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ABSTRACT
This paper investigates the relationship between firms’ transition 
towards upstream-R&D activities and the availability of R&D 
employees with PhD training. Doctoral trained employees have 
distinct motivations for research: some have stronger preferences 
for intellectual freedom and autonomy, while others reveal greater 
aspirations for targeted research and opportunities for develop
ment of new products and processes. These contrasting profiles 
among PhD trained employees lead to ambiguous predictions 
about whether a greater presence of employees with a doctoral 
training enhances the capacity of firms to initiate upstream- 
oriented R&D. We examine this question by studying a large sample 
of Spanish manufacturing firms which are active in development 
activities, and investigate the effect of PhD trained R&D employees 
on the propensity of firms to initiate upstream-oriented R&D. Our 
results show that a higher proportion of PhDs in R&D functions has 
a positive and significant influence on the firm’s initiation an 
upstream-oriented R&D strategy.
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1. Introduction

The management and economics of innovation literatures argue for the importance of 
the knowledge creation process as a fundamental driver of firms’ innovation performance 
(Nelson and Winter 1982; Nonaka 1994; Teece, Pisano, and Shuen 1997). More recently, 
investigations at the micro level have highlighted the role of individuals in the generation 
of ideas and knowledge in organisations (Felin and Foss 2005; Groysberg, Lee, and Nanda 
2008). Interest has increased among innovation scholars in whether knowledge workers 
and, especially, highly trained employees in the research and development (R&D) work
force, help to explain firm innovation and technological advancement (Gittelman and 
Kogut 2003; Subramanian, Lim, and Soh 2013; Grigoriou and Rothaermel 2014).

The resource-based view of the firm and the human capital perspective propose that 
highly trained R&D employees, such as those with doctoral research training, are valu
able firm resources. Their advanced education and research training provide firms with 
inimitable tacit knowledge, which can be a source of competitive advantage (Deeds, 
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DeCarolis, and Coombs 2000; Subramaniam and Youndt 2005; Luo, Koput, and Powell 
2009). While analyses of the role of highly trained employees in firms’ innovation 
activities provide evidence of a link between them and firms’ innovation performance 
(Herrmann and Peine 2011; Hess and Rothaermel 2012; Tzabbar, Aharonson, and 
Amburgey 2013), few studies examine whether PhD trained employees significantly 
contribute to change the firm’s R&D orientation in terms of resources devoted to 
upstream R&D activities. This lack of evidence is in sharp contrast with abundant 
research showing that the potential benefits of firms’ upstream-oriented R&D include 
boosting new product development (Añón Higón 2016) and productivity growth 
(Griliches 1986; Czarnitzki and Thowarth 2012), facilitating absorption of external 
knowledge (Rosenberg 1990) and promoting cooperation with new partners based on 
better ability to signal scientific competences (Cockburn and Henderson 1998; Cassiman, 
Veugelers, and Arts 2018). Bringing together these complementary streams of research 
motivates our research question: to what extent does the availability of R&D employees 
with PhD training contribute to firms’ initiation of upstream-oriented R&D?

This research question emerges from on-going, open debate in the innovation manage
ment and economics of science literatures, revolving around the degree of heterogeneity in 
the ‘taste for science’ among PhD trained employees and its effect on firms’ innovation 
performance. Taste for science refers to preferences for upstream R&D, freedom in choosing 
research projects, publishing opportunities and interaction with the scientific community 
(Stern 2004; Roach and Sauermann 2010). On the one hand, this debate highlights that PhD 
trained individuals working in academy exhibit very different profiles in terms of upstream 
research approaches compared to similar PhD trained R&D employees working in industry. 
However, there is a significant disagreement about whether such differences are mainly due 
to industrial PhD scientists being willing to sacrifice their taste for science in exchange for 
better wages and employment conditions (Stern 2004), or whether they are a consequence of 
industrial PhD scientists self-selecting into development-downstream oriented jobs which 
better match their personal preferences (Roach and Sauermann 2010; Sauermann and Roach 
2014) – or a combination of these two arguments.

On the other hand, a complementary position in this debate argues that differences in 
research profiles among PhD scientists are often more striking within academe or 
industry settings, rather than between them (Sauermann and Stephan 2013; Kaiser et 
al. 2018). For instance, a significant proportion of PhD scientists in industry reveal strong 
preferences for pursuing autonomous research agendas and a desire to tackle intellectual 
challenges in their research activities, contrasting with other industry PhD scientists 
whose preferences are more oriented to secure salary, career advancement or contribu
tions to society through downstream R&D activities (Sauermann and Cohen 2010).

This open debate constitutes the background for our research question, since it 
suggests contrasting expectations on whether firms that have R&D employees with 
PhD training might be more likely to initiate an R&D strategy towards upstream- 
oriented R&D activities, or instead, might reinforce their orientation towards down
stream R&D activities. We examine these contrasting perspectives on a large sample of 
Spanish manufacturing and R&D active firms which conduct downstream-development 
activities. We employ longitudinal data that covers the period 2006 to 2012 and examine 
the factors that contribute to adoption of a particular R&D strategy, that is, the decision 
to initiate upstream-oriented R&D.
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We assess firms’ R&D strategies from an input-based perspective which explicitly 
captures both upstream-related expenditure (i.e. basic and applied research) and down
stream-related expenditure (i.e. development activities). Since basic and applied research 
are associated to the production and acquisition of new knowledge, we regard firms that 
conduct these research activities as engaging in upstream-oriented R&D. In contrast, 
since development is associated to exploiting available knowledge, we consider develop
ment and downstream-oriented R&D as interchangeable concepts. This distinction 
between upstream (basic/applied R&D) and downstream (development R&D) has been 
used frequently – see, for example, (Arora, Belenzon, and Patacconi 2018; Barge-Gil and 
López 2014, 2015; D'Este, Marzucchi and Rentocchini 2018; Herrera and Nieto 2015; 
OECD, 2005; Sauermann and Cohen 2010). Compared to output-based approaches, 
which consider inventions and patents, for example, and input-based approaches that 
do not differentiate between upstream and downstream R&D expenditures, we consider 
that the approach we propose is appropriate to examine the firm’s resource allocation 
choices in relation to its research and innovation orientation. Finally, our analysis 
includes all manufacturing industries rather than examining highly R&D intensive 
industries or the biotech sector, which is the focus of most work on the relationship 
between highly trained employees in R&D functions and the type of R&D strategy.

Our results suggest that, first, there is a high degree of heterogeneity in the profiles of 
firms with regards to employment of PhD trained individuals and the implementation of 
upstream-oriented R&D. In fact, a significant proportion of firms that engage in 
upstream R&D, has no doctoral trained employees, while there are also many firms 
that do not conduct upstream R&D despite having PhD individuals among their R&D 
staff. Second, we find that organisations that have a higher proportion of R&D employees 
with a doctoral training are more likely to shift towards upstream-oriented R&D 
strategies.

These results are robust to alternative explanatory factors and we address the problem 
of reverse causality by adopting an Instrumental Variables (IV) approach. We build an 
indicator of the exogenous supply of PhD trained R&D employees for each firm, using 
data on doctoral graduates from each university and scientific area, and the correspon
dence matrix of scientific areas and industries tested in Abramovsky, Harrison, and 
Simpson (2007). We construct a second instrumental variable based on the number of 
PhD graduates working in the industry of each of the firms.

This paper contributes to the debate on the benefits of PhD trained employees for 
firms’ R&D activities, focusing on whether they influence the capacity of firms to initiate 
a strategy towards upstream R&D activities. We provide new evidence on whether and to 
what extent researchers with a PhD degree, shape firms’ R&D activities and facilitate a 
change in their orientation towards upstream R&D. Moreover, our focus on the educa
tion/training of the firm’s R&D employees, highlighting the proportion of R&D employ
ees with a doctoral training and emphasising the composition of the R&D employees skill 
base, constitutes a novel approach that move beyond analysis restricted to examining the 
impact of a specific type of scientist (e.g., star scientist) or limited to the scale of R&D 
resources (e.g., number of R&D employees). Finally, we contend that the positive 
influence towards upstream-oriented R&D of a higher share of PhD degree holders 
among the firm’s R&D staff, is not restricted only to certain industries, but is pervasive 
among R&D-active firms. That is, the influence of researchers with a doctoral training on 
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the transition to upstream R&D is pervasive among all downstream-oriented R&D firms, 
regardless of industry or sector. These results have important implications for both R&D 
management and innovation policy.

