
Neurocomputing 564 (2024) 126969

A
0
n

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Analysis of synchronous localization systems for UAVs urban applications
Javier Díez-González ∗, Rubén Ferrero-Guillén, Paula Verde, Alberto Martínez-Gutiérrez,
José-Manuel Alija-Pérez, Hilde Perez
Department of Mechanical, Computer and Aerospace Engineering, Universidad de León, León, Spain

A R T I C L E I N F O

Keywords:
UAV
Localization
TOA
TDOA
Cramér–Rao Bounds
Metaheuristics

A B S T R A C T

Unmanned-Aerial-Vehicles (UAVs) represent an active research topic over multiple fields for performing inspec-
tion, delivery and surveillance applications among other operations. However, achieving the utmost efficiency
requires drones to perform these tasks without the need of human intervention, which demands a robust and
accurate localization system for achieving a safe and efficient autonomous navigation. Nevertheless, currently
used satellite-based localization systems like GPS are insufficient for high-precision applications, especially
in harsh scenarios like indoor and deep urban environments. In these contexts, Local Positioning Systems
(LPS) have been widely proposed for satisfying the localization requirements of these vehicles. However, the
performance of LPS is highly dependent on the actual localization architecture and the spatial disposition of the
deployed sensor distribution. Therefore, before the deployment of an extensive localization network, an analysis
regarding localization architecture and sensor distribution should be taken into consideration for the task at
hand. Nonetheless, no actual study is proposed either for comparing localization architectures or for attaining a
solution for the Node Location Problem (NLP), a problem of NP-Hard complexity. Therefore, in this paper, we
propose a comparison among synchronous LPS for determining the most suited system for localizing UAVs over
urban scenarios. We employ the Cràmer–Rao-Bound (CRB) for evaluating the performance of each localization
system, based on the provided error characterization of each synchronous architecture. Furthermore, in order
to attain the optimal sensor distribution for each architecture, a Black-Widow-Optimization (BWO) algorithm is
devised for the NLP and the application at hand. The results obtained denote the effectiveness of the devised
technique and recommend the implementation of Time Difference Of Arrival (TDOA) over Time of Arrival
(TOA) systems, attaining up to 47% less localization uncertainty due to the unnecessary synchronization of
the target clock with the architecture sensors in the TDOA architecture.
1. Introduction

Unmanned-Aerial-Vehicles (UAVs), usually referred to as drones,
constitute a modality of vehicles whose use has grown significantly
over the last few years. While initial design and development of UAVs
were pursued for military applications, the innovation and the intended
purposes of these devices has shifted into the civilian sector over the
last decade [1].

The accessibility and the freedom of movement that these vehicles
possess render them idoneous for a wide range of applications. Surveil-
lance exercises [2], structural inspection [3], delivery services [4],
industrial transport [5] and agricultural operations [6] represent actual
research lines featured by these devices.

Furthermore, the interest in the insertion of UAVs into these fields
resides in their capability for performing already existing tasks in a
more efficient manner (e.g., transporting by air, easier access to high
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places). However, utmost efficiency is achieved when UAVs are capable
of performing such tasks without the need for human intervention, thus
carrying out these tasks autonomously.

Achieving autonomous behavior for UAVs represents a significant
challenge and requires the cooperation of different subsystems within
the aerial vehicle, which varies depending on the actual task to be con-
ducted. Nevertheless, all UAVs applications rely on the adequate perfor-
mance of a principal subsystem, the drone navigation and localization
system.

Therefore, developing a robust, available and accurate localization
system represents an essential step for implementing autonomous tasks
in UAVs. Most commercial drones implement hardware for Global Nav-
igation Satellite Systems (GNSS) localization (e.g., GPS, Galileo). While
these localization systems offer global coverage, their localization
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accuracy can result insufficient for certain applications or certain
scenarios, such is the case of urban environments [7].

The Non-Line-Of-Sight (NLOS) and the multipath interference
present in deep urban environments harshly penalize the reception
of the satellite signal, while their interpretation usually results in
significant localization uncertainties [8], which compromises the per-
formance of activities such as delivery services in these scenarios [9].

In this context, localization systems based on Wireless Sensor Net-
works (WSNs) have been widely proposed throughout the literature
for achieving improved localization accuracy over harsh and incon-
sistent scenarios [10]. Through the deployment of a set of low-cost
sensors over a given scenario, WSNs constitute a wireless localization
network with local coverage (i.e., Local Positioning Systems (LPS)).
Contrary to satellite-based localization, LPS can adapt to any scenario
by planning the spatial distribution of the beacons that constitute the
localization network, which improves their accuracy and flexibility.
Furthermore, unlike visual-based localization systems, which are quite
common in the field of robotics, wireless LPS achieve higher reliability
over variable weather and light conditions [11].

However, a wide variety of LPS are discussed throughout the lit-
erature that rely on different physical measurements for attaining
the target location (e.g., power, angle, frequency) [12]. In this con-
text, time-based localization systems represent one of the most ex-
tended technology due to their trade-off among accuracy, stability and
accessibility [13].

These localization systems determine the UAV location through the
measurement of different signal reception times. However, depending
on how the beacons and the target interact, two different localization
architectures are mainly proposed throughout the literature: Time of
Arrival (TOA) [14] and Time Difference of Arrival (TDOA) [15].

Each architecture denotes different characteristics and follows dif-
ferent signal paths for achieving the target localization, which renders
each localization architecture susceptible to different error sources
(e.g., path loss, NLOS, clock errors). As a consequence of these differ-
ences, the performance of each architecture varies depending on the
scenario of application.

Therefore, prior to deploying an extensive localization WSN, a
comparative analysis among existing localization architectures should
be taken into consideration for determining the most suited technology
for each application and scenario characteristics.

In our previous works, we have performed comparisons between
time-based localization architectures for different scenarios, yet par-
ticularized for low-elevation targets [16]. Nonetheless, to the author’s
best knowledge, there is no comparison available in the literature that
focuses on studying the particularities of UAV localization in deep
urban scenarios.

However, UAV localization over urban scenarios implies certain
particularities in this problem. The higher elevation of UAV flight
conditions reshapes the localization signal paths, which may result in
variation in the predominance of each error source, thus varying the
utmost achievable performance of a localization architecture.

Nevertheless, in order to achieve their maximum performance, LPS
must deploy their sensors so that their coverage and localization accu-
racy are maximized. This optimization problem, defined as the Node
Location Problem (NLP), entails an NP-Hard combinatorial complex-
ity [17].

Different metaheuristic techniques have been proposed throughout
the literature for attaining a near-optimal solution within a reasonable
time, such as: genetic algorithms [18], differential evolution [19], or
memetic algorithms [20]. These heuristic algorithms seek to optimize
the Cramèr–Rao Bound (CRB), an unbiased estimator of the localization
accuracy, a widely studied estimator in localization theory that serves
as a performance evaluator for the localization system [21].

Therefore, in this paper, which extends the work of our previ-
ous conference [22], we implement for the first time to the author’s
2

best knowledge a node location optimization for UAV applications in
urban scenarios for the two main time-based localization architectures
(i.e., TOA and TDOA). In this context, we have devised a Black Widow
Optimization (BWO) [23] for optimally deploying the beacons of the
LPS. Furthermore, we characterize the noise, detecting the LOS and
NLOS propagation conditions of the positioning signal through a ray-
tracing algorithm, and the clock error sources for each localization
architecture, consequently performing a comparison among time-based
localization systems for the presented application.

