (18) it is possible to obtain the intrinsic temperature

𝜃o =
𝜑A𝜃

A + 𝜑B𝜃
B

𝜑A + 𝜑B
+ 1
𝜑A + 𝜑B

|pn| ||ġt||
∗
𝜇. (19)

Thus, the expression for the heat fluxes becomes:

qA = 𝜑o(𝜃A − 𝜃B) − 𝜉A
𝜇 |pn| ||ġt||

∗
𝜇, (20)

qB = 𝜑o(𝜃B − 𝜃A) − 𝜉B
𝜇 |pn| ||ġt||

∗
𝜇, (21)

where 𝜑o = 𝜑A𝜑B∕(𝜑A + 𝜑B) represents the overall contact conductance and 𝜉l
𝜇
= 𝜑l∕(𝜑A + 𝜑B) (l = A,B) represents fac-

tors on how frictional dissipation is divided between the contact interface and the contact surfaces, respectively, being
𝜉

A
𝜇
+ 𝜉B

𝜇
= 1.

3.3 Thermal contact conductance

The overall thermal contact conductance of two rough surfaces in contact (see Figure 3), can be calculated as:

𝜑o = 𝜑c + 𝜑g, (22)
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2636 UBERO-MARTÍNEZ et al.

Solid B

Solid A q

q θ

Z

Microcontacts Microgaps

F I G U R E 3 General thermal contact model and the schematic contact temperature distribution along the two solids contact surfaces

where 𝜑c and 𝜑g are, respectively, the contact and microgap conductance. Thus, 𝜑o(pn) = 𝜑c + 𝜑g in Equations (20) and
(21).

The contact conductance depends on different geometric, thermal and mechanical parameters.52-55 Based on
works,52-55 the general form of the contact conductance can be written as:

𝜑c = 1.25 ⋅ kc
mc

𝜎c

(
|pn|

Hc

)0.95

, (23)

where, kc = 2kAkB∕(kA + kB) is the harmonic mean thermal conductivity of the interface. Hc = 2HAHB∕(HA +HB) defines
the contact microhardness, 𝜎c =

√
(𝜎A)2 + (𝜎B)2 is the effective joint surface roughness. Finally, mc =

√
(mA)2 + (mB)2

represents the effective mean absolute asperity slope.
However, the heat flows from one solid to the other not only by means of conduction through the microcontacts

but also by the microgaps when they are filled with a thermal interface material (TIM). For that reason, 𝜑g is defined,
according to Reference 54 as:

𝜑g =
kg

Y
, (24)

where kg is the TIM thermal conductivity and Y is the mean plane separation which depends on the normal contact
pressure.54 Y can be written as:

Y = 1.363𝜎c

[

−ln
(

5.589
pn

Hc

)]0.5

. (25)

3.4 Interstitial thermal conditions

A heat exchange between both solids is assumed on the interstitial region Γl
i by containing a fluid in the separation zones.

The heat interchange is produced by means of convective conditions. These convective conditions are divided in two:
forced convection and natural convection conditions.

For the case of forced convection conditions, the following boundary conditions are applied:

ql = hf (𝜃f − 𝜃l), (26)

being hf the convection coefficient and 𝜃f the fluid temperature. However, if natural convective conditions are considered,
the thermal conditions are obtained according to References 26,31,56 and are given by:

qB(𝛼) = −qA(𝛼), (27)

qA(𝛼) = 𝜑o(𝜃B(𝛼) − 𝜃A(𝛼)), (28)
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UBERO-MARTÍNEZ et al. 2637

where 𝜑o is a pseudo-conductance with value hf∕2.

4 BOUNDARY ELEMENT FORMULATION

4.1 Boundary element equations

The well-known steady-state boundary integral equations for thermoelastic problems can presented, according to
Aliabadi,24 as follows. First, the temperature integral equation of collocation point X on Γi:

c(X)𝜃(X) +
∫Γ

Q(x,X)𝜃(x) dΓ(x) =
∫Γ
Θ(x,X)q(x) dΓ(x), (29)

where x is a boundary point, c(X) are the free term of the temperature boundary integral equation and Q(x,X) andΘ(x,X)
are the fundamental solutions of the thermal problem. And second, the displacement integral equation

cij(X)uj(X) −
∫Γ

Uij(x,X)tj(x) dΓ(x) +
∫Γ

Tij(x,X)uj(x) dΓ(x)

=
∫Γ

Qi(x,X)𝜃(x) dΓ(x) −
∫Γ
Θi(x,X)q(x) dΓ(x), (30)

where x is a boundary point, cij(X) is the free terms of the boundary integral equations for the elastic problem. Tij(x,X)
stands for the tractions fundamental solution and Uij(x,X) is the fundamental solution tensor for displacement. Finally,
Qi(x,X) and Θi(x,X) are the vectors derived from the consideration of thermal deformations in the elastic law.