2. Conceptual background

2.1. The transition from downstream to upstream-oriented R&D

There is broad agreement in the literature that upstream R&D is a fundamental compo
nent of firms’ R&D strategies to enhance opportunities for knowledge recombination and 
exploration (March 1991; Levinthal and March 1993; Bercovitz and Feldman 2008; 
Walrave, van Oorschot, and Romme 2015; Swift 2016). Exploratory search involves 
experimentation aimed at identifying novel goals, in a deliberate effort to move away 
from current organisational routines and knowledge bases (March 1991; Levinthal and 
March 1993; Katila and Ahuja 2002). While upstream R&D entails high risks and 
uncertainties (compared to downstream R&D), it is expected to contribute to the 
achievement of sustainable competitive advantage by building the technological capabil
ities required to launch radically new products and enhance new product development 
(Mudambi and Swift 2014).

Despite the potential benefits of adopting an upstream-oriented R&D strategy, initi
ating basic and applied research for the first time involves at least two challenges. First, 
the firm needs to move beyond existing R&D routines and integrate new research 
practices. Since many firms lack connections to the science-base or a favourable organi
sational learning environment, they can find it hard to embark on upstream R&D 
activities (García-Quevedo, Mas-Verdu, and Polo-Otero 2012; Tzabbar 2009; Lowe and 
Veloso 2015). Second, the firm faces a higher risk of failure, since the fixed-costs might 
not be fully recovered and outcomes are uncertain (Garcia, Calantone, and Levine 2003; 
D’Este, Amara, and Olmos-Peñuela 2016; Kim and Kim 2015). Therefore, adopting an 
upstream-oriented R&D strategy can represent a difficult transition.

Given these challenges, R&D active firms tend to prioritise downstream development 
approaches in order to increase the short term returns from R&D activity, thus favouring 
exploitative research at the expense of exploratory one (Swift 2016). Also, upstream R&D 
can be particularly problematic for firms in non-R&D intensive industries (Máñez et al., 
2015), which tend to engage only in sporadic formal research activity or to rely on 
external services provided by specialised R&D partners (Ahlin, Andersson, and Schubert 
2013). This limits the capacity to build an internal knowledge base, which is required to 
support product and process upgrading and, potentially, can threaten the firm’s long run 
survival.

Finally, it is worth pointing out that an important issue in studies of the influence of 
PhD trained employees on firms’ innovation performance and R&D strategies is reverse 
causality (Lacetera, Cockburn, and Henderson 2004). In work on strategic management, 
reverse causality occurs because firms’ decisions are not random and involve the mobi
lisation of resources, which can trigger other decision processes. In the case analysed 
here, the presence of PhD trained employees could lead to changes to the firm’s R&D 
orientation, but, also, a change in R&D orientation could lead to the decision to hire 
individuals with PhD degrees. Several studies analyse the first direction of causality using 
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an output approach (Sapsalis, van Pottelsberghe de la Potterie, and Navon 2006; 
Subramanian, Lim, and Soh 2013) or examine the impact of corporate scientists on the 
creation of R&D alliances (Stuart, Ozdemir, and Ding 2007; Luo, Koput, and Powell 
2009; Spithoven and Teirlinck 2010), but do not explore their impact on a more extended 
set of the firm’s strategic decisions. Our work contributes to this line of research by 
focusing on the influence of PhD trained employees on the initiation of upstream- 
oriented R&D; our empirical strategies were selected on the basis of this objective.

2.2. PhD trained R&D employees and initiating upstream-oriented R&D activities

In this study, we extend the discussion on the potential roles of highly trained employees, 
by focusing on whether the adoption of an upstream-oriented R&D strategy is influenced 
by the availability and proportion of PhD trained employees in the firm’s R&D functions. 
We examine whether having a higher proportion of R&D employees with a doctoral 
degree is likely to favour the adoption of an upstream-oriented research approach in 
firms with no previous similar orientation or strategies. Drawing on previous contribu
tions to the economics of science and innovation management literatures, we acknowl
edge two contrasting perspectives on the examined relationship.

One perspective contends that firms with PhD trained employees among the firm’s 
R&D staff are more likely to initiate upstream R&D activities. This contention draws on 
the following three reasons. First, firms with a large share of R&D employees with a 
doctoral degree might be more sensitive to potential benefits of upstream R&D. The role 
of PhD trained R&D employees in firms might be particularly relevant during the early 
stages of a research and innovation process, as their training provides them with the 
knowledge and skills needed to undertake exploratory research activities (Herrera and 
Nieto 2015). Having experienced PhD training allows a more profound understanding of 
scientific knowledge and cutting-edge scientific research methods and, as a result, these 
researchers can entail for firms an advantage to accurately assess implications of 
upstream R&D activities to business purposes (Zellner 2003). For example, Ding 
(2011) shows that the presence of PhDs in biotech firms is related strongly to these 
firms’ adoption of an open science policy, which encourages basic scientific research. We 
argue, similarly, that a higher share of PhD trained employees in the firm’s R&D function 
is likely to increase the firm’s appreciation of the specificities and challenges of explora
tory research as well as its potential opportunities and benefits.

Second, a firm’s focus on PhD trained R&D employees might be linked to the 
influence that these human resources might exert on the behaviour and perceptions of 
other employees within R&D activities. The influence of PhD trained employees could be 
a result of their academic reputation and their productivity as scientists (McMillan and 
Thomas 2005; Rao, Chandy, and Prabhu 2008; Cockburn and Henderson 1998; 
Rothaermel and Hess 2007; Hess and Rothaermel 2012) and/or a consequence of being 
responsible for a large proportion of organisational resources for R&D activities (Kehoe 
and Tzabbar 2015). Studies show that scientists may stimulate more favourable percep
tions on the use of scientific knowledge and research activities among peers (McMillan 
and Thomas 2005; Ding 2011; Rao, Chandy, and Prabhu 2008), as well as to increase the 
scientific productivity of their work team (Furukawa and Goto 2006). Consequently, 
studies recommend the involvement and interaction of employees with a scientific 
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training with other R&D employees in the firm in order to encourage the use of upstream 
research and improve firms’ R&D performance (Almeida, Hohberger, and Parada 2011; 
Herrmann and Peine 2011).

Third, a high proportion of PhDs in the firm’s R&D function is likely to encourage 
risk-taking and a pro-active learning culture. An organisational climate that favours 
learning from both failed and successful innovation is particularly important in the 
context of upstream R&D activities. For instance, a psychologically safe environment 
for reporting failure, that is, one where R&D employees are not blamed, but rather are 
encouraged to report and address non-obvious errors and mistakes, is conducive to a 
climate that promotes experimentation and learning (Edmondson 2011). Firms with 
availability of R&D employees with doctoral training are likely to be particularly recep
tive to organisational environments that provide opportunities for learning and encou
rage exploration and experimentation.

Based on the above arguments, suggesting a positive relationship between the avail
ability of PhD trained employees and initiation of upstream-oriented R&D activities, we 
hypothesise that: 

H1: A higher proportion of PhD trained employees among R&D staff increases the like
lihood that a downstream-oriented firm will initiate upstream-oriented R&D activities.