Moreover, in order to improve the efficiency and performance of
the attained sensor distribution, a Sensor Selection Problem (SSP)
optimization is considered during the NLP optimization [24]. The SSP
aims to determine the best combination of sensors for the localization
of a target in space [25], which reduces the number of used sensors
in use for each point while also reducing the localization uncertainties.
Considering the SSP during the NLP optimization further increases the
resulting accuracy of the network as stated in [26].

Therefore, the main contributions of this paper can be summarized
through the following highlights:

• A novel analysis for optimally deploying time-based localization
systems for UAV navigation in deep urban scenarios.

• The particularization of a BWO algorithm for attaining the NLP
problem with different localization architectures.

• The proposal of a comparison among time-based localization
architectures for UAVs in deep urban environments.

The remainder of this paper is organized as follows: Section 2
summarizes the related works of UAV localization and time-based
localization architectures. In Section 3, a mathematical model is de-
fined for performing the NLP and SSP combined optimization for the
proposed application. Section 4 describes the CRB characterization for
each proposed architecture while Section 5 details our devised BWO for
the attained problem. Finally, Section 6 entails the results of this work
and Section 7 presents the conclusions of this paper.

2. Related works

The deployment of UAVs in urban scenarios has been broadly dis-
cussed throughout the literature [27]. However, their implementation
is still scarce due to regulatory statements [28] that can be successfully
addressed for actual applications such as [29] and due to technical
limitations such as their difficult integration in urban communications
networks [30], energy constraints due to the limited use of their
batteries [31], trajectory optimizations [32], or their localization in
GNSS difficultly accessed areas [33].

Precisely, Mozaffari et al. [30] define that one of the main mile-
stones to fully integrate drones in urban environments is the definition
of localization systems that enable the precise navigation of UAVs.

In this sense, some proposals of the literature address this topic
in different ways. For instance, Couturier and Akhloufi [34] review
the absolute visual localization of UAVs through remote sensing image
retrieval, the comparison of UAV images with satellites images reg-
istration, place recognition, or image geolocalization. Although these
approaches attain remarkable results for the definition of the environ-
ment, these methods are dependent on visual images which supposes a
considerable energy consumption that reduces the UAVs’ autonomy.

Other authors such as Liu et al. [35] or Afifi et al. [36] proposed
the deployment of a wireless network or the existing communications
infrastructure respectively, for measuring the signal power decay of the
localization signal emitted by the UAV to determine its localization.
However, this approach is not suitable for dynamic environments such
as dense urban scenarios in which the localization signal can be dif-
ferently affected over time. This constitutes an unstable localization
system non-suitable for the precision navigation of UAVs in urban
environments.

Angle-based localization can also be considered to address the 3D

localization of UAVs as proposed by Xu and Doğançay in [37]. This
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work highlights the relevance of addressing an optimization of the
location of the sensor nodes to achieve promising localization results.
However, as for the previous power methods, angle-based localization
is compromised in Non-Line-of-Sight (NLOS) and multipath typical
urban dense environments.

Therefore, approaches based on time measurements are the most
extended within the literature for providing stable, robust, and accurate
navigation. However, different architectures achieve the localization of
the target through different procedures. In this context, TOA system
measures the total time-of-flight of the localization system from the
UAV to the architecture nodes. On the other hand, TDOA systems
employ the relative time-lapse measurements between the reception of
the localization signal in two different architecture nodes [38].

In this sense, recent works highlight the benefits of employing both
the TOA and the TDOA architectures for UAV applications in GNSS-
denied environments. For instance, Lin and Zhan [39] fusion the TDOA
system with visual procedures to enhance UAV navigation in indoor
spaces or Liu et al. [40] explore the main error sources of the TOA
architecture for UAV localization.

The differences between both approaches result in changes in the
convenience of each architecture for each scenario of application. How-
ever, the performance of these architectures has not been compared in
urban scenarios in a common framework to determine the suitability
of each system for UAV localization.

In this manner, we extend in this work our previous conference
paper [22] by analyzing not only the performance of the TDOA archi-
tecture for UAVs localization in urban environments but also analyzing
the performance of one more synchronous architecture (i.e., TOA).
This comparison is the first in the literature for these two localization
methods for UAVs localization in urban scenarios.

Nevertheless, in order to perform a fair comparison, not only a
common scenario for the deployment of each architecture must be
considered but also an optimal location for the sensor nodes of each ar-
chitecture. This is a consequence of the dependence of the localization
results on the spatial location of the architecture sensor nodes.

Therefore, this optimization allows the definition of the best achiev-
able performance for each architecture analyzed defining a fair frame-
work for the comparison of the time-based architectures. Thus, we
perform in this paper a sensor location optimization through the BWO
metaheuristic introduced in [23] that enables the definition of optimal
sensor networks for each architecture.

This optimization also entails a novelty in the UAVs localization
field since none of the papers highlighted in this Section addresses the
NLP optimization for reducing the localization uncertainties of each
architecture. The mathematical model for the proposed optimization
is presented in detail in Section 3.

3. Mathematical model

The performance of any LPS is heavily dependent on the distribution
of the sensors that constitute the WSN over the studied region. The
NLP aims to find the subset of optimal Cartesian coordinates (𝑆𝑙)
for each node of the localization system that maximizes the coverage
region while minimizing the localization uncertainties, where (𝑆𝑙) can
be characterized as:

⟨𝑆𝑙⟩ = ⟨𝑠1,… , 𝑠𝑛𝑠 ⟩; 𝑠𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖); 𝑖 ∈ {1,… , 𝑛𝑠} (1)

where 𝑠𝑖 represents the Cartesian coordinates of sensor 𝑖 and 𝑛𝑠 is
the total number of sensors deployed. In this sense, the subset that
entails the optimal sensor distribution (𝑆𝑙) is contained within the set
of all possible sensor distributions (𝑆). The dimension of set (𝑆) can
be deduced from the combinatorial nature of the NLP, resulting in the
following expression [41]:

𝐶 =
𝑛𝑠
∏

(𝑛𝑁𝐿𝐸 − 𝑖) (2)
3

𝑖=1
where 𝐶 is the number of possible solutions and 𝑛𝑁𝐿𝐸 is the total
number of discretized points for representing the Node Location En-
vironment (NLE) during the optimization, thus representing the total
number of possible sensor locations.