After discretizing the boundary, Equations (29) and (30) can be regrouped and written as Hũ = Gt̃. ũ gathers the
values of all nodal displacements (u) and temperature (𝜽) vectors, and t̃ contains the nodal tractions (t) and the nodal
heat fluxes (q) vectors. Applying the boundary conditions, the previous expression can be written as: Ax̃ = F, where all
the unknowns are passed to the left-hand side vector x̃.

Considering node to node contact, the interface discretization on Γc implemented for contact problems. Thus, each
node on Γl

c makes a contact pair (I). Therefore, the respective boundary element equation Alx̃l = Fl for the solid Ωl (l =
A,B) can be expressed as:

Al
xe

xl
e +Al

uc
ul

c +Al
𝜃c
𝜽

l
c +Al

ppl
c +Al

qql
c = Fl

, (31)

where (xl)T = [(xl
e)T (ul

c)T (𝜽l
c)T] is a vector with the nodal unknowns in which:

• (xl
e) gathers the external unknowns.

• (ul
c) includes the contact displacements.

• (𝜽l
c) correspond to the contact temperatures.

Matrix Al
x is formed with the column of matrices Hl and Gl, and Al

p and Al
qis assembled with the columns of Gl that

belong to the contact nodal unknowns. Thus, for contact problems, the discrete boundary element equation (31) for the
solids in contact can be organized as:

[
AA

xe
0 AA

uc
0 AA

𝜃c
0 AA

pc
AA

q 0
0 AB

xe
0 AB

uc
0 AB

𝜃c
−AB

pc
0 AB

q

]

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

xA
e

xB
e

uA
c

uB
c

𝜽
A
c

𝜽
B
c

pc

qA
c

qB
c

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

=

{
FA

FB

}

, (32)
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2638 UBERO-MARTÍNEZ et al.

In the above expression, the normal contact tractions vector of every pair of nodes (I) are gathered in vector pc. They
are respectively related with the nodal boundary element tractions and heat flux vectors among the equilibrium equation:
(pc)I = (pA

c )I = −(pB
c )I .

The boundary element equation (32) can be reordered in a more compact form:

[

Axe Auc A𝜃c Apc Aqc

]

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

xe

uc

𝜽c

pc

qc

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

= F, (33)

where xe collects the nodal external unknowns (i.e., the nodal unknowns which are outside the contact zone), uc and
𝜽c collect the nodal contact displacements and temperatures, respectively, pc contains the nodal contact tractions and qc
contains the nodal contact heat fluxes on each solid:

xe =

{
xA

e

xB
e

}

, uc =

{
uA

c

uB
c

}

, 𝜽c =

{
𝜽

A
c

𝜽
B
c

}

, qc =

{
qA

c

qB
c

}

. (34)

Matrices Axe , Auc , A𝜑c , Apc , and Aqc , and vector F are constructed as:

Axe =

[
AA

xe
0

0 AB
xe

]

, Auc =

[
AA

uc
0

0 AB
uc

]

, A𝜃c =

[
AA
𝜃c

0
0 AB

𝜃c

]

, (35)

Apc =

[
AA

pc

−AB
pc

]

, Aq =

[
AA

q 0
0 AB

q

]

, F =

{
FA

FB

}

. (36)

4.2 Thermoelastic contact discrete variables and restrictions

For every contact pair on nodes (I), the heat flux can be calculated in terms of the thermal contact conductance (𝜑o) and
the temperature of every solid, according to (20) and (21), as:

(qA
c )I = 𝜑o((pn)I) ( (𝜽

A)I − (𝜽B)I ) − 𝜉A
𝜇 |(pn)I| ||(ġt)I||

∗
𝜇, (37)

(qB
c )I = 𝜑o((pn)I) ( (𝜽

B)I − (𝜽A)I ) − (1 − 𝜉A
𝜇 ) |(pn)I| ||(ġt)I||

∗
𝜇, (38)

where pn contains the normal contact pressures.
So Equation (33) can be written as

[

Axe Auc Ã𝜃c Apc

]

⎧
⎪
⎪
⎨
⎪
⎪
⎩

xe

uc

𝜽c

pc

⎫
⎪
⎪
⎬
⎪
⎪
⎭

= F̃, (39)

where

Ã𝜃c =

[
AA
𝜃c
+ 𝝋o(pn)AA

q −𝝋o(pn)AA
q

−𝝋o(pn)AB
q AB

𝜃c
+ 𝝋o(pn)AB

q

]

, F̃ =

{
FA + 𝜉A

𝜇
AA

q 𝝃(pn, ġt)
FB + (1 − 𝜉A

𝜇
) AB

q 𝝃(pn, ġt)

}

, (40)

being 𝝋o(pn) a diagonal matrix, that is:

𝝋o(pn) = diag
(
𝜑o((pn)1), … , 𝜑o((pn)I), … , 𝜑o((pn)Nc )

)
, (41)
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UBERO-MARTÍNEZ et al. 2639

and

𝝃(pn, ġt) =
⎧
⎪
⎨
⎪
⎩

⋮

|(pn)I| ||(ġt)I||∗𝜇
⋮

⎫
⎪
⎬
⎪
⎭

. (42)

Finally, the mechanical contact restrictions (9) and (15) are defined on every contact pair I as:

(pn)I − PR−((pn)I + rn(gn)I) = 0, (43)

(pt)I − PE
𝜌
((pt)I − rtM

2(ġt)I) = 0, (44)

where pn and pt contain the normal and tangential contact tractions of every contact node I, gn contain the normal gaps
and ġt slip velocities.

