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a b s t r a c t 

SQL injections rank in the OWASP Top 3. The literature shows that analyzing network datagrams allows 

for detecting or preventing such attacks. Unfortunately, such detection usually implies studying all pack- 

ets flowing in a computer network. Therefore, routers in charge of routing significant traffic loads usually 

cannot apply the solutions proposed in the literature. This work demonstrates that detecting SQL in- 

jection attacks on flow data from lightweight protocols is possible. For this purpose, we gathered two 

datasets collecting flow data from several SQL injection attacks on the most popular database engines. 

After evaluating several machine learning-based algorithms, we get a detection rate of over 97% with a 

false alarm rate of less than 0.07% with a Logistic Regression-based model. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Cyber-attacks are a growing concern for companies, organiza- 

ions, and users. The number of cyber-attacks and the diversity 

f techniques used have increased exponentially in recent years. 

eb applications are among the most exploited attack vectors. 

uch applications offer a wide variety of functionality, allowing 

sers to consult data, perform banking operations or even make 

urchases over the Internet. Significant security problems of web 

nfrastructures are injections, especially SQL injections. An SQL 

njection attack (SQLIA) allows an intruder to interact with a web 

pplication’s database, stealing information or even modifying or 

eleting legitimate data stored in the application ( Clarke, 2009 ). 

pen Web Application Security Project (OWASP) is a worldwide 

on-profit project seeking to improve software security. This 

ommunity publishes the “OWASP Top 10”, a standard awareness 

ocument for developers and web application security. It rep- 

esents a broad consensus about web applications’ most critical 

ecurity risks ( Foundation, 2022a ). OWASP Top 10 ranks injections 
∗ Corresponding author. 

E-mail addresses: icrem@unileon.es (I.S. Crespo-Martínez), acamv@unileon.es 

A. Campazas-Vega), am.guerrero@unileon.es (Á.M. Guerrero-Higueras), 

riec@unileon.es (V. Riego-DelCastillo), calvaa@unileon.es (C. Álvarez-Aparicio), 

amino.fernandez@unileon.es (C. Fernández-Llamas) . 

t

S

S

a

e

ttps://doi.org/10.1016/j.cose.2023.103093 

167-4048/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article u
s the third most serious web application security risk in the Top 

0 published in 2021. Similarly, MITRE (2022b) publishes the CWE 

op 25 Most Dangerous Software Weaknesses ( MITRE, 2022a ). In 

his ranking, SQLIAs also occupy third place. 

Detecting SQLIAs are addressable issues if all network-layer 

atagrams were to be analyzed. However, some networks handle 

uch a large amount of information that it is impossible to explore 

he contents of every network packet. Therefore, SQLIA detection 

s an unresolved problem in this type of network. Such networks 

sually use lightweight protocols based on network streams such 

s NetFlow, sFlow or IPFIX. 

This work presents several contributions. First, two labelled 

atasets have been gathered and published under a CC Attribu- 

ion 4.0 International license. They collect network flow data from 

QLIAs on the three most widely-used relational database engines. 

esides, several supervised learning-based models have been fitted 

ith the above datasets. The results show that it is possible to de- 

ect SQLIAs using NetFlow Version 5-based flow data. Finally, for 

ach model, a comprehensive set of metrics is provided to confirm 

he validity of the trained models. 

The remainder of the paper is organized as follows: 

ection 2 describes some key findings in the literature; 

ection 3 describes the materials and tools employed in this work, 

s well as the methodology used to collect the datasets, to set 

very model’s hyperparameters, and to evaluate the experiments; 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ection 4 shows the results obtained in the experiments and 

ection 5 discusses them. Finally, the conclusions are presented in 

ection 6 . 

. Related work 

It has been shown in the literature that it is possible to de- 

ect SQLIAs using machine-learning approaches. Ordered from old- 

st to newest, in Uwagbole et al. (2017) , the authors collected a 

ataset containing the extraction of known attack patterns, includ- 

ng SQL tokens and symbols presented at injection points. The au- 

hors fitted a Support Vector Machine (SVM)-based model to the 

bove dataset, resulting in an accuracy of 98.6% and an F 1 _ score 

f 98.5%. In Ross et al. (2018) , the authors gathered three datasets 

ontaining SQLIAs collecting network traffic from two points: (1) at 

he web application host and (2) at an appliance node located be- 

ween the web app host and the associated MySQL database server. 