Nevertheless, this optimization must consider different restrictions
regarding the valid locations of sensors in space and the architecture
requirements of coverage and minimum number of sensors to assess
the target location. These restrictions can be described for each lo-
calization architecture under the following mathematical model of the
NLP:

Maximize ∶ 𝑍 = 𝑓𝑓 (𝑓𝑓𝐶𝑅𝐵 , 𝑓𝑓 𝑝𝑒𝑛) (3)

Subject to:

𝑥𝑙𝑖𝑚1
≤ 𝑥𝑖 ≤ 𝑥𝑙𝑖𝑚2

∀ 𝑥𝑖 ∈ 𝑠𝑖; 𝑠𝑖 ∈ 𝑆; 𝑠𝑖 ∉ 𝑈

𝑦𝑙𝑖𝑚1
≤ 𝑦𝑖 ≤ 𝑦𝑙𝑖𝑚2

∀ 𝑦𝑖 ∈ 𝑠𝑖; 𝑠𝑖 ∈ 𝑆; 𝑠𝑖 ∉ 𝑈

𝑧𝑙𝑖𝑚1
≤ 𝑧𝑖 ≤ 𝑧𝑙𝑖𝑚2

∀ 𝑧𝑖 ∈ 𝑠𝑖; 𝑠𝑖 ∈ 𝑆; 𝑠𝑖 ∉ 𝑈

(4)

𝑐𝑜𝑣𝑘 ≥ 𝑛𝑚𝑖𝑛 ∀𝑘 ∈ {1,… , 𝑛𝑇𝐿𝐸}

𝑐𝑜𝑣𝑘 =
𝑛𝑠
∑

𝑖=1
𝑐𝑜𝑣𝑘𝑖 ⋅ 𝜁𝑖

𝑐𝑜𝑣𝑘𝑖𝑇𝑂𝐴|𝑇𝐷𝑂𝐴
=
{

1 if 𝑆𝑁𝑅𝑘𝑖 ≥ 𝑆𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 if otherwise

(5)

where 𝑓𝑓𝐶𝑅𝐵 and 𝑓𝑓 𝑝𝑒𝑛 are fitness functions based on the Cramèr–Rao
error characterization and the devised penalizations for not attaining
the restrictions of the optimization; 𝑥𝑙𝑖𝑚1

, 𝑦𝑙𝑖𝑚1
, 𝑧𝑙𝑖𝑚1

and 𝑥𝑙𝑖𝑚2
, 𝑦𝑙𝑖𝑚2

, 𝑧𝑙𝑖𝑚2
represent the lower and upper limits of the scenario discretization;
𝑈 is the subset containing all forbidden regions for the location of
the sensors in the environment; 𝑐𝑜𝑣𝑘 represents the number of sensors
under coverage for point 𝑘 of the Target Location Environment (TLE)
(i.e., each possible target location); 𝑛𝑚𝑖𝑛 is the minimum number of sen-
sors under coverage required for each architecture to achieve the target
location (i.e., three and four for the TOA and the TDOA architectures
respectively as demonstrated in [42]); 𝑛𝑇𝐿𝐸 is the number of discretized
points for the TLE; 𝑐𝑜𝑣𝑘𝑖 is a step function of value 1 when point 𝑘
is within coverage of sensor 𝑖 and 0 otherwise; 𝑆𝑁𝑅𝑘𝑖 represents the
signal-to-noise ratio, measured between the TLE point 𝑘 and sensor 𝑖,
and 𝑆𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 defines the 𝑆𝑁𝑅 that determines a signal link among
effective coverage.

Furthermore, in our proposal, we attain the NLP and the SSP
simultaneously through the consideration of the SSP within the per-
formance analysis of each sensor distribution from the NLP. This com-
bined analysis guides the optimization into reaching a more adequate
solution than a bare NLP approach, as proven in our past works
[43].

In this context, the SSP aims to obtain the set of the sensors under
coverage within a certain TLE point 𝑘, (𝑆′

𝑙 (𝑘)), which is contained
within the set that entails all sensors under coverage of 𝑘, (𝑆𝑙(𝑘)).
As a consequence, not all sensors within coverage of point 𝑘 are
utilized for its localization, 𝜁𝑖 is a boolean variable that values 1 when
sensor 𝑖 is considered for performing localization in point 𝑘, and 0
otherwise.

Nevertheless, the proposed optimization model that entails the NLP
and SSP is based upon the definition of the CRB for evaluating the per-
formance of a given sensor distribution. The different characterization
model, which we will disclose in the following Section, result in the
obtention of a localization uncertainty for each TLE point, measured
from the Root Mean Squared Error (RMSE) of trace of the inverse of
the Fisher Information Matrix (FIM).

From this CRB characterization, the SSP evaluates which combi-
nation of sensors achieves the best performance, thus selecting the
optimal combination of sensors for each point. Therefore, we can
define the previously discussed fitness functions through the following
equations:
𝑓𝑓 = 𝑐1 ⋅ 𝑓𝑓𝐶𝑅𝐵 − 𝑐2 ⋅ 𝑓𝑓 𝑝𝑒𝑛 (6)
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𝑓𝑓𝐶𝑅𝐵 = 1
𝑛𝑇𝐿𝐸

𝑛𝑇𝐿𝐸
∑

𝑘=1

(

1 −
𝑅𝑀𝑆𝐸(𝑆′(𝑘))
𝑅𝑀𝑆𝐸𝑟𝑒𝑓

)

(7)

𝑓 𝑝𝑒𝑛 =
1
𝑛𝑠

𝑛𝑠
∑

𝑖=1
𝑅𝑖; 𝑅𝑖 =

{

1 if 𝑠𝑖 ∈ 𝑈
0 if otherwise (8)

where 𝑐1 and 𝑐2 are parameters adjusted for weighting each fitness
function importance in the optimization; 𝑅𝑀𝑆𝐸𝑟𝑒𝑓 represents the ac-
curacy reference 𝑅𝑀𝑆𝐸, equivalent to the maximum valid achievable
𝑅𝑀𝑆𝐸 value in the analyzed scenario obtained experimentally [20,
44], thus constricting the 𝑓𝑓𝐶𝑅𝐵 domain in the interval [0, 1] and 𝑅𝑖 is
a boolean variable that indicates if a given sensor 𝑖 is located within
the admissible regions.

Furthermore, evaluating of the fitness function with the best com-
bination of sensors for each point attains a superior performance of the
localization network, given a fixed distribution of sensors. However,
the consideration of this analysis during the optimization guides the
resulting solutions of the optimization into a sensor network with
better accuracy when SSP is applied with respect of a traditional
NLP optimization, which would only underwent the SSP in its final
solution [26].

Therefore, the consideration of both problems simultaneously fur-
ther improves the performance of the optimized localization network
when applying sensor selection, thus serving as an interesting guideline
for the proposed comparison of this paper.

However, implementing the proposed mathematical model for each
localization architecture requires the definition and particularization of
the CRB for each studied architecture, an analysis that we attain in the
following Section.

4. Cramér-Rao Bound

Localization systems are affected by the degradation of the position-
ing signal during its signal path [45], also sustaining uncertainties due
to imperfect measurements of the physical property used to determine
the target location (i.e., time measurements in this paper) [46].

This promotes that the algorithms in charge of calculating the target
location cannot guarantee the attainment of the actual location of the
target. In fact, the best localization algorithms are those that minimize
the accumulated uncertainties in the set of measurements in order to
provide the most reduced error in the position calculation [47].

In this sense, the lower bound for the localization error can be
obtained from the Cramér–Rao Lower Bound (CRLB). The CRB allows
the obtainment of the lower variance of an unbiased estimator of a
deterministic unknown parameter [48] (i.e., the spatial coordinates of
the target in the localization field).

In this context, the CRB allows the definition of the minimum
achievable error by any localization algorithm used for determining
the target location [49]. This constitutes the CRB as an indicator of
the maximal performance of a localization system regardless of the
localization algorithm implemented to calculate the target location
[50].