The quasi-static thermoelastic contact problem presented in Sections 2 and 3 can now be numerically treated by using
the Equations (39)–(44). So defining z = (xe,uc,𝜽c,pc), we have the following system of non-linear equations for each
load step:

H(z) =
⎧
⎪
⎨
⎪
⎩

Axe xe +Auc uc + Ã𝜃c𝜽c +Apc pc − F̃

pc − PCf (p
∗
c )

⎫
⎪
⎬
⎪
⎭

= 0, (45)

where the contact operator PCf projects the nodal augmented contact tractions in to the Friction Cone (Cf ):

PCf ((p
∗
c )I) =

{
PR−((p

∗
n)I)

PE
𝜌
((p∗t )I)

}

. (46)

4.3 Solution scheme

An iterative Uzawa’s method based on Reference 41 is used to solve the resulting nonlinear system (33)–(45). Similar solu-
tion schemes can be found in References 46,50,51,57. To calculate the variables on load step (k), z(k) =

(
x(k)e ,u(k)c ,𝜽

(k)
c ,p(k)c

)
,

when the variables on previous instant z(k−1) are known:

(I) Set z(0) = z(k−1) and iterate using (n) index.
(II) Resolve:

[

Axe Auc Ã(n)
𝜃c

]
⎧
⎪
⎨
⎪
⎩

xe

uc

𝜽c

⎫
⎪
⎬
⎪
⎭

(n+1)

= −Apc p(n)c + F̃(n), (47)

where

Ã(n)
𝜃c
=

[
AA
𝜃c
+ 𝝋o

(
p(n)n

)
AA

q −𝝋o
(
p(n)n

)
AA

q

−𝝋o
(
p(n)n

)
AB

q AB
𝜃c
+ 𝝋o

(
p(n)n

)
AB

q

]

, F̃(n) =

{
FA + 𝜉A

𝜇
AA

q 𝝃
(
p(n)n , ġ(k)t

)

FB + (1 − 𝜉A
𝜇
) AB

q 𝝃
(
p(n)n , ġ(k)t

)

}

. (48)

(III) Update contact tractions for every contact node I:
(
p(n+1)

n
)

I = PR−

((
p(n)n

)

I + rn
(
g(n+1)

n
)

I

)
, (49)

(
p(n+1)

t
)

I = PE
𝜌

((
p(n)t

)

I − rt M
2(g(k)t

)

I

)
, (50)

where (g(n+1)
n )I = (g(k)o )I +

(

(uA
c )I − (uB

c )
(n)
I

)

⋅ (nc)I and 𝜌 = |(p(n+1)
n )I|.

 10970207, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6953 by B
ucle - U

niversidad D
e L

eon, W
iley O

nline L
ibrary on [22/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2640 UBERO-MARTÍNEZ et al.

(IV) Calculate the error Ψ(z(n+1)) = max
{
||u(n+1)

c − u(n)c ||, ||𝜽(n+1)
c − 𝜽(n)c ||, ||p(n+1)

c − p(n)c ||
}

.

(a) If Ψ(z(n+1)) ≤ 𝜀, the solution for the instant (k) is reached: z(k) = z(n+1).
(b) Otherwise, return to (II) evaluating: p(n)c = p(n+1)

c .

After the solution at instant (k) is reached, the solution for the next instant is achieved by setting: z(0) = z(k) and
returning to (I).

The stop criterion is the similar to the predictor-corrector Uzawa scheme for contact presented by Kikuchi and Oden49

or Joli and Feng.10 However, additional stop criterion based on the norm of violation of the relations describing the
discretized problem can be considered (i.e., Ψ(z) ≤ 𝜀 being Ψ(z) = HT(z)H(z)∕2).

5 NUMERICAL RESULTS

In order to show the capabilities of the proposed BEM formulation for 3D thermoelastic contact problems, some numerical
results are presented in this section. First, the methodology is validated by comparison with numerical results pre-
sented in the literature,27 in which different thermal resistance models are simulated. Then, the influence of frictional
heating are demonstrated under different sliding directions (𝛽). Furthermore, the combined effects of the orthotropic
friction law, the inclusion of a thermal interface material and interstitial convective conditions are analyzed. Finally, the
thermomechanical contact variables are studied in a brake disc-pad contact system problem.