The contrasting perspective builds on the notion that the presence of PhD trained 
R&D employees does not necessarily result in the initiation of upstream-oriented R&D. 
Three claims support this perspective. First, academic and industrial science respond to 
distinct institutional logics, as pointed out in research from the economics of science 
(Dasgupta and David 1994; Gans and Stern 2010). Firms prioritise the appropriation of 
the financial returns from knowledge generation processes, which leads them to limit 
information disclosure and sharing research results with the broader scientific commu
nity. According to this perspective, industrial R&D settings are expected to provide a 
hostile environment for PhD trained individuals willing to disseminate research findings 
and participate in open science regimes. Therefore, this institutional context may sig
nificantly reduce expectations of a transition towards upstream-oriented R&D as a result 
of employing PhD trained individuals.

Second, firms may recruit PhD trained individuals to strengthen an established 
orientation towards development and downstream activities. For instance, recruitment 
of highly qualified researchers may help firms to more effectively adopt and implement 
the results of research conducted elsewhere, which might improve the firm’s current 
innovation activity, but may not result in a shift in its innovation strategy (Herrera 2020). 
This might be a particularly prevalent situation in a context in which there is evidence of 
a decline of science in corporate R&D, where firms use science as a relevant input to their 
innovation strategies but are increasingly less favourable to invest in internal scientific 
capabilities (Arora, Belenzon, and Patacconi 2018).

Third, the economics of science literature has pointed out that PhD trained indivi
duals have significantly different preferences with regards both to their favoured type of 
research jobs and the type of benefits expected from them (Roach and Sauermann 2010). 
In other words, PhDs might have different preferences for how to capitalise on their PhD 
training and display a high degree of heterogeneity in their taste for science. When 
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comparing PhD scientists’ preferences for jobs in academy and industry, those willing to 
work in industry tend to have a lower inclination for publishing and a greater preference 
for access to state-of-art technology and equipments, as well as for conducting develop
ment activities (Roach and Sauermann 2010; Sauermann and Roach 2014). The results of 
these studies substantiate the claim that PhD scientists may self-select into industrial 
R&D jobs in order to meet their personal preferences for intellectual challenges asso
ciated to downstream research activities. In other words, in an organisational environ
ment focused mainly on exploitation, the presence of PhD trained employees can 
reinforce already existing downstream research activities, without promoting a shift 
towards more upstream explorative research (Herrera and Nieto 2015). For instance, a 
high proportion of PhD degree holders in the firm can increase the development of more 
technologically advanced products and achieve reduced time to commercialisation of 
close-to-the-market working prototypes (Deeds, DeCarolis, and Coombs 2000; Tegarden 
et al. 2012). In short, in this perspective, employing researchers with a PhD training does 
not necessarily lead to the initiation of upstream-oriented R&D; instead, it may reinforce 
a strategic orientation towards downstream-oriented R&D activities.

In the light of this discussion, we hypothesise that: 

H2: A higher proportion of PhD trained employees among R&D staff increases the like
lihood that a downstream-oriented firm will reinforce its focus on downstream R&D 
activities.

Finally, in order to examine these competing hypotheses, we take into account 
potential contingencies associated to sectoral differences. Most empirical work on the 
effect of highly trained employees on firms’ innovation strategies and performance 
focuses on science-driven and high-tech industries such as biotechnology. This strand 
of work suggests that the employment of researchers is linked to the capacity to search 
beyond the firm’s existing technological boundaries (Al-Laham, Tzabbar, and Amburgey 
2011). Thus, it can be expected that science-driven and high-tech industries will have a 
higher level of demand for these human resources, making them a suitable case for the 
positive impact of PhD trained employees on the shift to firms’ upstream R&D strategies.

However, there are reasons to contend that the role of PhD trained individuals is 
relevant, also, for low-tech firms’ upstream R&D strategies. Several studies show that the 
positive impact of scientists on firms’ R&D strategies is not confined to high-tech 
industries, but applies also to medium and low-tech firms’ research and innovation 
strategies (Kim and Marschke 2005; Spithoven and Teirlinck 2010; Teirlinck and 
Spithoven 2013; Kaiser et al. 2018). Due to their specialised knowledge and skills, the 
presence of PhD trained individuals might be especially important for firms with fewer 
knowledge recombination capabilities (Al-Laham, Tzabbar, and Amburgey 2011), young 
firms that lack the resources required to participate in sophisticated R&D alliances 
(Tzabbar, Aharonson, and Amburgey 2013) and firms that need to demonstrate scientific 
and technological competence (Rao, Chandy, and Prabhu 2008). Therefore, we are 
interested in whether the influence on the firm’s initiation of an upstream-oriented 
R&D strategy, as a consequence of employing PhD trained employees in the firm’s 
R&D function, is restricted to a narrow range of industries (e.g., high-tech industries) 
or is pervasive among firms regardless of industry.
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3. Context, data and methodology

3.1. Context

Spain is an interesting case to study since its low levels of firm R&D activity and weak 
exploitation of public research from industry pose important challenges on its PhD 
labour market (Herrera and Nieto 2016; Martinez, Cruz-Castro, and Sanz-Menendez 
2016). Compared to other European countries, Spain has limited PhD production in 
Science and Engineering (S&E) and low PhD employment in firms (Auriol, Misu, and 
Freeman 2013). According to the Spanish Human Resources in Science and Technology 
(HRST) survey, in 2009, around 15% of the PhD holders surveyed were employed in the 
business sector (Herrera and Nieto 2016). These figures contrast with those for other 
countries, such as Denmark, Belgium and the US, where at least one in three employed 
PhD researchers works in industry (Auriol, Misu, and Freeman 2013).

Studies of the Spanish PhD labour market reveal that PhD holders traditionally are 
employed in the public sector (Cruz-Castro and Sanz-Menendez 2005; Herrera and Nieto 
2016). However, recently, the private sector has emerged as a potential source of employ
ment. Demand for PhD holders in the private sector is related positively to firm size and 
firm R&D efforts, which are linked to firms in the medium-high and high technology 
sectors (Garcia-Quevedo et al., 2012; Herrera and Nieto 2015). The study by Herrera and 
Nieto (2016) reveals that the chemical and food industries and manufacture of electrical, 
electronic and optical equipment usually present the highest rates of employment of PhD 
holders. Other studies of Spanish PhD careers suggest that PhD holders’ motivations to 
work in the private sector are not related to economic factors. The attractiveness of 
professional experience in the private sector and the absence of stable employment in the 
public sector are among the most important drivers (Cruz-Castro and Sanz-Menéndez, 
2005). With respect to PhD holders’ research orientation, Herrera and Nieto (2016) show 
that PhD holders who engaged in technological development activities during their PhD 
training period have a higher likelihood of finding a job in the private sector. Similarly, Di 
Paolo and Mañe (2016) show that PhD holders feel that their taste for science is satisfied 
by a public sector job. Given the comparatively lower levels of R&D intensity of Spanish 
firms and the differing expectations about the role of PhD trained employees in firm 
competitiveness, the Spanish context is a good case to examine whether R&D employees 
with a doctoral degree contribute to increasing the likelihood that firms will initiate 
upstream R&D activities.

3.2. Data

The empirical analysis employs information from the Spanish Technological Innovation 
Panel (PITEC). This statistical instrument was developed by the Spanish Institute of 
Statistics (INE) (with advice from a group of university researchers), to study the 
evolution in Spanish firms’ innovation activities over time. Access to the database for 
researchers is facilitated by an official web site.1 PITEC information is based on the 
Spanish Innovation Survey and is structured similar to the Community Innovation 

1https://icono.fecyt.es/pitec. For confidentiality reasons, PITEC anonymises the data using the procedure described on the 
web page.
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Survey (CIS). CIS-type surveys are used widely to analyse innovation-related research 
questions in economics and management (Cassiman and Veugelers 2002; Laursen and 
Salter 2006; Mairesse and Mohnen 2010).