However, when considering some stochastic parameters such as the
clock error characterization of this paper, the CRLB does not indicate a
real achievable bound since positive or negative deviations of the pa-
rameter would either reduce or increase the error bound accidentally.
In these cases with stochastic conditions, it is more accurate to obtain
the expected values of error by performing a Monte-Carlo simulation
as we address in this paper, thus defining a novel more representative
error bound defined as the Cramér–Rao Bound (CRB).

Consequently, under these conditions, the CRB is widely proposed
for comparing the capabilities of different localization sensor deploy-
ments and recently has been used as the fitness indicator of the NLP
metaheuristic optimizations. Based on the evaluation of the CRB, these
optimizations are capable to reach optimal sensor arrangements that
minimize the localization error [18,51,52], and maximize the coverage
4

a

region of the system [53], following the mathematical model presented
in Section 3.

Therefore, in this Section, we present a generic model for defining
the Fisher Information Matrix (i.e., the inverse of the CRB) as well as
the method to measure the localization accuracy based on such model
in Section 4.1. The generic model is then particularized for the TOA and
TDOA time-based architectures considered in this paper in Sections 4.2
and 4.3 respectively.

4.1. CRB matrix form definition for localization architectures

The FIM, from which the CRB is attained, can be expressed through
the following matrix form [50]:

𝐹𝐼𝑀𝑚𝑛 =
(

𝛿ℎ(𝑇𝑆)
𝛿𝑇𝑆𝑚

)𝑇
𝑹−1(𝑻𝑺)

(

𝛿ℎ(𝑇𝑆)
𝛿𝑇𝑆𝑛

)

+1
2
𝑡𝑟
{

𝑹−1(𝑻𝑺)
(

𝛿𝑅(𝑇𝑆)
𝛿𝑇𝑆𝑚

)

𝑹−1(𝑻𝑺)
(

𝛿𝑅(𝑇𝑆)
𝛿𝑇𝑆𝑛

)}
(9)

where 𝐹𝐼𝑀𝑚𝑛 represents the FIM element calculated considering the
Target Sensor (TS) coordinates 𝑚 and 𝑛; 𝒉(𝑇𝑆) is the vector containing
the information of the signal path of each architecture, and 𝑹(𝑇𝑆) is
he covariance matrix of the architecture at study.

This allows a flexible characterization of the error uncertainties of
he localization system through a complete definition of the covariance
atrix of each architecture and through the definition of the signal path

ollowed by each localization system.
In this paper, we characterize the system uncertainties considering

he two main error sources that affect localization time-based systems
n outdoor urban environments (i.e., noise in LOS/NLOS conditions and
lock errors).

These two errors can be considered independently since the degra-
ation of the localization signal during its path from emitter to receiver
nd the uncertainties generated during the measurement of the time-of-
light of the positioning signal are separate factors, yet both influential
n the localization errors [26].

Therefore, when building the covariance matrix (𝑹) of each archi-
ecture, noise and clock uncertainties can be combined as follows:
2
𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑖𝑗

= 𝜎2𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒(𝑛𝑜𝑖𝑠𝑒)𝑖𝑗 + 𝜎2𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒(𝑐𝑙𝑜𝑐𝑘)𝑖𝑗 (10)

here 𝜎2𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 represents the total variance/covariance of the ele-
ent 𝑅𝑖𝑗 ; 𝜎2𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒(𝑛𝑜𝑖𝑠𝑒)𝑖𝑗 is the variance/covariance related to noise
ncertainties, and 𝜎2𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒(𝑐𝑙𝑜𝑐𝑘)𝑖𝑗 is the variance/covariance related
o clock uncertainties.

Once built the covariance matrix, 𝑹(𝑇𝑆), and the signal spatial
ropagation vector, 𝒉(𝑇𝑆), the FIM can be directly determined through
q. (9).

This allows, as stated in [54,55], the definition of the Root Mean
quared Error (RMSE) in a particular TS location through the inverse
f the FIM (i.e., the CRB):

𝑀𝑆𝐸𝑈𝐴𝑉𝑘 =
√

𝑡𝑟𝑎𝑐𝑒(𝐅𝐈𝐌−𝟏) (11)

here 𝑅𝑀𝑆𝐸𝑈𝐴𝑉𝑘 is the lower RMSE achievable in a particular loca-
ion 𝑘 considered for the UAV navigation in the coverage area of the
eployed localization architecture.

As shown in this subsection, this generic and flexible error char-
cterization can be adapted to the particularities of each localization
rchitecture analyzed through the definition of the signal path 𝒉(𝑇𝑆)
nd the covariance matrix 𝑹(𝑇𝑆).

For this purpose, as presented in the next subsections, we char-
cterize the noise uncertainties following a heteroscedastic model,
s required for LPS applications [56]. This characterization includes
he noise uncertainties in LOS environments, modeled through a Log-
ormal path loss model as in [57], which is enriched by the differenti-
tion of the LOS/NLOS paths defined through a ray tracing algorithm

s introduced in [58].
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In addition, the clock error uncertainties of each architecture in-
clude the definition of the errors produced due to the clock drift and
initial-time offset as proposed in [46] to which we added the truncation
error of the instrumentation [43].

This combination of noise and clock errors represents the most
complete error characterization in urban environments in the literature
to the authors’ knowledge. In the next subsections, the definition of
each error is defined for the two architectures analyzed in this paper
(i.e., TOA and TDOA).

4.2. TOA error characterization

TOA architecture measures the total time-of-flight of the positioning
signal from an emitter to a receiver. It is a synchronous architecture
that requires the synchronization of the TS clock with all the architec-
ture sensors’ clocks, defining a common framework to determine every
time measurement involved in the positioning calculation [59].

Therefore, the 𝒉 vector of the TOA architecture can be defined as
follows:

ℎ𝑇𝑂𝐴𝑖
= ‖

‖

𝑇𝑆 − 𝐶𝑆𝑖
‖

‖

; 𝑖 = 1,… , 𝑛𝐶𝑆 (12)

where 𝑛𝐶𝑆 is the total number of coordinator sensors of the TOA
architecture under effective coverage considered for the positioning
calculation in the point of study after addressing the SSP as introduced
in Section 3.

As for the covariance matrix of the TOA system, since the time
measurements are uncorrelated [60], the non-diagonal elements of the
matrix are equal to zero. For the diagonal terms, we present hereafter
the characterization of the noise and clock uncertainties.

The noise uncertainties are characterized through the Log-Normal
path loss model resulting in the following expression:

𝜎2𝑇𝑂𝐴(𝑛𝑜𝑖𝑠𝑒)𝑖𝑖
= 𝑐2

𝐵2( 𝑃𝑇𝑃𝑁
)
𝑃𝐿(𝑑0)

⎡

⎢

⎢

⎣

(𝑑𝑖𝐿𝑂𝑆

𝑑0

)

𝐶𝑆𝑖
+
(𝑑𝑖𝑁𝐿𝑂𝑆

𝑑0

)

𝑛𝑁𝐿𝑂𝑆
𝑛𝐿𝑂𝑆

𝐶𝑆𝑖

⎤

⎥

⎥

⎦

𝑛𝐿𝑂𝑆 (13)

𝑖𝐿𝑂𝑆
= ‖

‖

𝑇𝑆 − 𝐶𝑆𝑖
‖

‖𝐿𝑂𝑆 (14)

𝑖𝑁𝐿𝑂𝑆
= ‖

‖

𝑇𝑆 − 𝐶𝑆𝑖
‖

‖𝑁𝐿𝑂𝑆 (15)

here 𝑐 is the speed of the radioelectric waves; 𝐵 the signal bandwidth;
𝑇 the transmission power of the localization signal; 𝑃𝑁 the mean noise
ower calculated through the Johnson-Nyquist equation; 𝑃𝐿(𝑑0) the
ath loss at the reference distance 𝑑0 for which we consider 10 m in this
aper as stated in [61] for urban propagations; 𝑑𝑖𝐿𝑂𝑆

and 𝑑𝑖𝑁𝐿𝑂𝑆
are the

OS/NLOS distances covered by the positioning signal from the TS to
he CS 𝑖 respectively, and 𝑛𝐿𝑂𝑆 and 𝑛𝑁𝐿𝑂𝑆 are the path loss exponents
n LOS/NLOS environments respectively.