he third dataset merges data from the previous datasets. The au- 

hors trained jRip-, J48-, Random Forest (RF)-, SVM-based models, 

nd an Artificial Neural Network (ANN) to experiment. The best 

esults were obtained on the merged dataset with a 98.05% accu- 

acy using the RF model and a 97.61% accuracy using the ANN. The 

tudy in Zhang (2019) presents a machine-learning classifier de- 

igned to identify SQL injection vulnerabilities in PHP code from 

eatures extracted from text strings and subsequently normalized 

sing the TF-IDF bag-of-words algorithm. The authors obtained the 

est results using an SVM with an accuracy score of 95.4% and 

 Detection Rate ( DR ) of 98.6; a Convolutional Neural Network 

CNN) also yields a good performance with an accuracy score of 

5.3% and a DR of 95.4%. In Hasan et al. (2019) , the authors fo-

used on testing many algorithms to identify which ones offered 

he best results in SQLIA detection. The results showed that out 

f the 23 models; the five best-performing algorithms were the 

oosted Trees and Bagged Trees ensemble, the Linear Discrimi- 

ant (LD), and two SVM-based models. The ensemble methods 

howed the best results, with an accuracy of 93.8%. In work car- 

ied out in Tripathy et al. (2020) , the authors focused only on 

he payload of the packets to try to detect SQLIA. To do so, they 

rained several supervised learning-based models. The model that 

howed the best results was RF with an accuracy score of 99.8%, 

ollowed by the Boosted Tree Classifier, Adaptive Boosting Clas- 

ifier (AdaBoost), Decision Tree (DT), and SGD Classifier models, 

ll with an accuracy score of over 98.6%. The research conducted 

n Farooq (2021) attempts to detect SQLIA by splitting queries 

nto their corresponding tokens and then applying algorithms to 

he tokenized dataset. The authors used only ensemble machine 

earning algorithms, namely Gradient Boosting Machine (GBM), Ad- 

Boost, Extended Gradient Boosting Machine (XGBM), and Light 

radient Boosting Machine (LGBM). The experiment was a success. 

ll the models tested by the authors obtained an accuracy score 

nd a DR higher than 99%. In Roy et al. (2022) , the authors used

he Kaggle SQL Injection dataset with multiple machine learning 

ethods to identify and detect SQLIA. The best performing model 

as Naive Bayes (NB) with an accuracy score of 98.3%, followed 

y Logistic Regression (LR) with an accuracy score of 92.7%. In 

eriba et al. (2022) , the authors proposed a comprehensive frame- 

ork to determine the efficacy of the proposed techniques for 

ealing with a range of problems depending on the type of at- 

ack, using a hybrid approach (statistical and dynamic) and ma- 

hine learning. The results showed that the hybrid approach ob- 

ained an accuracy of 99.2%. The ANN and SVM models also per- 

ormed well, with an accuracy score of 98.5% and 96.8%, respec- 

ively. 

All of the above work demonstrates that it is possible to detect 

QLIA using machine-learning. Datasets containing network-layer 

ackets to train this model type is one of the most widely used 
2 
pproaches. Network-layer datagrams store all the information ex- 

hanged in network-layer communication, not only the headers 

ut also the payload. Therefore, networks with a high traffic load 

an only analyze some packets in-depth. Such networks often use 

ightweight flow-based protocols to get valuable data for monitor- 

ng network activity. A flow is a set of packets passing through an 

bservation point in the network during a specific time interval. 

ll packets within the same flow have common features such as 

P addresses and ports, both source and destination ( Claise et al., 

013 ). Flow data do not gather the payload of the packets. It con- 

iderably reduces the computational load required to process flows 

ersus complete network packets. As a result, the use of flows is 

idespread in networks that need to reduce their routers’ com- 

utational load. The most common flow-based technology is Net- 

low, specifically NetFlow V5. This technology is implemented in 

outers from well-known companies such as Cisco Systems (2022) , 

uniper Networks (2022) , and Enterasys Switches Networks (2022) . 

It has been shown in the literature that it is possible to de- 

ect specific network attacks such as Denial of Service (DoS) at- 

acks or port scans using machine learning models trained with 

etwork flows. The research carried out in Kemp et al. (2018) tried 

o detect application-layer Distributed Denial of Service (DDos) at- 

acks (specifically Slow Read attacks) using NetFlow data. They 

sed eight classification algorithms to build Slow Read attack- 

etection models. The authors concluded that six of their pre- 

ictive models perform well at detecting such attacks; the Ran- 

om Forest model is the one that offered the best results with 

n Area Under the Curve (AUC) of 96,8%. Working with port scan- 

ing attacks in Campazas-Vega et al. (2020) , we have presented 

OROTHEA, a tool that generates tagged flow data suitable for 

tting classification models using supervised learning algorithms. 

he authors gathered two flow datasets with port scanning at- 

acks and benign traffic. The first dataset (used to fit the mod- 

ls) gathered regular port scans. The second dataset (used to test 

he models) gathered slow port scans. The results showed that 

he models K-Nearest Neighbors (KNN) and Logistic Regression 

LR) obtained an accuracy higher than 94%, certifying that it is 

ossible to detect port scanning attacks using detection models 

ith flow data. According to the above results, we can conclude 

hat the features extracted from a network flow are discriminant 

nough to distinguish between benign traffic and some network 

ttacks. 

The literature shows that SQLIA detection using full network- 

ayer datagrams is an addressable problem. However, detecting 

QLIA is very difficult when using network flow data since flows 

o not retain the payload of the packets. Although some works de- 

ect network attacks using flow-based protocols, detecting SQLIA 

sing network flow data is an unsolved problem. 