However, PITEC provides important added value compared to standard CIS surveys: it 
incorporates data from the Spanish R&D survey, which makes it appropriate for the present 
study for three reasons. First, it provides annual information on the proportion of employees 
in firms’ R&D functions who have a doctoral degree. Second, it provides a breakdown of firms’ 
investments in basic, applied and development R&D every year. Third, PITEC is a panel data 
survey which allows us to observe changes in firms’ R&D strategies over time – which would 
not be feasible using cross-sectional data. We use data for the period 2006–2012 since, prior to 
2006, R&D personnel numbers were not defined in terms of full-time equivalent functions. 
Finally, we restrict our sample to: (i) manufacturing firms – services R&D tends to be subject 
to different rules compared to manufacturing (Cainelli, Evangelista, and Savona 2006); and (ii) 
firms that engage in formal R&D activities (i.e., those reporting presence of a formal R&D 
function). For these firms, we have information on R&D employment (specifically, employees 
with a PhD degree) and upstream and downstream R&D activity.

From Table 1 we can see the pervasiveness of firms that engage in upstream R&D, but 
have no PhD degree holders: 51% of firm-year observations correspond to firms engaged 
in upstream R&D without employing doctoral graduates in their R&D departments, 
meaning that 78% of ‘upstream R&D active firms’ do not have PhD degree holders. In 
addition, 20% of firms whose R&D staff include some PhD trained employee, do not 
engage in upstream R&D. Therefore, having doctoral graduates in the R&D function is 
neither a sufficient nor a necessary condition for upstream-oriented R&D activities.

3.3. Variables and measures

3.3.1. Dependent variable
In the main analysis, our dependent variable is the initiation of upstream-oriented R&D 
(Start_upstream). We construct a dummy variable that takes the value 1 if the firm 
engaged in upstream-oriented R&D in t + 1 (but not in a given period t) and zero 
otherwise.2 This restricts our sample to: (i) those firms observed over at least two 
consecutive periods; and (ii) firms not involved in upstream-oriented R&D in t,3 result
ing in a final sample of 5,815 observations.

Table 1. Upstream-oriented R&D and PhD degree holders (n = 17,699).
% PhD degree holders among R&D employees

None > zero Total

Firms Conducting R&D No Upstream 5,426 (30.7%) 666 (3.8%) 6,092 (34.4%)
Upstream doers 9,025 (50.9%) 2,582 (14.6%) 11,607 (65.6%)
Total 14,451 (81.7%) 3,248 (18.3%) 17,699 (100%)

2The results (available upon request) are robust to a more restrictive definition of ‘upstream starters’, including that 
eligible firms engage in sustained upstream-oriented R&D for 2 years once having embarked on upstream research or 
requesting that eligible firms had not been engaged in upstream-oriented R&D in the preceding 2 years to the decision 
to move beyond downstream oriented R&D.

3We provide an additional analysis of the relationship between the proportion of R&D employees with a doctoral degree 
and the degree of orientation to upstream-oriented R&D, for the whole sample of R&D performing firms in section 4.4.
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PITEC data allow us to quantify firms’ engagement in different types of R&D, 
consistent with established innovation activity measures (OECD, Eurostat 2005), differ
entiating between investment in basic, applied and development research. PITEC guide
lines define basic research as related to experimental or theoretical work undertaken to 
obtain new knowledge about phenomena or observable facts, without envisaging any 
particular application, and applied research as original research undertaken to obtain 
new knowledge aimed at a particular objective. According to these definitions, our 
measure of upstream-oriented R&D is built as the sum of firms’ basic and applied 
research expenditure, which captures the production and adoption of new knowledge.

3.3.2. Explanatory and control variables
Our explanatory variable measures the proportion of the firm’s R&D staff with a doctoral 
degree (Lsphd), defined as the number of individuals with a PhD degree relative to the 
total number of R&D employees. We log transform this variable due to the skewness of 
its distribution and to facilitate interpretation of the estimated coefficients as semi- 
elasticities.4

Since there may be differences in the characteristics of the firms that decide to embark 
on upstream-oriented R&D compared to those that do not, we consider a complete set of 
covariates based on observables from the survey. Were these variables not included in the 
model, they potentially could be confounding factors, which could lead to biased estima
tion of the role played by PhD trained R&D employees. The covariates included: firm size 
(Lsize), measured as the logarithm of the firm’s employee count; firm R&D intensity, 
which corresponds to development intensity since we use only firms not performing 
upstream R&D activities in t (D_intensity) and it is defined as the logarithm of the 
firm’s development expenditure per employee5; the size of the development team 
(Lsizeteam), based on a full time equivalent count of employees; the percentage of sales 
from new to the market products (Newmer); exports (Export), which is a dummy variable 
that takes the value 1 if the firm sells its products abroad and zero otherwise; parent and 
joint venture, which are dummy variables that take the value 1 if the firm is the parent in a 
group or is a joint venture, and zero otherwise; location (Park), a dummy variable that 
takes the value 1 if the firm is located in a science and technology park and zero otherwise; 
firm age (Lage), which we define as the log of the number of years since its birth; and 
appropriability (Appropriability), defined following Czarnitzky et al. (2007) as the industry 
average response to the question: ‘how important are your competitors as a source of 
information for the innovation process’. In this last case, responses are ranked from 1 
(high importance) to 4 (no importance). The underlying idea is that appropriability is low 
in those industries whose firms consider information from competitors to be an important 
source of information for innovation and is high otherwise. We also include two indicators 
for innovation funding: pubfun, a dummy variable that takes the value 1 if the firm 
receives public funding and zero otherwise; and obstacle_funds, which is a dummy variable 

4In the main analysis, we replace the log of zero with zeros. We have conducted several robustness checks (available upon 
request) to analyse if results were sensitive to this choice. First, we use the transformation log(x + 1). Second, we use the 
original variable without logs. Third, we remove firms with just one R&D employee. Results from each robustness check 
are very similar to those presented here.

5Development activities are defined by PITEC as systematic work, based on existing knowledge, derived from research or 
practical experience, which is directed towards the production of new materials, products or devices, or implementa
tion of new processes, systems and services to improve existing materials, products or devices.
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that takes the value 1 if the firm reports lack of internal or external funds as an obstacle to 
innovation – ranked as moderately or very important. Finally, we include year and 
industry dummies in line with the OECD (2011) technological intensity classification. 
Appendix 1 Table A1a presents the variables definitions.

Table 2 presents the descriptive statistics for all the variables in the regressions. 
Appendix 1 Table A1b presents the correlation matrix including both the dependent 
and independent variables.

Table 3 shows that, although the most likely scenario is no transition towards 
upstream-oriented R&D (74.3% of firm-year observations), employing PhD trained 
individuals in the R&D function is not a necessary condition for initiating upstream 
R&D: 14.6% of firm-year observations embarked on upstream R&D without employing 
PhD degree holders. Moreover, among firms with PhD employees in their R&D func
tions that were not engaged in upstream R&D at time t, 80% (515 out of 646) were also 
not engaged in such research at time t + 1.

It should be highlighted (as shown in Table 3) that only 646 firm-year observations 
(11.1% of firms without upstream-oriented R&D in t) shows at least one PhD. Figure 1 
shows the distribution of the percentage of PhDs in the R&D function for these 646 
observations.

3.3.3. Instrumental variables
There are several reasons why endogeneity may be a problem in this study (Bascle 
2008). First, attenuation bias, stemming from measurement of the PhD variable with 
error, would mean that the estimated coefficient is lower than the true coefficient. 

Table 2. Descriptive statistics (n = 5,815).
Mean Sd Min Max

Start_upstream 0.17 0.37 0.00 1.00
SPhD 3.07 12.07 0.00 100.00
Lsize 4.14 1.28 0.00 9.23
D_intensity 7.91 1.30 3.01 12.92
Export 0.87 0.34 0.00 1.00
Lsizeteam 1.17 1.03 0.00 5.95
Parent 0.07 0.25 0.00 1.00
Joint_venture 0.01 0.10 0.00 1.00
Newmer 12.70 24.74 0.00 100.00
Obstacle_funds 0.74 0.44 0.00 1.00
Appropriability 2.79 0.16 1.75 4.00
Park 0.03 0.17 0.00 1.00
Lage 3.11 0.66 0.00 4.71
Pubfun 0.49 0.50 0.00 1.00

Table 3. Transitions to upstream-oriented R&D and PhD degree holders (n = 5,815).
No upstream in t+1 Upstream doers in t+1

% of firms without PhD % of firms with PhD % of firms without PhD % of firms with PhD

No upstream in t 4318 (74.3%) 515 (8.9%) 851 (14.6%) 131 (2.3%)
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Second, although we control for a wide range of covariates, not all the relevant 
confounding factors may be observable.6 Third, even were they observable, there 
would remain the possibility of reverse causality. Since we are interested in the line 
of causality from employment of PhD trained individuals in R&D departments, to 
changes to the R&D strategy, we need to address the potential problem of endo
geneity. We adopt an instrumental variable approach employing two different 
instruments.