In addition to the noise characterization, the clock uncertainties pro-
uced as a consequence of imperfect time measurements are modeled
s follows:

2
𝑇𝑂𝐴(𝑐𝑙𝑜𝑐𝑘)𝑖𝑖

= 1
𝑛𝑀𝐶

𝑛𝑀𝐶
∑

𝑘=1

{

|

|

|

𝑇𝑖 − 𝑓𝑙𝑜𝑜𝑟𝑇𝑅
[

(𝑇𝑖 + 𝑈𝑖 − 𝑈0

+ 𝑇0(𝜂𝑖 − 𝜂0) + 𝑇𝑖𝜂𝑖) ] |𝑐2
}

(16)

here 𝑛𝑀𝐶 are the number of Monte Carlo simulations performed to
stimate the expected value of the clock variance following the model
ntroduced in [43]; 𝑇𝑖 is the ideal time-of-flight of the positioning signal
rom the TS to a particular 𝐶𝑆𝑖; 𝑓𝑙𝑜𝑜𝑟𝑇𝑅 refers to the truncation of the
ime measurement due to the physical characteristics of the clock; 𝑈𝑖
nd 𝑈0 are the ideal time lapses from the last synchronization of the
𝑆𝑖 and TS clocks respectively; 𝑇0 is the interval between the end of the

ast synchronization process and the emission of the positioning signal
nd 𝜂 and 𝜂 are the clock drifts of the 𝐶𝑆 and the TS respectively.
5

𝑖 0 𝑖 U
.3. TDOA error characterization

TDOA architecture is based on the measurement of the different
rrival times of the positioning signal to two distinct architecture
eceivers [62].

By only measuring the time difference of arrival, the TDOA ar-
hitecture achieves independence from the timestamp of the signal
mission. As a consequence, the synchronization of the TS clock with
he architecture sensors clocks is unrequired, although the synchronism
mong the architecture sensors is still mandatory.

This builds a localization process consisting of two different signal
aths, as considered in the 𝒉 vector of the TDOA architecture:

𝑇𝐷𝑂𝐴𝑚
= ‖

‖

𝑇𝑆 − 𝐶𝑆𝑖
‖

‖

− ‖

‖

‖

𝑇𝑆 − 𝐶𝑆𝑗
‖

‖

‖

𝑖 = 1,… , 𝑛𝐶𝑆 ; 𝑗 = 1,… , 𝑛𝐶𝑆 ; 𝑖 ≠ 𝑗

𝑚 = 1,… , 𝑛𝐶𝑆 − 1

(17)

here 𝑖 and 𝑗 represent the two positioning signal paths involved in the
DOA measurement and 𝑚 refers to the time measurement considered
or the positioning calculation.

Although two different paths are considered, their measurements
re correlated as introduced in [60]. Thus, the non-diagonal terms of
he covariance matrix are distinct from zero in the TDOA architecture.
rom this base, noise and clock uncertainties are built into the TDOA
rror model of this paper.

Noise characterization follows the same model as in the TOA archi-
ecture but considering the two signal paths:

2
𝑇𝐷𝑂𝐴(𝑛𝑜𝑖𝑠𝑒)𝑖𝑗

= 𝑐2

𝐵2( 𝑃𝑇𝑃𝑁
)
𝑃𝐿(𝑑0) 𝜅𝑖𝑗 (18)

𝜅𝑖𝑗 =
⎡

⎢

⎢

⎣

(𝑑𝑖𝐿𝑂𝑆

𝑑0

)

𝐶𝑆𝑖
+
(𝑑𝑖𝑁𝐿𝑂𝑆

𝑑0

)

𝑛𝑁𝐿𝑂𝑆
𝑛𝐿𝑂𝑆

𝐶𝑆𝑖
+
(𝑑𝑗𝐿𝑂𝑆

𝑑0

)

𝐶𝑆𝑗
(19)

+
(𝑑𝑗𝑁𝐿𝑂𝑆

𝑑0

)

𝑛𝑁𝐿𝑂𝑆
𝑛𝐿𝑂𝑆

𝐶𝑆𝑗

⎤

⎥

⎥

⎦

𝑛𝐿𝑂𝑆

𝑑𝑗𝐿𝑂𝑆
= ‖

‖

‖

𝑇𝑆 − 𝐶𝑆𝑗
‖

‖

‖𝐿𝑂𝑆
(20)

𝑑𝑗𝑁𝐿𝑂𝑆
= ‖

‖

‖

𝑇𝑆 − 𝐶𝑆𝑗
‖

‖

‖𝑁𝐿𝑂𝑆
(21)

where 𝑑𝑗𝐿𝑂𝑆
and 𝑑𝑗𝑁𝐿𝑂𝑆

refer to the LOS/NLOS distance traveled by the
ositioning signal to the 𝐶𝑆𝑗 and determined through the ray tracing
lgorithm introduced in [58].

Clock uncertainties characterization considers both time measure-
ents required to define an equation of potential target locations:

2
𝑇𝐷𝑂𝐴(𝑐𝑙𝑜𝑐𝑘)𝑖𝑗

= 1
𝑛𝑀𝐶

𝑛𝑀𝐶
∑

𝑘=1

{

|

|

|

𝑇𝑖 − 𝑓𝑙𝑜𝑜𝑟𝑇𝑅
[

(𝑇𝑖 + 𝑈𝑖 − 𝑈0

+ 𝑇0(𝜂𝑖 − 𝜂0) + 𝑇𝑖𝜂𝑖)
]

|𝑐2
}

+ 1
𝑛𝑀𝐶

𝑛𝑀𝐶
∑

𝑘=1

{

|

|

|

𝑇𝑗 − 𝑓𝑙𝑜𝑜𝑟𝑇𝑅
[

(𝑇𝑗 + 𝑈𝑗 − 𝑈0

+ 𝑇0(𝜂𝑗 − 𝜂0) + 𝑇𝑗𝜂𝑗 )
]

|𝑐2
}

(22)

here 𝑇𝑗 represents the ideal time-of-flight of the positioning signal
rom the TS to the 𝐶𝑆𝑗 ; 𝑈𝑗 is the ideal time-lapse from the last
ynchronization of the 𝐶𝑆𝑗 clock and 𝜂𝑗 is the drift of the 𝐶𝑆𝑗 .

All these characterizations of the 𝒉 vector and the covariance matrix
of each architecture allow building the FIM matrix of Eq. (9) which is

ater used in Eq. (11) to calculate the RMSE associated with a particular
ocation covered by the architecture at study.