In work, Sarhan et al. (2020) the authors generated flow-based 

atasets from well-known packet-based public datasets and then 

ompared the performance of the Extra Trees ensemble classifier 

n the packet-based dataset versus the flow-based dataset gener- 

ted. nProbe tool by nTop (2022) was utilized by the authors to 

onvert the Pcaps in NetFlow V9 format. They selected 12 features 

o be extracted from the Pcap files. The datasets were evaluated 

n two ways, 1) Binary format (attack or non-attack) and 2) mul- 

iple classes depending on the type of attack recorded. Focusing 

n the NF-CSE-CIC-IDS2018 dataset, which is the only one that 

ontains a class that stored only SQLIA, the results obtained us- 

ng a binary classification and the proposed model through this 

ataset were a detection rate of 94.71% and an F 1 _ score of 83%. 

sing a multiclass classification and the proposed model through 

he flow-based dataset, the results obtained for SQLIA were a de- 

ection rate of 25.00% and an F 1 _ score of 22%. These results show 

hat the only research that analyzes SQL injections using network 

ows data does not have a detection rate higher than 25%.There- 
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ore, SQLIA detection using network flows is a problem that has 

ot yet been solved. 

. Materials and methods 

This section presents the materials and experiments performed 

nd the methods used to evaluate them. First, we will review what 

QLIA is, the mechanisms to carry it out, and the types of SQLIA. 

ext, we will detail what NetFlow technology is. Then, we propose 

uidelines for the collection of suitable flow datasets and present 

he treatment of the data used by the datasets. Finally, we propose 

he evaluation method. 

.1. SQL injection attack 

An SQLI is a security vulnerability in which an attacker inter- 

eres with an application’s queries on its database. In general, it 

llows an attacker to see specific data that he should not be able 

o retrieve. For example, it might include data belonging to other 

sers, logins, table structures, or any other data the application 

an access. In many cases, an attacker can also modify or delete 

uch data, causing persistent changes to the content or behaviour 

f the application. In some situations, it is also possible that an at- 

acker can escalate an SQLIA to compromise the underlying server 

r other back-end infrastructure or perform denial of service at- 

acks ( Junjin, 2009 ). The 3 most-used database management sys- 

ems (DBMS) are MySQL ( Oracle, 2022 ), PostgreSQL ( Group, 2022 ), 

nd Microsoft SQL Server ( Microsoft, 2022 ). 

.1.1. SQLI Mechanism 

SQLI vulnerabilities can be found in any application parameter 

sed in a database query through which the SQLIA can be initi- 

ted. There are different ways through which an attacker can com- 

romise databases. This method is known as an injection mecha- 

ism ( Chandrashekhar et al., 2012 ). There are four types of injec- 

ion mechanisms: 

1. Injection through cookies. Cookies contain information generated 

by web applications and stored in the client. When the client 

returns to an application, cookies are used to restore the client’s 

state information. A malicious client could alter the content of 

cookies. For example, if a web application uses the contents of 

cookies to create SQL queries, an attacker could easily send an 

attack by embedding the injection in the vulnerable cookie. 

2. Injection through the user input. It is usually the most common 

mechanism. The user’s input is not controlled and is included 

directly in a SQL statement. 

3. Injection through server variables. Server variables are a collec- 

tion of variables containing network headers and environment 

variables. Web applications use these server variables in various 

ways, such as recording usage statistics and identifying brows- 

ing trends. If these variables are recorded in a database without 

sanitization, this could create an SQLI vulnerability. 

4. Second-order or stored injections. These attacks are the most 

complex and challenging to detect. They consist of an attack in 

two phases. In the first phase, ”part” of the necessary content is 

inserted to carry out the attack, which will be executed in the 

second phase. E.g. when registering on a web server, you use 

the following username “admin'-- ”. Once logged in, the at- 

tacker will modify the password of the newly created user. The 

SQL statement will look something like this: 

UPDATE users SET password = 'newpwd' WHERE 
userName = 'admin'--' AND password = 'oldpwd'

Since “-- ” in SQL refers to starting comments, everything after 

it will be ignored, and the attacker will modify the administra- 
tor’s password. n

3 
.1.2. SQLIA Types 

We will look at the main types of SQLIA according 

o Jemal et al. (2020) : 

• Error attack. It is the most common attack, and the easiest to 

exploit since it is the application that indicates the database 

errors when performing the different queries. 

• Union attack. This attack consists of the portal returning a result 

and then adding the result of another query to the actual result 

in such a way as to display, together with the portal data, the 

sensitive data of the portal that should not be available. 

• Blind attack. This is the most complicated and advanced attack 

and is the last option when none of the previous attacks work. 

In this case, the attacker has to be very creative and ask ques- 

tions to the database questions using booleans, i.e. true or false, 

to get the information he needs to know. 

• Based on conditional. This technique is based on trying to get 

a different response from the web application based on a 

particular condition. If this condition is TRUE, the response 

is loaded correctly. If this condition is FALSE, the web appli- 

cation shows an error message or will not return anything. 

• Time based. This technique consists of sending an SQL com- 

mand to the server with code to force a delay of n seconds 

in the execution of queries. If the query is successful, it will 

return the results after n seconds; if not, it will not display 

anything. 