5.1 Thermoelastic contact of two solids

In this first example, the methodology herein proposed is validated by comparison of the results obtained by solving
the benchmark problem presented by Giannopoulos,27 in which a 2D thermoelastic contact problem is solved.
Giannopoulos27 used a isotropic friction law with different friction coefficients (𝜇 = 0.1, 𝜇 = 0.2, and 𝜇 = 0.3). Thus, in
order to compare the results herein obtained with the Giannopoulus ones, the following orthotropic friction coefficients
have been used: 𝜇1 = 𝜇2 = 0.1, 𝜇1 = 𝜇2 = 0.2, and 𝜇1 = 𝜇2 = 0.3. The geometry of the two blocks is illustrated in Figure 4
and the employed materials parameters are collected in Table 1.

Symmetry conditions have been applied in planes x1 − x3 and x2 − x3, so the faces corresponding to those planes have
not been meshed. Figure 5 shows the meshing considered in this work. Both solids have been meshed with a total of 520
elements. The potential contact zone is discretized with 240 elements (see Figure 5B). The perpendicular displacements
(ux3 = 0) are restricted in both upper face of the upper solid (x3 = 50 ⋅ 10−3 m) and lower face of the lower block(x3 =
−50 ⋅ 10−3 m), whereas tractions are imposed (tx1 = tx2 = tx3 = 0) on the rest of the faces. Moreover, the upper face of the

50 mm 5 mm

50
m

m

x 1− x 3
s ymmet r y

x2 − x3 s ymmet r y

x1

x2

x3

SOLID A

SOLID B 50
m

m

F I G U R E 4 Geometry of a thermoelastic contact between two 3D rectangular solids considered for plane stress problem. Symmetry for
planes x1 − x3 and x2 − x3 is applied
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UBERO-MARTÍNEZ et al. 2641

T A B L E 1 Material parameters of the two solids

Solid A Solid B

E (GPa) 210 210

𝜈 0.3 0.3

𝛼 (◦C−1) 2.25 ⋅ 10−5 1 ⋅ 10−5

kl (W/◦C mm) 60 ⋅ 10−3 40 ⋅ 10−3

𝛿 (mm/W) 48.75 ⋅ 10−5 32.5 ⋅ 10−6

x1 x2

x3

(A)
x1

x2

(B)

F I G U R E 5 (A) Boundary element mesh of the boundary of the 3D solids. (B) Boundary element mesh of the potential contact zone (Γc)

upper solid is with a constant temperature of 𝜃 = 50◦C and the lower face of the upper block is with a constant temperature
of 𝜃 = −50◦C. On the rest of the faces, the heat flow is restricted, q = 0 W/mm2.

The formulation herein presented has been validate by considering and modeling the same thermal contact conduc-
tances as Reference 27:

(a) 𝜑o = ∞,
(b) 𝜑o = 𝜑01 = 0.00020.01(pn) (W/◦C m2),
(c) 𝜑o = 𝜑02 = 0.0020.01(pn) (W/◦C m2),
(d) 𝜑o = 0.

The thermal contact conductance presented in case (a) corresponds to an infinity thermal conductance model
(𝜑o = ∞). Cases (b) and (c) represents intermediate conductances. Finally, case (d) simulates no heat transfer condition
between the surfaces in contact (𝜑o = 0).

Figure 6 shows the normal contact traction distribution and the tangential traction distribution for the different ther-
mal contact conductances simulated in Reference 27. The tractions values increases as the conductance (𝜑o) decreases.
An excellent similarity between the numerical results obtained by the formulation proposed in this work and the
results presented in the literature. The same agreement is showed in Figure 7, where the temperature distributions
are plotted. A temperature jump in the contact zone is produced by the thermal contact conductance as it is shown
in Figure 8.

On the one hand, Figure 9 shows the great influence of the thermal contact resistance on the value of pressures and
temperatures in the contact zone. This relates to what is seen in Figures 6A and 7. As contact pressure increases, the
thermal jump in the contact zone increases due to the decreased value of the thermal conductance (𝜑o).

Finally, after the validation with Giannopoulos,27 where an isotropic friction law was considered, we are going to
consider a scenario where orthotropic frictional contact conditions, that is, 𝜇1 = 0.3 and 𝜇2 = 0.1 (and vice versa), and
different thermal contact conductance values are considered. The results for this study are presented in Figure 10, where
the tangential tractions computed on each case are in comparison with the corresponding isotropic friction cases.
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2642 UBERO-MARTÍNEZ et al.
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42

49

56

63

70

(A)

0 10 20 30 40 50
0

4
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16

20

(B)

0 10 20 30 40 50
0

4

8

12

16

20

(C)

0 10 20 30 40 50
0

4

8

12

16

20

(D)

F I G U R E 6 Present formulation and 2D model27 comparison for: (A) Normal contact tractions distribution. (B) Tangential contact
tractions distribution for 𝜑o = ∞. (C) Tangential contact tractions distribution for 𝜑o = 𝜑01. (D) Tangential contact tractions distribution for
𝜑o = 𝜑02

Results reveal that the computed tangential traction values are 𝜇1 frictional coefficient values have no influence on
the tangential traction distributions. Due to the dimensions of the solids, those are expected results, because these cases
could be tackled as a x2 − x3-plane stress problems.