The first instrument is based on the notion that firms face an exogenous supply of PhD 
graduates, which should influence employment of researchers, but should be uncorrelated 
to the firm’s R&D strategy. In other words, it should be a source of exogenous variation. We 
built an indicator for this supply based on PhD graduates having studied for their degree in 
the region in which the firm is located, and in scientific and technological fields relevant to 
the firm’s economic activity. To determine which scientific and technological fields are 
relevant, we use the matrix provided by Cohen, Nelson, and Walsh (2002), which links 
scientific field to economic industry, and follow the methodology proposed in Abramovsky, 
Harrison, and Simpson (2007). To build our instrument, we exploit university statistics 
provided by INE. We match the supply of PhD trained individuals to the different 
manufacturing industries and locations, to develop an indicator of the firm-specific supply 
of PhDs (details on the construction of this indicator are provided in Appendix 2).7

The second instrument is the industry average of the potentially endogenous variable, 
that is, the share of doctoral employees in the R&D function. This type of instrument is 
used widely in research based on CIS data (see, e.g., Cassiman and Veugelers 2002; 

Figure 1. Distribution of the share of PhDs for downstream-oriented firms with at least one PhD 
(n = 646).

6It could also be that firms report higher levels of upstream-oriented R&D because they had hired a new PhD.
7In a robustness check, we analyse the results using a different matrix (developed by ourselves and based on data from 

the INE PhD Survey) to match scientific fields and economic industries.
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Veugelers and Cassiman 2005). The underlying idea is that, having controlled for the 
covariates, the industry average picks up the effect of industry specific attributions 
uncorrelated to firm specific omitted factors (Veugelers and Cassiman 2005; Barge-Gil 
and Conti 2013).

The identifying assumption in our instrumental variable approach is that, after 
accounting for firm specific characteristics (size, development-intensity, export, R&D 
team size, belonging to a group, product innovation, appropiability, obstacle funds, tech 
content of the industry, being located on a park, age and public funding) the regional 
supply of PhD graduates (weighted by the field-industry matrix) and the PhD industry 
average do not influence firms’ decision to start upstream R&D activities by a channel 
different to PhDs. That is, our identifying assumption does not require supply of PhDs to 
be uncorrelated with the characteristics of firms in the region, as we are controlling by 
these firm characteristics. Actually, one of the main roles played by covariates in 
Instrumental Variables regression is to make the instrument exogenous. The key point 
is that, when using this methodological approach, we are identifying the effects of PhDs 
on the transition to upstream R&D not by using the actual presence of PhDs in each firm, 
but the ‘expected’ PhDs of each firm according to the part of the regional supply of PhD 
graduates and of the industry average of PhDs which are uncorrelated with the covariates 
used. This is why this method allows us to address the reverse causality problem of firms 
actually hiring PhDs because they want to move towards upstream research activities.8

In all the specifications we test for the relevance and exogeneity of the instruments 
using the F-statistic of the first equation and the Hansen’s J-statistic respectively. The F- 
statistics are always well above 10 and the hypothesis of exogeneity of instruments is 
always clearly not rejected.

3.4. Estimation method

To test our hypotheses, we formulate the following model: 

Start upstreamit ¼ β0 þ β1SPhDit þ x0itγþ εit 

where Start_upstream captures initiation of upstream-oriented R&D, SPhD denotes 
presence of PhD trained employees in the firm’s R&D function (measured as the 
proportion of employees with a doctoral degree relative to total R&D employees), and 
x is a vector of the covariates.

We present the results of the Ordinary Least Squares (OLS) regressions and analyse 
coefficient stability (Oster 2019), which provides a lower bound of the coefficient if the 
bias due to omitted variables is proportional to the change in the coefficient observed 
when the covariates are introduced (the method is described in Appendix 3). In addition, 
since the dependent variable is binary, we complement the analysis with a probit model. 

8To further investigate the exogeneity of this instrument we thought about an alternative channel through which the 
regional supply of related PhDs could influence firm decision to start upstream R&D. A clear candidate would be firm 
cooperation with universities. That is, it could be that a potential source of endogeneity would be that the instrument 
proxies for university-firm cooperation. We run an alternative model including firm cooperation with university as an 
additional regressor and results discard the possibility that this channel would be a source of endogeneity. Note that in 
the main specifications we do not include cooperation with university as an additional regressor as this could be a 
channel through which the effect of PhDs on research takes place so that it would be a ‘bad’ control (Angrist and 
Pischke 2008).
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The first results do not take account of the potential endogeneity of the share of PhD 
graduates. We then run two IV estimations – first a standard IV estimation using Two- 
Stage Least Squares (2SLS) and second an estimation that takes account of the fact that 
our potentially endogenous variable (share of PhD degree holders) is bounded at the 
extremes of its distribution (i.e., it is a limited variable). Following Wooldridge (2002), we 
estimate a Tobit model, with share of PhD graduates as the dependent variable, and use 
the values it predicts as the instrument for the IV estimation.9

4. Results

4.1. Basic trends: starting upstream-oriented R&D by type of industries

Table 4 presents the share of R&D employees with a doctoral degree, number of firms 
and percentage of firms starting upstream-oriented R&D, for those firms not engaged in 
upstream R&D in year t, by industry categories. The industry technology categories 
classification is based on R&D intensity (R&D investments/sales) (OECD 2011).

We observe that, on average, firms in low, low-medium and medium-high tech 
industries have very similar shares of PhD employees in their R&D functions, with 
only high-tech firms displaying comparatively higher figures. However, we observe no 
fundamental differences across low and high tech industries in terms of the probability to 
embark on upstream-oriented R&D. While low-tech industries devote comparatively 
fewer resources to R&D, the proportions of firms that decide to undertake upstream 
R&D in t + 1 are similar across industry categories. This shows that upstream-oriented 
R&D is not unique to high-tech industries, but occurs in all industries – low, medium and 
high tech.

The next sub-sections offer a more systematic examination of the relationship between 
proportion of PhD degree holders in R&D functions and the initiation to upstream R&D.

4.2. Start upstream-oriented R&D and PhD trained R&D employees

There are 5,815 (firm-year) observations, corresponding to companies that conduct 
R&D, but did not engage in upstream R&D in year t. These firms have an average of 
3.07% PhD degree holders in their R&D functions. Some 17% of these firm-year 
observations (982 cases) make the transition to upstream R&D in t + 1. On average, 
those firms’ R&D teams include 4.35% of employees with a doctoral degree compared to 
2.81%, on average, among firms whose R&D strategies do not change.

Table 4. Proportion (%) of PhD degree holders and upstream R&D by industry (n = 5,815).
LT LMT MHT HT Total

Share of PhD degree holders 2.57% 2.24% 3.31% 5.08% 3.07%
Number of firms 1,182 1,604 2,330 699 5,815
% of firms starting upstream R&D in t + 1 18.19% 15.77% 16.57% 18.31% 16.89%

LT: Low Tech Industries, LMT: Low-Medium Tech Industries, MHT: Medium High Tech Industries, HT: High Tech Industries. 
We follow OECD classification (OECD 2011)

9Note that, although we use the panel dimension to define changes in firms’ decisions, we cannot use within-variation to 
estimate the effects since firms do not either initiate or abandon research activity more than once in the period 
analysed.
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Table 5 presents the results of the different models. Column (1) presents the results of 
the OLS regressions including only year dummies as covariates. Column (2) includes the 
full set of the covariates in Table 2. Columns (3) and (4) present the standard IV results 
respectively in a linear framework and using the Wooldridge approach. Column (5) 
presents the results of the probit model with the covariates. Column (6) presents the 
results of the ‘standard’ IV probit and column (7) includes the probit IV results using the 
Wooldridge approach.