.2. NetFlow 

NetFlow ( Claise et al., 2004 ) is a lightweight protocol developed 

y Cisco Systems to collect flow data. NetFlow has become popu- 

ar in networks that handle large amounts of traffic. Manufactur- 

rs such as Juniper and Enterasys Switches support this technology. 

etFlow was introduced as a new feature of Cisco routers to col- 

ect IP traffic. This functionality gives administrators a global view 

f what is happening on the network they manage. NetFlow has 

any versions: NetFlow V1, V5 and V9. The most widely used ver- 

ion of NetFlow is Version 5. For this version, the features collected 

re listed in Table 1 . 

NetFlow generates unidirectional flows. So in network commu- 

ication, it builds two flows: one flow gathers packets with a 

ource-destination address, and a second one gathers reply pack- 

ts with a destination-source address. 

A NetFlow stream expires after a time of inactivity or when it 

as been active for more than a specific amount of time. Both time 

eriods can be configured. Although expiring an active flow may 

e contradictory; these flows are terminated so that the flow an- 

lyzer can obtain information on long-lived flows, thus preventing 

infinite” flows from not being analyzed. 

.3. DOROTHEA 

DOROTHEA ( Campazas-Vega et al., 2020 ) – a tool developed 

y the authors – is a Docker-based framework for NetFlow data 

ollection. It allows one to build interconnected virtual networks 

o generate and collect flow data using the NetFlow protocol. 

OROTHEA sents network traffic packets to a NetFlow generator 

ith a sensor ipt_netflow installed ( Aabc/IPT-netflow, 2022 ). It con- 

ists of a module for the Linux kernel, which processes the packets 

nd converts them to NetFlow flows data. 

It is customizable and scalable. Furthermore, it allows for de- 

loying nodes that generate synthetic network traffic, both benign 

nd malicious. 

Benign traffic generation nodes simulate network traffic gen- 

rated by real users, performing tasks such as searching in web 

rowsers, sending emails, or establishing Secure Shell (SSH) con- 

ections. Such tasks run as Python ( Foundation, 2022b ) scripts. 
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Table 1 

NetFlow V5 Features. 

Feature Description 

sysuptime Current time in milliseconds since the export device started 

unix_secs Current count of seconds since 0000 UTC 1970 

unix_nsecs Residual nanoseconds since 0000 UTC 1970 

engine_type Flow switching motor type 

engine_id Slot number switching engine flow 

exaddr Flow exporter IP 

srcaddr Source IP address 

dstaddr Destination IP address 

nexthop IP address of the next hop router 

input SNMP index of the input interface 

output SNMP index of the exit interface 

dpkts Number of packets contained in the flow 

doctets Total number of bytes of layer 3 in the packets of the flow 

first Sysuptime at start of flow 

last Sysuptime when the last packet in the flow was received 

srcport TCP / UDP source port number 

dstport TCP / UDP destination port number 

tcp_flags TCP flags 

prot IP type of protocol (e.g., TCP = 6; UDP = 17) 

tos IP type of service (ToS) 

src_as Autonomous system number of the source, either source or pair 

dst_as Autonomous system number of the destination, either source or pair 

src_mask Source address prefix mask bits 

dst_mask Destination address prefix mask bits 

Fig. 1. Benign traffic generation scheme. 

Fig. 2. Malicious traffic generation scheme. 
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sers may customize them or even incorporate their own. The 

etwork traffic is managed by a gateway that performs two main 

asks. On the one hand, it routes packets to the Internet. On the 

ther hand, it sends it to a NetFlow data generation node (this pro- 

ess is carried out similarly to packets received from the Internet). 

igure 1 shows the benign traffic generation process. 

Regarding the malicious traffic generation process, DOROTHEA 

ses a similar approach as in the benign traffic generation, as 

hown in Fig. 2 . In this case, the environment isolates, so all traf-

c is labelled empirically as malicious. The attacks run as Python 

cripts, just as in the benign traffic generation process. DOROTHEA 

lso allows the user to customize such scripts or add new ones. 

he gateway works as explained above by routing packets and 

athering flow data. 
4 
.4. Data gathering 

Two Netflow V5 datasets have been collected with DOROTHEA. 

esides, It finishes a flow after it is inactive for 15 s or after it is

ctive for 1800 s (30 min). The first dataset ( D 1 ) was collected to

rain the detection models, and the second one ( D 2 ) to test them. 

he datasets gather flow data from different attacks to ensure their 

eneralization. These datasets are published, and available online 

 Campazas-Vega and Crespo-Martínez, 2022 ). 

The datasets contain both benign and malicious traffic. Both 

atasets are balanced. The percentage of malicious and benign traf- 

c is around 50% to prevent the classifiers from always predicting 

he majority class. As the malicious traffic corresponds to SQLIA, 

ll malicious traffic is sent through ports 443 and 80. Approxi- 
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Table 2 

SQLMAP execution parameters. 