As introduced in Section 3, this error is calculated in each point
nder coverage (i.e. in this paper the area for UAVs navigation) in
rder to build a robust, accurate, and stable localization model for the

AVs. As introduced previously, this requires an optimization of the
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Fig. 1. Representation of the BWO unique operators of mating and cannibalism.
sensors’ location of each architecture in order to achieve an optimal
performance of the localization system. In this paper, we propose
to address this optimization through the BWO metaheuristic that we
present in Section 5.

5. Black Widow optimization for localizing the architecture nodes
of time-based positioning systems

Black Widow optimization was proposed by Hayyolalam and Kazem
in 2020 [63]. It is based on the unique mating of black widows in
which the male dies after reproduction. This particular reproduction of
black widows inspired the previous authors to build a novel metaheuris-
tic with strong diversification properties to explore difficulty-accessed
spaces of solutions in complex mathematical combinatorial problems.

We proposed in [23] the adaptation of the BWO for the NLP in
localization systems. Results showed an improvement of previous ap-
proaches [64] demonstrating the benefits of this optimization technique
to address discontinuous fitness landscapes such as the optimization
considered in this paper.

The discontinuity of the fitness function in the localization NLP is
a consequence of the LOS/NLOS links of the positioning signal with
the sensors of the architecture [20]. A steep jump in the fitness values
is made depending on whether or not an NLOS-type connection is
produced during the transmission of the localization signal to the archi-
tecture nodes. Therefore, the BWO is a suitable candidate to optimize
the location of the sensors of the two architectures analyzed in this
paper (i.e., TOA and TDOA) in order to perform a fair comparison
of the capabilities of each architecture for UAVs localization in urban
environments.

BWO fundamentals are built under population-based metaheuristic
principles. As a consequence, a number of candidate solutions to the
NLP (i.e., the population) are subjected to an evolutionary process to
achieve optimized solutions [65]. This implies applying genetic oper-
ators to adapt the individuals (i.e., each potential solution considered
in the population) to an environment dominated by the NLP conditions
introduced in Section 3.

The differences between the BWO and traditional population-based
metaheuristics such as genetic algorithms [65] or differential evolu-
tion [66] lies in the modification of the genetic operators based on the
reproduction of black widows.
6

In the BWO, the mating between the population individuals implies
the father’s death (i.e., the less adapted individual of the two involved
during the mating process). In addition, mating supposes the generation
of numerous offspring (i.e., eggs), organized in clusters (i.e., egg sacs),
where each egg is composed of the parents genotype. At this point,
a novel and unique operator of the BWO process takes place, the
cannibalism operator.

Cannibalism supposes the competition of the offspring inside each
egg sac to guarantee the survival of only the best-adapted offspring in
order to concentrate the mother’s resources only on the most promising
offspring. Cannibalism is produced through the comparison of the
fitness values of the offspring.

However, cannibalism is also extended in the last stage of the
process to the mother, since the mother can also be eaten by her
offspring in case they are better adapted to the NLP than their mother
(i.e., matriphagy).

We present in Fig. 1, the adaptation of this process to the NLP
in which we perform a binary codification of the individuals of the
population as presented in [18] and we use different crossing pro-
cedures (i.e., single point (SP) and multipoint (MP) crossovers), and
different crossover percentages (𝜌𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟) for the different egg sacs, as
introduced in [23].

Later on, the remaining genetic operators of the population-based
metaheuristics (i.e., mutation, selection, and elitism) are applied to
generate and select the final individuals of the next generation unless
the stopping criteria of the optimization have been reached (i.e., the
number of generations fixed for the optimization or final convergence
of the individuals of the population).

In this way, further analysis of the space of solutions is attained, al-
lowing for obtaining optimized node deployments for each architecture
analyzed.

In the next subsection, we present a pseudo-code of the BWO
addressed considering the mathematical model presented in Section 3
for which the fitness function is built upon the CRB defined in Section 4.

5.1. Pseudo-code of the proposed BWO

Implementing the BWO requires particularizing all the methodology
characteristics of the problem at hand. In this context, each individual
within the algorithm should represent a valid solution for the NLP
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(i.e., a specific sensor distribution). In our proposal, the individuals
carry multiple binary chains, where each chain translates to a sin-
gle node location in space, following the binary escalation procedure
introduced in [18].

Through the previously described codification, the proposed BWO
implements different genetic operators for guiding the optimization
convergence into an optimized solution. Algorithm 1 represents the
structure of the devised BWO with its particularization for the NLP.

Algorithm 1: BWO for the NLP (N, Scenario)

1 𝜋,𝑂𝐴, 𝑇𝐿𝐸,𝑁𝐿𝐸 ← Import Scenario;
2 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← Initialization of 𝑁 individuals within the NLE

boundaries;
3 while (𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑁𝑔𝑒𝑛) or (Similarity < 𝑆max) do
4 for Individual in Population do
5 𝑓𝑓𝐶𝑅𝐵 ← Calculation of the lowest localization uncertainty of

the TLE with sensor selection (Individual, 𝜋, 𝑛𝑇𝐿𝐸 ,
𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑆𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ;

6 𝑓𝑓 𝑝𝑒𝑛 ← Fitness Penalization for node placing within
prohibited regions (𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙, 𝑂𝐴);

7 𝑓𝑓 ← Fitness function evaluation (𝑓𝑓𝐶𝑅𝐵 , 𝑓𝑓 𝑝𝑒𝑛);
8 end
9 𝐸𝑙𝑖𝑡𝑖𝑠𝑡𝑠 ← Selection of the Elitists (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
10 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← BWO Mating and Cannibalism (Population);
11 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← Mutation (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
12 end
13 Final Solution ← Most fitted individual;
14 Output: Final Solution;

The devised algorithm commences by importing the scenario of sim-
lation and all associated parameters (e.g., TLE and NLE region). Once
mported, the BWO starts by initializing the population of individuals
hrough the proposed codification.

The BWO then executes multiple iterations over the generated pop-
lation, evaluating the performance of each individual (i.e., a specific
ensor distribution) and implementing different genetic operators so
hat the population may converge to the optimal solution.

The fitness evaluation, which quantifies the degree of adaptation
f each individual, is based on the previously discussed CRB, thus
epending on the architecture at hand. It is within this fitness adapta-
ion where the SSP is included along the NLP optimization, evaluating
he individuals based on their performance over the NLP and SSP
onsiderations.

More specifics on how Eqs. (9)–(22) are evaluated in the fitness
unctions are available in our previous work [26]. Moreover, the
chieved performance of each individual is then compensated with
he plausible penalizations generated by incorrect placements, thus
onstituting the overall fitness value.

Based on the achieved fitness value, the best fitted individuals
re preserved through generations by means of the elitism operator.
his operator safeguards the most adapted individuals, introducing

ntensification in the convergence to the final solution. The resulting
opulation delivered by this operator is then exposed to the mating
nd cannibalism operators, the specific genetic operators of the BWO.

Algorithm 2 details the different steps that the algorithm undergoes
n order to generate the following offspring (i.e., the next generation
f individuals). In our proposal, we perform a Tournament 2 selection
f the parents for discarding a certain number of individuals. The
emaining parents are them randomly grouped in pairs for the mating,
here the female and male roles are assigned to each parent depending
n its fitness value.