Column (1) shows that the variable measuring the share of doctoral employees 
(Lsphd) has a positive and statistically significant coefficient of 0.017. That is, a 1% 
increase in the share of R&D employees with a PhD degree is associated to a 0.017 
increased probability of starting upstream R&D activities. If we apply this effect to the 
average probability of transition (0.169), then a 1% increase in the share of PhDs is 
associated to a 0.1% increase in this probability. Column (2) includes all the covariates 
and provides no evidence of omitted variables bias since the coefficient remains fairly 

Table 5. Start upstream R&D. Results.
(1) (2) (3) (4) (5) (6) (7)

SimpleOLS Multiple OLS IV-GMM IV-GMM Wool Probit IV Probit IV Probit Wool

Lsphd 0.017*** 0.017*** 0.133*** 0.080*** 0.064*** 0.460*** 0.279***
[0.006] [0.006] [0.032] [0.028] [0.021] [0.090] [0.086]

Lsize −0.005 −0.004 −0.004 −0.020 −0.013 −0.016
[0.008] [0.009] [0.009] [0.033] [0.032] [0.033]

D_intensity −0.009 −0.013 −0.011 −0.035 −0.043 −0.040
[0.007] [0.008] [0.008] [0.029] [0.028] [0.029]

Export 0.018 0.013 0.015 0.072 0.048 0.060
[0.016] [0.018] [0.017] [0.067] [0.067] [0.067]

Lsizeteam −0.002 −0.009 −0.006 −0.012 −0.038 −0.027
[0.010] [0.011] [0.010] [0.039] [0.039] [0.039]

Parent 0.025 0.013 0.018 0.099 0.046 0.070
[0.021] [0.024] [0.022] [0.081] [0.085] [0.083]

Joint_venture 0.071 0.064 0.069 0.256 0.210 0.238
[0.055] [0.060] [0.057] [0.179] [0.186] [0.182]

Newmer 0.000 0.000 0.000 0.001 0.001 0.001
[0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Obstacle_funds 0.025** 0.026** 0.025** 0.102** 0.099** 0.102**
[0.012] [0.013] [0.012] [0.050] [0.050] [0.050]

Appropriability −0.070 −0.061 −0.068 −0.301 −0.250 −0.277
[0.045] [0.047] [0.045] [0.187] [0.182] [0.185]

Mediumlow −0.024 −0.021 −0.022 −0.092 −0.072 −0.084
[0.017] [0.018] [0.017] [0.065] [0.064] [0.065]

Mediumhigh −0.028 −0.031* −0.030* −0.115 −0.120* −0.119*
[0.018] [0.019] [0.018] [0.070] [0.068] [0.070]

High −0.027 −0.042 −0.038 −0.109 −0.177* −0.149
[0.026] [0.028] [0.027] [0.100] [0.101] [0.101]

Park 0.043 0.026 0.038 0.156 0.116 0.137
[0.038] [0.042] [0.039] [0.131] [0.139] [0.134]

Lage −0.019** −0.014 −0.016* −0.074** −0.052 −0.063*
[0.009] [0.010] [0.009] [0.035] [0.035] [0.035]

Pubfun 0.001 −0.009 −0.004 0.005 −0.030 −0.014
[0.011] [0.012] [0.011] [0.044] [0.043] [0.044]

_cons 0.170*** 0.502*** 0.467*** 0.487*** 0.395 0.242 0.315
[0.014] [0.155] [0.161] [0.156] [0.630] [0.610] [0.623]

N 5,815 5,815 5,815 5,815 5,815 5,815 5,815

Coefficients reported with clustered standard error between brackets. All models include year dummies ***p-value<0.01; 
**p-value<0.05, *p-value<0.1
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stable. With the exceptions of obstacle funds (i.e., firms experiencing funding constraints) 
and lage (firm age), the observables are mostly non-significant.

Oster’s bound is equal to the actual coefficient, since there are no signs of omitted 
variables (the coefficient does not change if the observables are included). Column (3) 
presents the results of the standard IV. The two instruments are jointly significant (F- 
statistic = 28.3) and satisfy the exclusion restriction (Hansen’s J Chi-square = 2.1, p- 
value = 0.147). Endogeneity is clearly rejected (Chi-square = 23.29, p-value = 0.000). The 
coefficient of 0.133 is much higher than the OLS marginal effects, meaning that a 1% 
increase in the share of R&D employees with a PhD degree is related to a 0.133 points 
increase in the probability of a transition to upstream-oriented R&D. Again, taking the 
average probability of transition as the reference, the results of the IV regressions mean 
that a 1% increase in the share of R&D employees with a PhD degree is associated to an 
increase of 0.79% in the likelihood of a transition.

The much larger size of the coefficients of the IV compared to the OLS estimations is 
in line with the literature (see, e.g., Trostel, Walker, and Woolley 2002; Jiang 2017) and 
might be because the IV are weak instruments. Although the F-statistics do not reveal any 
problems, we need to explore this possibility. Following Bascle (2008), we compare our 
results with those based on Moreira’s (2003) Conditional Likelihood Ratio (CLR). It has 
been argued that CLR is the test of choice in IV applications (Murray 2006). If the results 
using IV differ from the results using the CLR method, there is a finite sample/weak 
instrument problem (Yogo 2004). We employed the CLR method (results available upon 
request) and found that the coefficients were remarkably similar, suggesting that weak 
instruments are not the cause of this change in the coefficient.

An alternative reason why IV estimates are much higher than OLS might be the 
existence of ‘essential heterogeneity’ (firms respond differently to the treatment and their 
selection into the treatment is based on unobserved gains). In that case, IV provides a 
consistent estimate of the Local Average Treatment Effect (LATE), which might differ 
from the Average Treatment Effect (ATE) (Bascle 2008; Jiang 2017). That is, IV provides 
an estimation of the effect for ‘compliers’ (individuals responding, as intended, to the 
instrument). Complier firms will likely enjoy a stronger effect than the average firm, from 
having PhD degree holders on their staff, demonstrated by the much larger coefficient in 
the IV regression. Another reason why the IV coefficients are much higher than OLS is 
that we are working with anonymised data, which could generate measurement errors 
and result in ‘attenuation bias’ in the OLS estimations.

In our model, the endogenous regressor is a limited dependent variable (share of PhD 
degree holders ranges between 0 and 100). To address this potential problem we apply the 
‘Wooldridge’ approach to the IV estimations, with a limited endogenous regressor. The 
results of the Wooldridge approach, taking account of the limited nature of our endogenous 
regressor, are provided in Table 5 Column (4): the coefficient is 0.08, meaning that a 1% 
increase in the share of R&D employees with a PhD degree is associated to a 0.08 points 
increase (a change of 0.47% in the probability, taking the average probability as the 
reference). This is still high, but is closer to the OLS estimations.10

To summarise, the linear models show a positive and significant effect of the share of 
PhD trained R&D employees on the likelihood of transition to an exploratory R&D 

10Wald test of exogeneity: Chi-square(1) = 8.66, p-value = 0.003.
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strategy. However, the dependent variable is binary so, by definition, the marginal effects 
should be non-linear. To analyse these effects, we employ probit models (Table 5 Columns 
(5)-(7)). Column (5) provides the results of the probit model assuming exogeneity of PhD 
degree holders. The marginal effects at the means are very similar to the OLS coefficients. 
Columns (6) and (7) provide the results of the IV approach. Again, the marginal effects at 
the means are close to (but slightly lower) than the OLS coefficients. The main advantage of 
a probit model is that it allows us to plot the full set of marginal effects.