Parameters Description 

--banner, --current-user, --current-db, --hostname, 
--is-dba, --users, --passwords, --privileges, --roles, 
--dbs, --tables, --columns, --schema, --count, --dump, 
--comments, --schema 

Enumerate users, password hashes, privileges, roles, databases, tables and 

columns 

--level = 5 Increase the probability of a false positive identification 

--risk = 3 Increase the probability of extracting data 

--random-agent Select the User-Agent randomly 

--batch Never ask for user input, use the default behavior 

--answers = ’’follow = Y’’ Predefined answers to yes 

Table 3 

Dataset volumetry and distribution. 

Dataset Aim #samples 

Benign-malicious 

Class 

% of src. or dst. port 

traffic rate 80 or 443 

D 1 Training 400,003 50% Benign 56.02% 

Malicious 100% 

D 2 Test 57,229 50% Benign 59.78% 

Malicious 100% 
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ately 60% of the benign traffic of both datasets corresponds to 

raffic with source or destination on ports 80 or 443. A high per- 

entage of benign traffic has been collected through ports 80 and 

43 to prevent the models from being distorted by port numbers. 

he volume of data is shown in Table 3 . 

The benign flow data in both datasets were generated using 

ython scripts. These simulate network traffic generated by real 

sers, performing tasks such as searching web browsers, sending 

mails, and establishing SSH connections. 

The malicious traffic collected in D 1 (SQLI attacks), was per- 

ormed using SQLMAP. SQLMAP is a penetration tool used to auto- 

ate the process of detecting and exploiting SQL injection vulner- 

bilities ( Ojagbule et al., 2018 ). SQL The attacks were executed on 

6 nodes and by launching SQLMAP with the parameters shown in 

he Table 2 . Every node executed SQLIA on 200 victim nodes. The 

ictim nodes had deployed a web form vulnerable to Union-type 

njection attacks, which was connected to the MYSQL or SQLServer 

atabase engines (50% of the victim nodes deployed MySQL and 

he other 50% deployed SQLServer). The web service was acces- 

ible from ports 443 and 80, which are the ports typically used 

o deploy web services. The IP address space was 182.168.1.1/24 

or the benign and malicious traffic-generating nodes. For victim 

odes, the address space was 126.52.30.0/24. 

The malicious traffic in the test sets was collected under differ- 

nt conditions. For D 1 , SQLIA was performed using Union attacks 

n the MySQL and SQLServer databases. However, for D 2 , Blind- 

QL SQLIAs were performed against the web form connected to a 

ostgreSQL database. The IP address spaces of the networks were 

lso different from those of D 1 . In D 2 , the IP address space was

52.14 8.4 8.1/24 for benign and malicious traffic generating nodes 

nd 140.30.20.1/24 for victim nodes. 

DOROTHEA requires separating the benign-malicious traffic 

eneration process to empirically label the flow as benign or mali- 

ious so that the traffic is not collected simultaneously. 

.5. Data processing 

Data processing has been carried out to improve the perfor- 

ance of the models and eliminate the bias they may have due to 

he nature of the data generated. The data processing techniques 

sed in this study consist of three steps: 

Feature cleaning 

First, the IP addresses are converted to a numeric value, and the 

atasets are checked for empty columns or rows to avoid errors in 

he generation of the models. 
5 
Dimensionality reduction 

This technique is used to reduce the complexity of the models. 

or each feature, the models’ complexity increases exponentially, 

hich decreases the detection capacity. 

Netflow V5 has 24 features; the feature variance has been com- 

uted to decrease their number. Variance is a measure of dis- 

ersion that is used to represent the variability of a set of data 

oncerning its arithmetic mean ( Scheffe, 1999 ). After applying the 

ariance of the features of the benign flows with those of the ma- 

icious flows in D 1 and D 2 , the features ‘exaddr’, ‘engine_type’, ‘en- 

ine_id’, ‘src_mask’, ‘dst_mask’, ‘src_ac’, and ‘dst_as’ have been re- 

oved. The variance of these features was 0. Besides the above 

eatures, the following features have been removed: ‘unix secs’, 

unix_nsecs’, ‘sysuptime’, ‘first’, and ‘last’. These characteristics are 

ime-related. These features have been removed so that the models 

re not biased depending on when the data was collected. Finally, 

he “nexthop” feature has been removed. This feature negatively 

nfluences the detection of malicious traffic in wide area networks, 

nd needs to be removed in the training phase of machine learning 

odels ( Campazas-Vega et al., 2021 ). 

Data normalization 

It is necessary to normalize the value of the features to a spe- 

ific range to analyze the data accurately. This technique is done to 

void errors related to the scale of the data. For example, the size 

f an IP address is around ten digits, but the number of packets in 

 flow is usually no more than two digits. Therefore, if the data is 

ot normalized, the models can generate a bias by interpreting the 

P address as having more weight. 