For each pair of parents, multiple eggs sacs containing numer-
us offspring (i.e., eggs) are generated following different crossover
rocedures with different number of parents alleles percentages.

The elevated number of individuals achieves a higher exploration
f the space of solutions, which combined with the intensification
7

Algorithm 2: BWO Mating and Crossover Operators (Population, L,
M, 𝛥𝜌𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟)

1 Selected Individuals, Discarded Individuals ← Tournament 2 selection
(Population);

2 Parents ← Random Pairing (Selected Individuals);
3 for each Pair of Parents do
4 Female Black Widow ← argmax

𝑝𝑎𝑟𝑒𝑛𝑡∈𝑃𝑎𝑖𝑟
𝑓𝑓 (𝑝𝑎𝑟𝑒𝑛𝑡);

5 Egg Sacs ← Mass Offspring generation with MP2 and SP crossover
(𝛥𝜌𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟);

6 𝑓𝑓 𝑒𝑔𝑔𝑠 ← Fitness evaluation of each egg (Egg Sacs);
7 Best Eggs ← For each Egg Sac in Egg Sacs, Best 𝐿 Eggs with

highest 𝑓𝑓 𝑒𝑔𝑔 in Egg Sac;
8 New Population (Pair) ← Best 𝑀 Individuals with highest 𝑓𝑓 in

[Best Eggs, Female Black Widow];
9 end
10 Output: New Population;

introduced by the subsequent cannibalism operator guides the opti-
mization convergence into the optimal solution.

The cited cannibalism operator takes place once all egg sacs have
been generated. Within this genetic operator, the eggs inside each egg
sac compete within each other based on their fitness value, which
drastically reduces the number of remaining offspring.

Following the first round of egg selection, the cannibalism operator
performs a second comparison between the remaining eggs from the
egg sacs and the initial female black widow. This second round results
in an additional severe reduction of the generated offspring, where
only the most fitted individuals persist. The introduction of the female
black widow into this phase supposes an additional intensification
mechanism, granting the prevalence of the originated parent if a higher
fitness value exists.

The resulting individuals from the mating of each parent pairs con-
stitutes the next generation of the BWO population, which undergoes
a mutation operator back in Algorithm 1. The resultant population are
then reevaluated, repeating the described loop until the convergence
criteria is met (i.e., maximum number of generations or similarity
percentage among individuals).

The equilibrium between exploration and intensification capabil-
ities denoted by this algorithm represents a robust methodology for
attaining a near-optimal solution for all the optimizations required for
the proposed comparison of this work.

In the following Section, we present the characteristics of the de-
vised scenario and all the influential simulation hyperparameters, fol-
lowed by a representation and a discussion of the achieved results.

6. Results

6.1. Scenario

In order to perform a valid comparison among localization architec-
tures, a common framework needs to be proposed for evaluating and
fairly contrasting the performance of each architecture.

Therefore, a common scenario of experimentation is proposed for
the following analysis. The devised scenario, shown in Fig. 2, depicts
a deep urban environment with buildings of different dimensions.
These buildings represent obstacles for the deployment of sensors, thus
constituting the Obstacle Area (OA) of our scenario [64]. Around these
buildings, multiple roads traverse the scenario, thus representing a
common urban environment with a high density of obstacles.

As indicated in Fig. 2, an airway for UAV transit has been situated
above the different roads, which constitutes the TLE of our sensor distri-
bution optimization. On the other hand, the sensors of the localization
systems can be positioned over the building’s roof and above the streets,
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Table 1
Dimensions and characteristics of the proposed scenario configured for the optimi-
zation.

Parameter Value

Area 23 000 m2

Scenario dimensions 𝑥 ∈ [0, 143] m
𝑦 ∈ [0, 161] m

Building height 𝑧𝑜𝑏𝑠 ∈ [29, 37] m
Airway height 𝑧𝑈𝐴𝑉 ∈ [16, 20] m
Number of TLE points 28 701 points
Number of NLE points 4 194 304 points
TLE discretization 𝛥𝑥 ≡ 𝛥𝑦 ≡ 1 m; 𝛥𝑧 = 0.5 m

NLE discretization
𝛥𝑥 = 0.63 m
𝛥𝑦 = 0.56 m
𝛥𝑧 = 0.1 m

Table 2
Parameters of configuration for the channel of communications for the LPS architectures
[67].

Parameter Value

Transmission power 1 W
Frequency of emission 5465 MHz
Bandwidth 100 MHz
Mean noise power −94 dBm
Receptor sensibility −90 dBm
LOS exponent 2.1
NLOS exponent 4.1

Fig. 2. Deep urban scenario for the proposed comparison among time-based local-
ization architectures.

leaving a certain margin for not interfering with the traffic, which
constitutes the NLE of our study.

Moreover, Table 1 specifies the particularities of the proposed sce-
nario for the proposed comparison. The discretization stated for the TLE
and the NLE pretends to represent a continuous region for both location
environments.

6.2. Hyperparameters

Section 4 detailed the generation of a CRB model that allows
the estimation of the UAV locations considering the path loss errors
(i.e., noise and LOS/NLOS conditions) and clocks errors. Scenario con-
ditions and channel characteristics influence the error caused by signal
attenuation during communication between the transmitter and the
receiver. Hence, the minimization of this error, especially in the vertical
coordinate, reduces the uncertainties introduced in the target location
measurement.

Table 2 specifies the configuration of the network technology and
the environment properties (e.g., path loss exponents) that affect the
signal and are used to perform the simulations.

In addition, the LPS based on time measurements suffer the uncer-
tainties associated with the existence of temporal instabilities in the
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Table 3
Configuration parameters for the clocks of the TOA and TDOA architectures [46].

Parameter Value

Time-Frequency product 1
Clock frequency 1 GHz
Frecuency-drift U{−10,10} ppm
Initial-time offset U{15,30} ns

Table 4
Values used by the BWO, for the optimization of the sensor arrangements of the TOA
and TDOA architectures [22,68].

Parameter Value

Population 80

Stop criteria 100 generations
or convergence

Selection operator Tournament 2
Crossover operator Single and multipoint
Mutation operator 2%
Elitism operator 7%
Female BW alleles 20%/40%/60%/80%
Procreation rate 24
Cannibalism rate 85%
Survival rate 71%

measurement clocks, which are modeled as a function of the initial
offset and clock drift.

Table 3 lists the parameters that shape the characterization of the
clock errors.

The aim of the BWO algorithm is to obtain the combined reduction
of both errors in order to achieve the highest levels of accuracy for
the TOA and TDOA architectures. Table 4 shows the hyperparameters
assumed by the BWO metaheuristic method that allows obtaining an
optimized architecture in the proposed scenario.

6.3. Comparative among localization architectures for UAVs localization

The scenario described in Section 6.1 entails a challenge for the
sensors’ location of each architecture analyzed. Since the localization
accuracy is significantly influenced by avoiding the NLOS paths caused
by the surrounding buildings, the minimum number of sensors to
calculate the target location in each architecture is insufficient to attain
an acceptable error bound for the navigation of UAVs in the entire
coverage area.

Consequently, a previous study has been conducted to determine
the minimum number of sensors to obtain acceptable results. This study
revealed that the deployment of 6 sensors enabled the definition of a
balanced sensor arrangement to meet the localization objectives of this
paper.