Figure 2 plots the theoretical range of marginal effects for the models in columns (3), 
(4), (6) and (7), for firms with different values for the probability of a transition.11 We 
calculated the marginal effects of a 1% increase in the share of R&D employees with a 
PhD degree for the different firms in the sample: they range from a 0.011 probability 
points to a 0.18 probability points in the standard IV probit model, and from a 0.011 
probability points to a 0.11 probability points in the alternative IV probit model. These 
results support our expectation that the effects are very heterogeneous across firms, as we 
anticipated from the difference between ATE and LATE.12

4.3. An industry perspective

In this section, we test whether the results are industry-specific or hold across different 
industries. We estimate the regressions with interaction terms between the share of PhD 
degree holders and industry dummies, for the decision to engage in upstream-oriented 
R&D. The interaction terms show the differential effect of PhD trained R&D employees 
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Figure 2. Marginal effects. Start upstream R&D.

11Note that the marginal effects are plotted based on the probability of a transition to upstream research, rather than on 
the basis of one particular explanatory variable with specific values chosen for the remaining covariates.

12If we focus instead on the effect of the first PhD, we find that the effect ranges from 1.8 to 4.9 probability points, with a 
mean value of 3.3 probability points for the likelihood of initiating upstream-oriented R&D.
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on starting upstream R&D, for different industries, compared to the baseline category 
(medium-high tech industries). Table 6 presents the results. We use OLS (with clustered 
errors).13

We observe that the effect of the share of PhD degree holders on starting upstream 
research is similar across industries since the coefficients of the different interaction 
terms are small in magnitude and not statistically significant. In particular, there is no 
evidence of higher relative importance of PhD trained R&D employees in high-tech 
industries, which is something that is not highlighted in previous studies.

4.4. Robustness checks

We performed several robustness checks.14 First, we conducted an additional analysis of 
the whole population of firms with R&D activities. We define Upstream-orientation as 
the percentage of the R&D activity that is upstream R&D. This is a continuous variable 
that ranges between 0 and 100% and has been log-transformed so that results can be 
interpreted as elasticities. There are 17,699 (firm-year) observations corresponding to 
companies that conduct R&D. These firms have an average of 4.82% PhD researchers in 
their R&D functions and devote 45.2% of their R&D investment to upstream R&D. The 
results are provided in Appendix 4. This robustness check exploits the panel structure of 
our data by estimating random and fixed effects models. Fixed effects estimations remove 
any bias caused by correlation between time-invariant firm characteristics and the 
percentage of PhD holders in the R&D team. Finally, we run two IV estimations. The 
first is a standard IV estimation using 2SLS; the second uses the Wooldridge method, 
taking account of the specific shape of the potentially endogenous variable (share of 
PhDs). The results from this set of models reinforce the existence of a positive and 
significant relationship between share of R&D employees with a PhD degree and an 
upstream-oriented R&D.15

Second, since the matrix provided by Cohen, Nelson, and Walsh (2002) and applied in 
Abramovski et al. (2007), is based on US data, collected during the 1990s, it may not 
account adequately for the current link between scientific fields and economic industries 
in Spain. To address this, we built a matrix based on data from the Survey of Human 
Resources in Science and Technology, and replicated the analysis using this new matrix. 
The results are similar (see Appendix 5).

Third, in the main analysis we jointly consider basic and applied research as upstream- 
oriented R&D activities. In this robustness check, we focus on the transition to basic 
research. The sample is composed by firms active in development or applied research in 
period t which are also observed in period t + 1. The total sample is composed of 15,165 
firm-year observations, from which 4.9% firms move towards basic research. Results 

13Probit models do not allow direct interpretation of the coefficients of the interaction. For ease of reading, we provide 
only the OLS estimations, although we obtained similar results from the probit and logit models, after the interaction 
effects are properly computed.

14We have also checked if the main results hold when analysing if the percentage of PhD holders reduced the likelihood 
of abandoning upstream R&D activities for those upstream-active firms. We found that, coherently with the rest of the 
analysis, a higher percentage of PhD holders reduce the likelihood of abandoning upstream-oriented R&D (results 
available upon request). We thank one reviewer for the suggestion to complement the analysis in this way.

15It is possible that the OLS and, especially, the fixed effects estimates might suffer from attenuation bias. In fact, the 
coefficients of the IV estimates are much larger. However, we can discard this possibility as being due to weak 
instruments and conclude that it is likely the consequence of a higher LATE than ATE – 0.87 compared to 0.20.
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fundamentally hold (see Table A6). Note that, although the absolute effect in probability 
points (pp) is lower (still positive and significant) the relative effect is quite similar. In the 
multiple regression model a 1% increase in the share of PhDs is related to an increase of 
0.4pp in the likelihood of conducting basic research (which is a relative increase of 8.16% 
when applied to the probability of doing this transition, which is 4.9%). In the main 
analysis using upstream-oriented R&D a 1% increase in the share of PhDs is related to an 
increase of 1.7pp in the likelihood of conducting upstream R&D (which is a relative 
increase of 10% when applied to the probability of doing this transition, which is 17%).

Table 6. Start upstream R&D by 
industries Results.

OLS

Lsphd 0.021**
(0.009)

Lsphd*low −0.004
(0.019)

Lsphd*mediumlow −0.014
(0.015)

Lsphd*high 0.001
(0.017)

Lsize −0.005
(0.008)

D_intensity −0.009
(0.007)

Export 0.017
(0.016)

Lsizeteam −0.002
(0.010)

Parent 0.025
(0.021)

Joint_venture 0.071
(0.056)

Newmer 0.000
(0.000)

Obstacle_funds 0.025**
(0.012)

Appropriability −0.068
(0.045)

Low-tech 0.029
(0.018)

Mediumlow 0.007
(0.016)

High 0.001
(0.020)

Park 0.042
(0.038)

Lage −0.019**
(0.009)

Pubfun 0.001
(0.011)

_cons 0.467***
(0.148)

N 5815

Coefficients reported with clustered standard 
error between brackets. All models include 
year dummies. ***p-value<0.01; **p- 
value<0.05, *p-value<0.1
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5. Conclusions

The objective of this study was to analyse whether the proportion of PhD trained 
employees in the firm’s R&D function increases the probability of starting upstream- 
oriented R&D research by firms engaged in downstream R&D activities, or whether 
instead it reinforces these firms’ orientation towards downstream R&D. We tested the 
validity of these two competing propositions on a large sample of Spanish manufacturing 
and R&D performing firms during the period 2006–2012 and found that firms with a 
higher proportion of doctoral trained employees in their R&D functions were more likely 
to initiate upstream-oriented R&D, controlling for alternative explanatory factors such as 
scale and intensity of firms’ downstream R&D activities.

This study extends the existing innovation management and business strategy 
research in two ways. First, from a conceptual perspective, we argue that the role of 
PhD degree holders in R&D functions goes beyond absorption and generation of knowl
edge and influences the firm’s R&D strategy. We suggest that a concentration of research 
talent instils a taste for upstream R&D among R&D employees, which has a strong effect 
on the firm’s capacity to move beyond the current focus on downstream development 
activities and favours the adoption of an upstream-oriented R&D. We argue that this 
shift in the firm’s R&D strategy is likely to be an effect of three aspects of changes to the 
firm’s organisational learning culture associated to the availability of PhD trained R&D 
employees: strong connectivity to the science-base, influence on teamwork research 
performance and a climate tolerant of risk-taking and failure.

Second, from an empirical perspective, our results highlight two important aspects of the 
relationship between highly trained employees and firms’ R&D strategies. On the one hand, 
we show that there is no one-to-one relationship between employing PhD trained individuals 
in the R&D function and conducting upstream-oriented R&D. We found that firms with no 
doctoral trained employees engage in upstream-oriented R&D and, also, that the presence of 
PhD trained R&D employees is not sufficient to promote an upstream-oriented R&D 
strategy. On the other hand, we provide strong evidence of a link between a concentration 
of highly trained human capital (proportion of employees with a PhD degree among R&D 
employees) and the probability to initiate upstream-oriented R&D activity. We provide 
specific estimates of the size of this effect. The average effect of a 1% increase in the share 
of doctoral employees is a 0.017 probability point increase in the likelihood of initiating 
upstream R&D, while the local average effect is a 0.066 probability increase. Heterogeneity of 
the effects is supported by probit models where we find a maximum potential probability 
increase of 0.18.