In this work, the min-max-based linear data normalization 

echnique has been used. The minimum-maximum normalization 

s shown in Eq. (1) where X ‘ s are the values to be normalized and

 in (A ) and M ax (A ) are the minimum and maximum values of fea-

ures ( A ) before normalization. After applying this normalization, 

ll the data that make up D 1 and D 2 are on a scale between ‘0’

nd ‘1’. 

in-max = 

X − Min (A ) 

Max (A ) − Min (A ) 
(1) 

.6. Classification models fitting 

MoEv was used to fit the detection models. It is just a wrapper 

or the Scikit-learn API. MoEv allows automatically building classi- 

cation models from labelled datasets using the Scikit-learn library 

y editing a YAML-based configuration file ( Pedregosa et al., 2011 ). 
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1 https://github.com/uleroboticsgroup/MoEv/tree/SQLInjection . 
oEv features include data preprocessing-cleaning, normalization, 

imensionality reduction, and hyperparameter tuning through the 

ridSearchCV class. Besides, it generates a report that provides rel- 

vant information such as accuracy, false alarm rate, Matthews cor- 

elation coefficient, Cohen’s kappa coefficient, detection rate, re- 

all, and F 1 _ score . MoEv has been used successfully in different 

esearch areas, such as detecting jamming attacks in real-time lo- 

ation systems ( Guerrero-Higueras et al., 2018 ), and predicting the 

tudents’ academic success ( Guerrero-Higueras et al., 2020 ). In ad- 

ition, in Campazas-Vega et al. (2020) MoEv has been successfully 

sed to build malicious traffic detection models on flow data. 

We want to predict a category – benign (0) or malicious (1) 

so classification algorithms are more suitable than regression or 

lustering algorithms. However, since data matters more than algo- 

ithms for complex problems ( Banko and Brill, 2001; Halevy et al., 

009 ), we aim to evaluate both classification and regression al- 

orithms to select the most accurate for this problem. We used 

oEv to fit, tune the hyperparameters, and finally test our detec- 

ion models. 

Specifically, the following algorithms were used: 

NN ( Mitchell and Schaefer, 2001 ), LR ( Wright, 1995 ), Linear 

upport Vector Classification (LSVC) ( Cortes and Vapnik, 1995 ), 

erceptron with stochastic gradient descent (SGD) ( Bottou, 1991 ), 

nd RF ( Breiman, 2001 ). 

In addition to the above models, the classification process was 

erformed through an ensemble-based classification technique, 

hich uses a combined action of the classifiers listed above for 

alicious traffic detection. The main idea of this ensemble pro- 

ess is to activate the strengths of each algorithm to achieve a ro- 

ust classifier. Majority voting (VC) is the type of ensemble classi- 

er used. The ensemble chooses the class that receives the highest 

umber of votes, regardless of whether the sum of those votes ex- 

eeds 50% ( Krishnaveni and Prabakaran, 2021 ). 

The proposed ensemble classification model and the individual 

odels have been trained with D 1 and tested with D 2 . 

.7. Evaluation 

The confusion matrix allows for computing well-known Key 

erformance Indicators (KPIs) to identify the most accurate clas- 

ification algorithm. First, the models’ performance was measured 

sing their accuracy score on the test sets computed as shown in 

q. (2) . T P is the number of malicious flows correctly identified as 

alicious. T N points to the number of benign flows correctly iden- 

ified as benign traffic. F P is the number of benign samples incor- 

ectly classified as malicious. Finally, F N points out the number of 

alicious samples wrongly classified as benign traffic. 

ccuracy = 

T P + T N 
T P + F P + T N + F N 

(2) 

Furthermore, the following KPIs have been considered: False 

larm Rate (FAR) and Matthews correlation coefficient ( φ). More- 

ver, since binary classifiers tend to predict the majority class, we 

lso compute Detection Rate ( DR ), Recall ( R ), and F 1 _ score for

oth classes – benign (0) and malicious (1) flow data. 

The FAR is calculated as the ratio between the number of nega- 

ive events wrongly categorized as positive (false positives) and the 

otal number of actual negative events (regardless of classification). 

t computes as shown in Eq. (3) . 

AR = 

F P 
T N + F P 

(3) 

φ is often used to measure the quality of binary classifiers. It 

omputes as shown in Eq. (4) . 

= 

T P × T N − F P × F N √ 

(T P + F P )(T P + F N )(T N + F P )(T N + F N ) 
(4) 
6

DR measures the accuracy of the positive predictions. It com- 

utes as shown in Eq. (5) . 

R = 

T P 
T P + F P 

(5) 

R , also called sensitivity or true positive rate, is the ratio of 

ositive instances correctly detected by the classifier. It computes 

s shown in Eq. (6) . 

 = 

T P 
T P + F N 

(6) 

It is often convenient to combine detection rate and recall into 

 single metric called the F 1 _ score ( F 1 ), in particular, if a simple

ay to compare two classifiers is needed. F 1 is the harmonic mean 

f DR and R . Whereas the regular mean treats all values equally, 

he harmonic mean gives much more weight to low values. It com- 

utes as shown in Eq. (7) . 

 1 = 2 

DR × R 

DR + R 

(7) 

n addition, Cohen’s kappa coefficient ( κ) has been computed 

 Cohen, 1960 ). Cohen’s kappa computes a score expressing the 

greement level between two raters in a classification problem. It 

s computed as shown in Eq. (8) where P o is the empirical proba- 

ility of agreement on the label assigned to any sample, and P e is 

he expected agreement when both annotators assign labels ran- 

omly. P e is estimated using a per-annotator empirical prior to the 

lass labels ( Artstein and Poesio, 2008 ). 