5.2 Frictional heating effects

This example presents the influence of the frictional heating on the thermoelastic variables considering an orthotropic
frictional law. The problem solved corresponds to the contact between a spherical punch of radius R = 100 ⋅ 10−3 m over a
rectangular solid with dimensions 2L1 × 2L1 × L2 (see Figure 11), being L1 = 50 ⋅ 10−3 m and L2 = 40 ⋅ 10−3 m. The upper
face of the spherical punch is set at a temperature of 0◦C, whereas, at the rest of the faces, the heat flow is restricted
q = 0 W/mm2. However, on the block (or substrate), all its faces are set at a temperature of 0◦C. The spherical punch is
subjected to a normal indentation of g0x3

= 8 ⋅ 10−5 m and to a different tangential sliding velocities (vs), which forms an
angle 𝛽 with axis x1 (see Figure 11). In this problem, a quasi-static thermoelastic contact problem can be considered since
the formulation assumes that the axes are moving with the contact zone, which is moving with the punch. Therefore,
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UBERO-MARTÍNEZ et al. 2643

-50 -30 -10 10 30 50
-50

-30

-10

10

30

50

Upper solid

Lower solid

F I G U R E 7 Temperature variation comparison along the x3 axis between the proposed formulation and Reference 2D model27, as a
function of the different thermal contact conductances studied

(A) (B)

(C) (D)

x1 x2

x3

x1 x2

x3

x1 x2

x3

x1 x2

x3

50.00

25.00

00.00

−25.00

−50.00

F I G U R E 8 Complete boundary temperature distribution of the 3D solids for the thermal contact conductance: (A) 𝜑o = ∞.
(B) 𝜑o = 𝜑01. (C) 𝜑o = 𝜑02. (D) 𝜑o = 0
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2644 UBERO-MARTÍNEZ et al.

50 53 56 59 62 65
-50

-30

-10

10

30

50

F I G U R E 9 Average contact temperature on each solid as a function of the normal contact pressure for each thermal contact
conductance analyzed. The contact temperatures and contact normal pressures depend strongly on the thermal contact conductance
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12
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(C)

F I G U R E 10 Tangential traction comparison between isotropic (𝜇1 = 𝜇2) and orthotropic friction model (𝜇1 ≠ 𝜇2) for: (A) 𝜑o = ∞.
(B) 𝜑o = 𝜑01. (C) 𝜑o = 𝜑02
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x3

x1 x2
β

R

Spher ical Punch

ΓC

g0x3

vs

2L12L1

L2

Rectangular Block

F I G U R E 11 Geometry of a thermoelastic contact problem between a 3D spherical punch sliding over a rectangular solid

L0 L0

x1 x2

x3

F I G U R E 12 Boundary element discretization detail for the curved punch over a rectangular solid contact model

the tangential slip velocity on the contact zone is imposed on the potential contact zone nodes and its value is equal to
the punch absolute velocity. Moreover, orthotropic frictional conditions (𝜇1 = 0.3, 𝜇2 = 0.1) is considered. The potential
contact (L0 × L0, being L0 = 10−3 m) zone has been discretized with a total of 648 elements. The boundary of the spherical
punch and the rectangular solid has been discretized with a total of 450 elements respectively (Figure 12). In this example,
it has been considered a zero thermal contact conductance (𝜑o = 0) between both solids. The material parameters used
are collected in Table 2.

Figure 13 shows the normalized normal contact traction distribution in the contact zone, where it can be seen that
the results obtained match perfectly to those obtained with the Hertz solution.

Regarding the tangential tractions, Figure 14 presents the tangential slip vectors and the tangential traction modules
for different directions of the imposed tangential sliding velocities. Only a quarter of the contact area has been rep-
resented and both the slip and tangential traction vectors have been plotted over the normal contact traction contour
plot.
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2646 UBERO-MARTÍNEZ et al.

T A B L E 2 Material parameters of the two solids

Spherical punch Rectangular block

E (GPa) 210 210

𝜈 0.3 0.3

𝛼 (◦C−1) 2.0 ⋅ 10−5 1.0 ⋅ 10−5

kl (W/◦C mm) 80 ⋅ 10−3 10 ⋅ 10−3

𝜉
l
𝜇

0.89 0.11

-1.5 -0.9 -0.3 0.3 0.9 1.5
0

0.2

0.4

0.6

0.8

1

F I G U R E 13 Normalized contact pressure distribution at the potential contact zone (Γc). The contact radius is normalized by the Hertz
contact radius a0

In Figure 14A–C, it can be seen how the slip and tangential tension vectors have opposite directions, satisfying the
orthotropic frictional contact law (𝜇1 = 𝜇2). While, in Figure 14B, the tangential slip and tangential tension vectors satisfy

the correlation
pe2

pe1

=
(
𝜇2

𝜇1

)2 ġe2

ġe1

obtained from Reference 36, as it is shown in the Table 3.