In addition, we perform node location optimizations for 8-sensor
and 10-sensor configurations to validate the results obtained with 6
sensors and analyze the influence of the variation of the number of
sensors in each architecture.

Therefore, we present in Table 5 the localization results obtained
for the six optimizations conducted in this paper (i.e., TOA, and TDOA
localization architectures for 6-sensor, 8-sensor, and 10-sensor con-
figurations) following the BWO optimization procedure described in
Section 5.

As can be seen in Table 5, 10-sensor configurations attain a mean
reduction of 26.79% and of 12.35% of the achievable accuracy with
regard to 6-sensor and 8-sensor arrangements respectively. Therefore,
although 6-sensor configurations can cover the entire TLE region an-
alyzed (i.e., the UAV navigation area) with an error bound contained
in 6.25 and 10.04 m in the TDOA and TOA architectures respectively,
the consideration of four more sensors significantly improves the local-
ization results without considerably increasing the localization system
complexity. This is explained by the consideration of a higher number
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Fig. 3. Comparison of the resulting optimized TOA and TDOA architectures for
configurations of 6, 8 and 10 sensors.

Table 5
Localization uncertainty in meters for the TOA and TDOA architectures in the analysis
scenario.

Sensors TDOA TOA

6 8 10 6 8 10

Min 2.92 2.46 2.21 5.86 5.14 4.57
Mean 3.88 3.26 2.75 6.87 5.77 5.19
Median 3.80 3.21 2.72 6.82 5.73 5.17
Max 6.25 5.39 3.95 10.04 7.60 6.76

of time measurements that can be optimally combined to reduce the
error bounds as introduced in [26].

The difference among the results obtained of each configuration
analyzed is also depicted in Fig. 3.

Fig. 3 shows that not only a reduction of the localization error is
achieved through the TDOA architecture as shown in Table 5, but also
a lower error variance is reached. Thus, TDOA localization provides a
more robust and stable localization system for the navigation of UAVs
in urban environments.

The superior results of the TDOA architecture are due to the un-
necessary synchronization of the TS clock with the architecture sensors
clocks in this architecture. Since the TDOA architecture requires the
consideration of two signal paths to collect a time measurement and
this fact induces a higher noise error than in the TOA architecture, the
only reason for the TDOA to attain lower error bounds is the reduction
of the clock errors.

TDOA architecture also requires two different measurement pro-
cesses to produce a TDOA time measurement which also produces
higher clock uncertainties than in the TOA architecture during the
measurement process.

Nevertheless, since the synchronization of the TS clock is required in
the TOA architecture and this supposes the only factor that can increase
the localization error of the TDOA architecture, we can conclude that
the synchronization among the TS and the architecture sensors is the
principal contributor to the global error of the synchronous time-based
localization for UAVs navigation.

This result is in order with previous studies for ground naviga-
tion [16] and makes the TDOA architecture stand for deep urban
localization.

In addition, the performance of the TOA and TDOA architectures
has been compared in a common framework where a BWO process
has been performed to optimize the architecture sensors’ location. We
present in Fig. 4 the final location of the architecture sensors deployed
for the final 10-sensor arrangement of the TOA and TDOA architectures.
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Fig. 4. Reduction of the RMSE obtained by the TDOA architecture with respect to the
TOA architecture in 10-sensor configurations. The node location of the TDOA sensors
is depicted in yellow while the TOA sensors are represented in green.

Fig. 5. Cumulative Distribution Function depicting the difference in errors between
the TDOA and TOA for the optimized arrangements of 10-sensors.

Furthermore, Fig. 4 shows the lower error bound of the TDOA
architecture with regard to the TOA architecture in each TLE point
analyzed (i.e., the discretized points representative of the potential UAV
navigation area) during the BWO performed. As depicted, the TDOA
architecture outperforms the TOA architecture in every analyzed point
reducing the error bounds between 1.20 m and 3.35 m in the UAVs
navigation area covered by the LPSs deployed.

Fig. 5 introduces the Cumulative Distribution Function (CDF), which
illustrates the distribution of the errors calculated in Fig. 4. As can be
seen, the TDOA architecture mitigates errors between 1.25 and 2.50 m
in comparison to TOA in approximately 60% of the analyzed points,
while also exhibiting error reduction between 2.50 and 3.25 m for the
remaining localizations.

These results are in order with the principles of each architecture
that we introduced in Section 3 and demonstrate the coherence of
the results obtained in the BWO performed for each architecture.
Furthermore, the optimized sensor arrangements attained allow a direct
and fair comparison of the localization results of each architecture since
the architectures’ dispositions are near-optimal showing the maximal
performance achievable by each architecture in the scenario analyzed.
This is also justified for the similar locations of the sensors of the
TOA and TDOA architecture which have found optimal positions to
reduce the NLOS links of the positioning signal in the entire TLE region
analyzed.

For this reason, the relevance of the results obtained in our analysis
clearly determines the definition of the TDOA architecture for the
achievement of more robust, accurate, and stable localization results in
synchronous time-based localization methodologies deployed in urban
environments.

Finally, we present in Fig. 6 the error distribution in the entire
TLE analyzed for the proposed synchronous TDOA architecture with
the optimized 10-sensor configuration proposed in this paper for UAVs
navigation in urban environments.
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Fig. 6. RMSE result for each TLE point obtained by the optimized 10-sensor TDOA
architecture.

The findings depicted in Fig. 6 enhance the results obtained by
recent research in UAV localization, which demonstrate an average
error of 5 m attributed to various factors, including technology, the
utilized algorithm, and suboptimal node placement [35,69].

Hence, our analysis underscores the critical role of these results in
shaping the definition of the TDOA architecture for achieving more
robust, accurate, and stable localization in synchronous time-based
methodologies deployed in urban environments. These insights, as
demonstrated in Fig. 6, represent a significant advancement in the field
of UAV localization research.

7. Conclusions

UAVs applications are growing over the last few years due to
their capacity of automating complex tasks without human interven-
tion. Their applications represent a wide variety of fields such as
surveillance, structural inspection, or delivery.

However, the capacity of the UAVs to address complex precision
tasks is dependent of the accuracy achieved by their navigation and
localization subsystems. This is a remarkable challenge in urban envi-
ronments, where GNSS localization signals are considerably degraded
by NLOS links or multipath effects.

Therefore, we present in this paper, for the first time to the authors’
knowledge, the proposal of a comparison between time-based local-
ization architectures to attain competitive localization results for UAV
navigation in these challenging environments.

The comparison is made after a black widow optimization procedure
to optimally locate the sensor nodes of the two architectures, determin-
ing the error bounds of each architecture through a Cramér–Rao Bound
characterization considering noise and clock errors.

This allows the determination of the maximal performance of each
architecture in the application scenario, which represents a deep urban
environment. The results obtained prove the preeminence of the TDOA
architecture, thus conforming a more robust, accurate and stable lo-
calization system, which contributes to the pursued implementation of
UAVs in urban environments.

This relevant conclusion can enhance future research works on this
topic by comparing the TDOA architecture with asynchronous position-
ing methodologies, by improving the results obtained by addressing
the discontinuities in the fitness calculations in the boundaries of the
scenarios analyzed, or by characterizing other positioning error sources
such as multipath.
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