= 

P o − P e 

1 − P e 
(8) 

. Results 

First, we want to point out that a Jupyter Notebook that allows 

or replicating the evaluation is available online in a Binder-ready 

epository. 1 

To detect SQLIA in flow data NetFlow V5 format using machine 

earning models, dataset D 1 was used to train the models, and 

ataset D 2 was used to test the models to ensure that they had 

eneralization capability. After tuning, the following hyperparame- 

ers were selected for each model: 

• LR. We used a regularized version of linear regression, specifi- 

cally Ridge regression. This model does not apply penalties; the 

algorithm used in the optimization problem is ‘sag’. 

• LSVC. We used a linear kernel function. The regularization pa- 

rameter (C) is set to 1.0. As a loss function, we used Squared 

Hinge. The norm used in the penalization is ‘l2’. 

• Perceptron+SGD. Stochastic gradient descent has been applied 

to the perceptron algorithm. No penalties are applied. The con- 

stant that multiplies the regularization term is set to 0.0 0 01. 

• RF. We trained with 80 trees in the forest. The minimum num- 

ber of samples required to split an internal node is 0.1, and the 

minimum number of samples needed at a leaf node is 2. 

• KNN. We used 1 neighbour for the neighbour queries. The dis- 

tance metric used for the tree is ‘minkowski’. The algorithm 

used to compute the nearest neighbours is ‘ball_tree’ 

Figure 3 shows the confusion matrices created from the pre- 

icted data of the trained models using the dataset D 2 . The values 

f the main diagonal correspond to the values correctly estimated 

y the model( T P and T N ). The other diagonal represents the cases 

n which the model failed in its prediction( F P and F N ). The numbers

dd up to the 57,229 D 2 flows. Models mostly fail in prediction giv- 

ng false positives. Presenting respectively the confusion matrix for 

https://github.com/uleroboticsgroup/MoEv/tree/SQLInjection
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Fig. 3. Confusion matrix for LR-, Perceptron+SGD-, VC-, RF-, LSVC- and KNN- detection models (from left to right) using the dataset D 2 . 

Table 4 

Accuracy, Detection Rate, Recall and F 1 _ score obtained in Campazas- 

Vega et al. (2020) for malicious-traffic detection models on flow data. 

Algorithm Class DR R F 1 

LR Benign (0) 0.999 0.946 0.972 

Malicious (1) 0.949 0.999 0.974 

Average 0.974 0.973 0.973 

Perceptron + SGD Benign (0) 0.999 0.926 0.961 

Malicious (1) 0.931 0.999 0.964 

Average 0.965 0.963 0.963 

VC Benign (0) 0.999 0.711 0.831 

Malicious (1) 0.776 0.999 0.874 

Average 0.888 0.856 0.852 

RF Benign (0) 0.999 0.681 0.810 

Malicious (1) 0.758 0.999 0.862 

Average 0.879 0.840 0.836 

LSVC Benign (0) 0.993 0.672 0.802 

Malicious (1) 0.752 0.995 0.857 

Average 0.873 0.834 0.829 

KNN Benign (0) 1.000 0.437 0.608 

Malicious (1) 0.639 1.000 0.780 

Average 0.819 0.718 0.694 
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a) LR, (b) Perceptron+SGD, (c) VC, (d) RF, (e) LSVC and (f) KNN. 

everal KPIs (Accuracy, φ and FAR) were computed from the con- 

usion matrices in Fig. 3 . Besides, κ was computed as shown in 

q. (8) . Figure 4 shows accuracy, φ, κ and FAR for the LR, Percep-

ron+SGD, VC, RF-based, LSVC, and KNN malicious-traffic detection 

odels. Finally, Table 4 shows the DR , R , and F 1 for the same

odels. In this case, we computed the KPIs for both classes – be- 
7 
ign and malicious flow data – to identify classifiers that tend to 

redict the majority class. 

. Discussion 

Focusing on the accuracy scores shown in Fig. 4 , the best mod- 

ls are LR and Perceptron+SGD, with an accuracy score higher than 

6% in both cases. The model that offers the third best accuracy is 

he ensemble model built by hard voting with an accuracy score 

igher than 87%. The LSVC and RF models also obtain acceptable 

esults with an accuracy score above 83% in both models. However, 

he model that offers the worst results is the KNN, with an accu- 

acy score lower than 72%. Regarding φ, κ and FAR of the studied 

odels follow the same trend. LR and Perceptron+SGD obtain the 

est φ, κ with values higher than 92% in both models. The en- 

emble model and the LSVC and RF models obtain an acceptable 

and κ with values close to 70%. Finally, the worst model is the 

NN model with φ lower than 52% and a κ lower than 44%. A 

odel provides better results the lower the FAR is. LR and Percep- 

ron+SGD demonstrate the lowest FAR rate with values below 1%. 

he VC, LSVC, and RF models obtain a FAR close to 21%. Finally, the 

NN model has a very high FAR of 36%. 