On the other hand, Figure 15, shows the temperature distribution for the spherical punch, under the influence of
different values of tangential velocity and sliding directions (𝛽). For both cases, the highest temperature is reached for the
maximum tangential slip velocity and in the direction of the highest friction coefficient (𝛽 = 0◦). In addition, Figure 16
shows the full distribution of temperatures in the potential contact zone of the spherical punch for vs = 1000 mm/s and
𝛽 = 0◦, 45◦, and 90◦ respectively.

In addition, Figure 17 shows the temperature comparison between considering the isotropic friction contact law
and the orthotropic friction contact law. It is observed that when considering an isotropic friction law, the real val-
ues of temperatures are not collected, since we will obtain much higher values (Figure 17A) or much lower values
(Figure 17C), than those we would obtain by considering an orthotropic friction law (Figure 17B), which is much closer
to reality.

Finally, to show the convergence of the Uzawa method proposed in this work, Figure 18, shows the relative error and
the number of iterations for the orthotropic friction law and different tangential slip velocity directions. For all cases, a
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UBERO-MARTÍNEZ et al. 2647

F I G U R E 14 Tangential slip vectors (red) and tangential traction vectors (blue) over normal contact pressure contour plot for:
(A) 𝛽 = 0◦. (B) 𝛽 = 45◦. (C) 𝛽 = 90◦

T A B L E 3 Results on sliding contact points for: 𝜇1 = 0.3 and 𝜇2 = 0.1

x1 x2 pe1
pe2

pe2
∕pe1

ġe2
∕ġe1

(𝝁2∕𝝁1)2ġe2
∕ġe1

0.19 0.37 −657.01 −73.00 0.11 1.00 0.11

0.19 0.93 −631.70 −70.19 0.11 1.00 0.11

0.19 1.48 −578.97 −64.33 0.11 1.00 0.11

0.19 2.04 −492.39 −54.71 0.11 1.00 0.11

0.19 2.59 −347.36 −38.60 0.11 1.00 0.11
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2648 UBERO-MARTÍNEZ et al.
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(A)

F I G U R E 15 Temperature distribution of the spherical punch for 𝜑o = 0 and different slip directions (𝛽). The contact radius is
normalized by the Hertz contact radius a0

similar convergence ratio is observed, with a higher number of iterations occurring in the direction where the friction
coefficient is higher. More details of the algorithm used can be found in Reference 57, where a detailed study of the
convergence of the Uzawa method is carried out.

5.3 Effect of interstitial convective boundary conditions

Once it has been shown the effect that the heat generated by friction has on the thermomechanical variables. In this
example, the influence of the introduction of a cutting fluid at the interface (TIM) and at interstitial contact zone
as convective boundary conditions are studied. Geometry, mesh, boundary conditions, and materials properties are
the same as previous example. The spherical punch is sliding at a tangential sliding velocity vs = 1000 mm/s and
a different tangential sliding directions 𝛽. Orthotropic friction law is also considered (𝜇1 = 0.3, 𝜇2 = 0.1). The con-
tact conductance in the contact zone (Γc) is calculated according to Reference 55 as it is presented in Section 3.3.
Additionally, the thermal contact conductance (𝜑o) considers the existence of a TIM filling the microgaps by means
of equations (24)–(22) and using parameters gathered in Table 4 and a thermal conductivity kg = 0.7 W/mK of
the cutting fluid. However, in this example, this material will be also included surrounding the contact zone (Γc),
that is, in the non-contact area. This area has been designated as interstitial contact area (Γl

i), so the potential
contact area during the calculating process will be: Γl

ic = Γ
l
i ∪ Γc, and convective conditions are considered Γl

i. The
natural convection coefficient and forced convection coefficients are considered respectively hf = 1000 W/m2K and
hf = 10,000 W/m2K.

Figure 19 shows how the introduction of a thermal conductance and fluid material at the interface (TIM) affect the
maximum temperature at the potential contact area of the spherical punch. The temperature of the spherical punch
decreases with the introduction of a thermal contact conductance (𝜑o = 𝜑c) and, moreover, it decreases further when the
TIM is introduced (𝜑o = 𝜑c + 𝜑g), as it can be seen in Figure 19.

Figure 20 show how the thermoelastic contact response is affected by the addition or non-addition of the cutting
fluid in the interface of the contact zone (TIM). Figure 20 presents the temperature distribution on the contact zone of
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F I G U R E 16 Spherical punch temperature distribution for 𝜑o = 0, vs=1000 mm/s and: (A) 𝛽 = 0◦. (B) 𝛽 = 45◦. (C) 𝛽 = 90◦

the spherical punch for different sliding directions (𝛽). It can be observed how the temperature of the spherical punch
decreases with the sliding direction of the lower friction coefficients. Moreover, the introduction of the coolant produce
a decrease in the temperature in the contact zone of the spherical punch.