The remaining KPIs ( DR , R , and F 1 ) show the same tendency. 

able 4 shows DR , R , and F 1 higher than 94% in the LR model for

oth malicious (1) and benign traffic (0) and values higher than 

2% in the Perceptron+SGD model for both types of traffic. The 

umulative value of these indicators is higher than 97% in the LR 

odel and 96% in the Perceptron+SGD model. These data confirm 
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Fig. 4. Models metrics. 

Fig. 5. Model execution times. 
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hat these models do not discriminate between classes and show a 

igh detection capability for both malicious and benign traffic. 

The VC, RF and LSVC models obtain a cumulative DR of both 

lasses higher than 87%. These models offer differences between 

lasses, given that the DR for benign traffic (0) is close to 99% 

n all three models. However, the DR corresponding to malicious 

raffic drops to values close to 75%. R shows a similar trend in 

hese models, with malicious traffic (1) being the dominant value. 

inally, the F 1 shows cumulative values above 82% in the three 

odels, with the assembled model being the best F 1 above 85%. 

inally, the worst performing model is the KNN with a cumulative 

R below 81% and R and F 1 below 72%. 

From the results obtained, it can be concluded that the LR and 

erceptron+SGD models offer the best results for the overall pro- 

osed indicators. Therefore, it can be asserted that these models 

an detect SQL injections in flow data, specifically in NetFlow V5 

ows, which are currently the most used ones. Besides, it can also 

e stated that the ensemble-generated model (VC) and the RF and 

SVC models show promising results in SQLIA detection, with the 

C model being the best of the 3. 
8

Regarding execution times, as shown in the Fig. 5 , in the train- 

ng phase the model that takes the longest to train is the VC, 

ince it encompasses the execution of all models, followed by the 

NN and LR. The fastest model in the training phase is the Per- 

eptron+SGD. In the prediction phase, the LR and Perceptron+SGD 

odels stand out with a prediction time of less than 0.05 per sam- 

le in both cases, being also the two best models in this aspect. 

As mentioned above in Section 1 there are no researches that 

irectly address the SQLIA detection in flow data. Only the work 

one in Sarhan et al. (2020) obtains a DR to 25% and it’s F 1 

o 22% in detecting SQLInjection with the Extra Tree model on 

he NF-CSE-CIC-IDS2018. In order to compare our work with the 

ork presented in Sarhan et al. (2020) , we started from the 

ame dataset used by the authors (CSE-CIC-IDS2018) and obtained 

he packets belonging to SQLIA. Subsequently, using the softflowd 

 Miller, 2022 ) tool, NetFlow V5 flows have been generated from the 

etwork packets in Sarhan et al. (2020) the authors used Nprobe, 

his tool has been discarded in this work as it is a paid tool). Sub-

equently, the data have been treated as shown in Section 3 , per- 

orming the same operations that were carried out on datasets 
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Fig. 6. Comparison of models with ( Sarhan et al., 2020 ). 
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 1 and D 2 . Finally, the models trained with dataset D 1 with 

he parameterization reflected in Section 4 have been validated 

gainst the new dataset generated. As can be seen in Fig. 6 , the

erceptron-SGD model demonstrates the best results with a DR 

nd F 1 higher than 98%, a result much higher than the 25% of DR 

nd the 22% of F 1 obtained by the authors in Sarhan et al. (2020) .

n addition, the models LR, KNN, and the voting ensemble model 

btain a DR and a F 1 of almost 70%, demonstrating a good gener- 

lization capacity. 

. Conclusions 

Machine-learning models using complete network packets are a 

ommon and valid solution for detecting SQLIA. In conventional- 

ized local area networks, packet payload analysis allows the de- 

ection of such traffic. However, packet analysis is not feasible in 

ide area networks, where the amount of network traffic is sig- 

ificant. These networks typically use lightweight flow-based pro- 

ocols like NetFlow to collect traffic statistics. SQLIA detection is 

urrently an unresolved problem in this type of network. This pa- 

er has generated and published two datasets based on NetFlow 

5 flows. The generated datasets contain different SQLI executed 

n the currently most-used database engines. 

Machine-learning-based models train and test with the above 

atasets – specifically, LR-, Perceptron+SGD-, LSVC-, RF-, KNN de- 

ection models, and an ensemble classifier based on majority vot- 

ng (VC). 

The LR and Perceptron+SGD models have shown promising re- 

ults, with an accuracy and a DR higher than 96% in both cases. 

esides, these two models have demonstrated a FAR of less than 

%, which confirms the SQLIA detection capability of these models. 

n addition to the above models, the model generated as an assem- 

ly of the rest of the models (VC) has also demonstrated a high 

QLIA detection capability with an accuracy score of 85.6% and DR 

f 89% 

The results have shown that detecting SQLIA attacks in net- 

orks is possible using NetFlow as a lightweight, flow-based pro- 

ocol. 

This work has been a starting point for detecting SQLIA in flow 

ata. The proposed models can be deployed in production, detect- 

ng SQL injections on network flow data and generating alerts to 

mprove the security of users, companies or administrations. In fu- 
9 
ure works, we intend to increase the network range, including 

ven IPv6. 
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