In the same way, Figure 21 shows how the thermoelastic response of the potential contact zone is influenced by the
presence of the cutting fluid and interstitial convective conditions for the sliding direction 𝛽 = 0◦. Figure 21A shows
the temperature distribution in the potential contact zone of the spherical punch for natural convection conditions and
forced convection conditions for different temperature of the cutting fluid (𝜃f ). It can be observed how the introduction
of the cutting fluid in the interface zone reduced the temperature of the spherical punch. Moreover, the temperature of
the cutting fluid has also a great influence in the temperature distribution of the contact zone. As the temperature of
the cutting fluid (𝜃f ) is reduced, the heat generated by friction is reduced, showing the effectiveness of the cutting fluid.
However, natural convective conditions and cutting fluid at a temperature (𝜃f = 5◦) in the interstitial zone have almost
no influence on the temperature distribution.

In Figure 21B it is presented the heat fluxes distributions of both spherical punch and rectangular block for the
same cases studied. The heat fluxes of the spherical punch are much higher than the rectangular block ones due
to the higher conductivity (kl) of the spherical punch in both final contact zone and interstitial zone. In the same
way as the temperature distribution, the heat fluxes distribution for both spherical punch and rectangular block
is the same for natural convection conditions at the interstitial zone. Moreover, the heat fluxes of the rectangular
block are strongly influenced by the temperature of the fluid in the interphase. It is observed that the heat flux
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F I G U R E 17 (A) Spherical punch temperature distribution comparison for ġt=1000 mm/s and 𝛽 = 45◦ for: 𝜇1 = 0.3, 𝜇2 = 0.3, 𝜇1 = 0.3,
𝜇2 = 0.1, and 𝜇1 = 0.1, 𝜇2 = 0.1. (B) Temperature comparison between isotropic and orthotropic friction law. The contact radius is
normalized by the Hertz contact radius a0
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F I G U R E 18 Error evolution as a function of the tangential slip direction (𝛽)
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T A B L E 4 Parameters of the thermal conductance model used

mA mB HA HB
𝝈

A
𝝈

B

𝜑o 5.0 ⋅ 10−3 5.0 ⋅ 10−3 2460 2460 5.0 ⋅ 10−3 5.0 ⋅ 10−3

F I G U R E 19 Maximum temperature (𝜃max) at the potential contact zone of the spherical punch for ġt=1000 mm/s and 𝛽 = 0◦: 𝜑o = 0,
𝜑o = 𝜑c, 𝜑o = 𝜑c + 𝜑g

-1.5 -0.9 -0.3 0.3 0.9 1.5
0

16

32

48

64

80

F I G U R E 20 Temperature distribution comparison for no TIM addition conditions and for TIM addition conditions at the spherical
punch. The contact radius is normalized by the Hertz contact radius a0
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F I G U R E 21 Thermomechanical contact response comparison for forced convection with 𝜃f = −5◦C, 𝜃f = 0◦C, and 𝜃f = 5◦C and for
natural convection in the: (A) Temperature distribution of the spherical punch. (B) Heat fluxes distribution for both spherical punch and
rectangular block. The contact radius is normalized by the Hertz contact radius a0

is zero when the temperature of the fluid and the rectangular block are equal (𝜃f = 𝜃B = 0◦). However, when the
temperature of the cutting fluid (𝜃f ) is smaller than the rectangular block temperature, the heat flux values increases in
the contact zone. The opposite occurs in the contact zone when the temperature of the cutting fluid (𝜃f ) is higher than
the temperature of the rectangular block. Moreover, in both cases, the heat flow direction at the interstitial zone reverses.

Finally, the complete temperature distribution of the potential contact zone of the spherical punch for the cases of
studied is presented in Figure 22. The great influence of the temperature of the cutting fluid (𝜃f ) in the temperature
distribution is shown.
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F I G U R E 22 Spherical punch temperature distribution for 𝛽 = 0◦ for: (A) Forced convection with 𝜃f = −5◦C. (B) Forced convection
with 𝜃f = 0◦C. (C) Forced convection with 𝜃f = 5◦C. (D) Natural convection

5.4 Brake disc-pad contact

Finally, in this example, a brake disc-pad system model is studied. During braking, the pad can rotate slightly, which
may affect its functionality. For this reason, the temperature and tractions values in the contact zone between the
pad and the disc are analyzed. The disc is sliding at a tangential sliding velocity vs = 10,000 mm/s and the pad rota-
tion during operation is simulated by different sliding directions 𝛽 with axis x1. The upper face of the pad is set at
a temperature of 0◦C and on the rest of the faces, the heat flow is restricted, q = 0 W/mm2. The temperature of the
disc has been set constant and equal to that produced by friction after passing very fast and many times through the
brake pad. It is also considered that the pad is subjected to a normal displacement of g0x3

= 5 ⋅ 10−5 m during brak-
ing. Moreover, orthotropic friction law is also considered (𝜇1 = 0.3, 𝜇2 = 0.1). The geometry of the model and the
complete system modeled with boundary elements is shown in Figure 23 and in Figure 24 respectively. The con-
tact zone has been meshed with a total of 704 elements. The boundary of the pad and the disc has been discretized
with 192 and 188 elements respectively. Material properties used are obtained from References 58,59 and are gathered
in Table 5. In this example, it has been considered an infinity thermal contact conductance (𝜑o = ∞) between both
solids.

In relation with the temperature results, Figure 25 shows the maximum temperature of the pad and the
disc is shown as a function of the thermal contact conductances (𝜑0) and for non rotation of the pad (𝛽 = 0◦).
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2654 UBERO-MARTÍNEZ et al.

F I G U R E 23 Geometry of the break disc-pad contact model analyzed

F I G U R E 24 Boundary element discretization detail for the break disc-pad contact model

The temperatures of the disc depend greatly on the thermal contact conductances being highest for values of
zero thermal contact conductance. The temperature of the disc decreases as the value of the thermal contact
conductance increases and converges toward the maximum temperature of the pad. The behavior of the maximum
temperature of the pad is the opposite. The maximum temperature increases with increasing the thermal contact
conductance.

On the one hand, Figure 26 shows the complete temperature distribution for an infinity thermal contact conductance
(𝜑0 = ∞) and a rotation of the pad during braking of 𝛽 = 0◦, 5◦, 10◦, and 15◦ respectively. It is observed that the tempera-
ture of the disc-pad system decreases as the rotation (𝛽) of the pad increases. This effect is produced by the loss of influence
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T A B L E 5 Material parameters of the dis-pad contact model

Pad Disc

E (GPa) 1 138

𝜈 0.3 0.3

𝛼 (◦C−1) 1.0 ⋅ 10−5 1.85 ⋅ 10−5

kl (W/◦C mm) 5 ⋅ 10−3 57 ⋅ 10−3

𝜉
l
𝜇

0.08 0.92

10-5 100 105
150

200

250

300

F I G U R E 25 Maximum temperature in the pad and the disc as functions of the thermal contact conductance 𝜑0

of the friction coefficient in the direction x1 and the consequent decrease of the tangential traction values responsible of
the braking, as shown in Figure 27.

On the other hand, Figure 27 shows the complete tangential traction distribution of the complete contact zone. Anal-
ogous to the temperature values, the value of the tangential traction decreases as the brake pad rotation (𝛽) increases, so
the braking effectiveness is reduced.

6 SUMMARY AND CONCLUSIONS

This work presents a boundary element formulation to study the thermomechanical surface interaction between
two three-dimensional solids under advance thermoelastic contact conditions, that is, orthotropic frictional contact
conditions and non-linear interface thermoelastic contact conditions (including the implementation of interstitial con-
vective boundary conditions). They result in a multifield conditions set which are imposed by means of projection
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F I G U R E 26 Temperature distribution for the pad for 𝜑o = ∞ for: (A) 𝛽 = 0◦. (B) 𝛽 = 5◦. (C) 𝛽 = 10◦. (D) 𝛽 = 15◦

functions and an Augmented Lagrangian formulation, resulting in a very compact and robust formulation for quasi-static
thermomechanical contact problems.

The formulation and the proposed solution scheme have been validated and applied to study the combined effects
of considering an orthotropic friction law, interstitial convective conditions and the presence of a TIM on the ther-
momechanical contact variables. Moreover, the influence of the orthotropic friction law and the frictional heating
is also studied in a brake disc-pad contact system. After these studies, the main conclusions and findings of this
works are:

• The thermal contact conductance has a great influence in the thermoelastic contact variables. Small thermal conduc-
tance values leads to high temperature jumps on the surfaces in contact.

• Orthotropic frictional heating also presents significant influence in the thermomechanical variables. The temperature
and the heat fluxes of the contact surfaces are not also greatly affected by the sliding velocity module (vs), but also the
sliding direction (𝛽).
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F I G U R E 27 Tangential traction distribution for the pad for 𝜑o = ∞ for: (A) 𝛽 = 0◦. (B) 𝛽 = 5◦. (C) 𝛽 = 10◦. (D) 𝛽 = 15◦

• The assumption of an isotropic friction law under orthotropic friction conditions can over- or under-estimate the fric-
tional heating effect, resulting temperature distributions in solids. Consequently, realistic tribological friction laws (e.g.,
orthotropic law) should be considered in these studies.

• The influence of convective interstitial boundary conditions on the frictional heating effects should be also incorporated
to the analysis. The results reveal that these effects can be highly reduced when low temperatures of the interstitial
fluid (𝜃f ) and forced convection conditions are considered.

Finally, it is important to mention that the proposed formulation has a lot of potential applications in modern engineer-
ing technologies where the frictional effects in the contact problems is relevant such as in a brake disc-pad contact system.
Moreover, the formulation herein proposed may be extended to consider the influence of wear in thermomechanical
contact problems.
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