Our analysis includes a large set of covariates (e.g., appropriability regime, firm age and 
size, scale and intensity of firms’ downstream activities, among others), which ensures 
robustness of our results to alternative explanatory factors. Also, we employed instrumental 
variables estimations, building two indicators of the exogenous supply of PhD graduates as 
instruments, which renders our findings generally robust to endogeneity concerns. In short, 
we demonstrate that a higher proportion of PhD degree holders in the R&D function 
increases the likelihood that the firm will search beyond its knowledge boundaries and 
invest in exploratory research.

Finally, our study has implications for industry practitioners and policy makers. Our 
results show that the proportion of PhD trained R&D employees has a direct influence on 
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the firm’s capacity to embark on an upstream-oriented strategy. Exploratory research is 
critical for sustained competitive advantage and ability to respond to technological change 
(Michelino et al. 2015). In this sense, the acquisition of new skills through recruitment of 
highly qualified employees for the R&D function, seems crucial for exploratory activities 
that contribute to the introduction of new products, and strengthening of the firm’s 
capacity to continuously adapt its knowledge base to be able to respond to changing 
customer preferences and novel technologies. These implications are reinforced by the 
finding that our results are robust across very different industry and sectoral settings, 
including firms in low and medium-tech as well as high-tech sectors. Our results show, 
also, that the other potential drivers of the decision to initiate upstream-oriented R&D, such 
as the size and scale of downstream-oriented R&D, have no significant effects.

At the policy level, our research findings contribute to the rationale underlying policy 
initiatives to encourage or facilitate firms’ recruitment of PhD graduates, particularly in 
contexts where the proportion of PhD holders employed in the business sector is 
comparatively low by international standards. Previous research points to systemic fail
ures in the PhD jobs market (Cruz-Castro and Sanz-Menendez 2005; Martínez et al., 
2016; Martínez and Parlane, 2018) due to firms’ lack of awareness of the long term 
benefits associated to PhD recruitment. These failures are due, also, to the difficulty 
related to attracting PhD trained individuals to work in corporate settings which might 
fail to provide adequate organisational conditions for the advancement of scientists’ 
professional careers. If increasing exploratory research by firms is a policy target, then 
it would seem that facilitating the employment of doctoral trained researchers in R&D 
functions would contribute to address this goal.

The importance of PhDs for upstream R&D raises questions related to the manage
ment of highly qualified human resources and suggests some new research directions. 
First, there are issues related to career development opportunities and reward mechan
isms, and their effect on the involvement of R&D employees in firms’ exploratory R&D 
activities, which require further research (Chen, Chang, and Yeh 2003; Sauermann and 
Cohen 2010; Liu and Stuart 2014; Balsmeier and Pellens 2016). Second, we need to know 
more about the conditions that allow R&D employees to exploit firm upstream R&D 
activity to improve innovation performance. Third, more research is needed on the 
extent to which PhD degree holders enhance the capacity of firms to integrate and exploit 
external sources of scientific knowledge, in an international context characterised by 
increasing reliance on outsourcing and overall decline in firms’ engagement in internal 
scientific research (Arora, Belenzon, and Patacconi 2018). Fourth, in addition to using 
formal education, we need to consider other variables to capture the firm’s wider R&D 
skills base. Fifth, another extension of the work would be to examine the effect of PhD 
holders outside the R&D team on the initiation of R&D activities. Finally, future research 
could analyse the potential heterogeneous effects of PhD degree holders in R&D func
tions, by firm type, for example, firm size and R&D intensity.
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Appendix 1. Definition of variables and correlations

Table A1a. Definition of variables.
Variable Definition

Start_upstream Dummy variable that takes the value of 1 if the firms perform upstream-oriented R&D activities in 
t + 1 and zero if it does not (only for downstream-oriented firms in t)

Lsphd Percentage of employees with a PhD degree relative to the number of employees in the R&D function 
(in logs)

Lsize Firms’ employee count (in logs)
D_intensity Firm’s total development expenditures per employee (in logs)
Export Dummy variable that takes value of 1 if a firm sells products abroad and zero otherwise
Lsizeteam Number of full time equivalents working in the R&D function (in logs)
Parent Dummy variable that takes value 1 if the firm is the parent company inside a group and zero 

otherwise
Joint_venture Dummy variable that takes value 1 if the firm is a joint venture and zero otherwise
Newmer Percentage of total sales coming from new to the market products
Obstacle_funds Dummy variable that takes value 1 if the firm reports that lack of internal or external funds were an 

obstacle to innovate of moderate or severe importance and zero otherwise
Appropriability Industry average of the answer to the following question: ‘how important are your competitors as a 

source of information for the innovation process (1-very important, 4-unimportant)’
Park Dummy variable that takes the value of 1 if the firm is located in a science and technology park and 

zero otherwise;
Lage Number of years since birth (in log)
Pubfun Dummy variable that takes value 1 if the firm received public funding and zero otherwise

INDUSTRY AND INNOVATION 27



Ta
bl

e 
A

1b
. C

or
re

la
tio

n 
m

at
rix

 (D
ow

ns
tr

ea
m

-o
rie

nt
ed

 fi
rm

s 
in

 t
, n

 =
 5

,8
15

).
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

1
St

ar
t_

up
st

re
am

2
Ls

ph
d

0.
05

*
3

Ls
iz

e
−

0.
02

*
0.

00
4

D
_i

nt
en

si
ty

−
0.

01
0.

10
*

−
0.

42
*

5
Ex

po
rt

0.
01

0.
01

0.
22

*
−

0.
06

*
6

Ls
iz

et
ea

m
−

0.
03

*
0.

10
*

0.
53

*
0.

39
*

0.
13

*
7

Pa
re

nt
0.

01
0.

03
*

0.
14

*
0.

00
0.

05
*

0.
11

*
8

Jo
in

t_
ve

nt
ur

e
0.

02
0.

00
0.

04
*

0.
01

0.
02

0.
04

*
−

0.
03

*
9

N
ew

m
er

0.
01

−
0.

01
−

0.
05

*
0.

14
*

0.
00

0.
09

*
0.

01
0.

01
10

O
bs

ta
cl

e_
fu

nd
s

0.
03

*
0.

00
−

0.
18

*
0.

09
*

−
0.

03
*

−
0.

09
*

−
0.

02
0.

01
0.

03
*

11
Ap

pr
op

ria
bi

lit
y

−
0.

02
−

0.
07

*
0.

15
*

−
0.

24
*

−
0.

01
−

0.
12

*
−

0.
01

−
0.

03
*

−
0.

03
*

−
0.

02
*

12
M

ed
iu

m
lo

w
−

0.
02

−
0.

05
*

0.
13

*
−

0.
14

*
0.

00
−

0.
07

*
0.

04
*

0.
00

0.
00

0.
01

0.
41

*
13

M
ed

iu
m

hi
gh

−
0.

01
0.

01
−

0.
07

*
0.

10
*

0.
04

*
0.

06
*

−
0.

05
*

−
0.

01
0.

01
0.

03
*

−
0.

39
*

−
0.

50
*

14
H

ig
h

0.
01

0.
09

*
−

0.
12

*
0.

25
*

−
0.

05
*

0.
15

*
0.

02
0.

00
0.

03
*

0.
00

−
0.

45
*

−
0.

23
*

−
0.

30
*

15
Pa

rk
0.

02
*

0.
04

*
−

0.
07

*
0.

11
*

−
0.

04
*

0.
07

*
−

0.
02

*
−

0.
02

0.
01

0.
02

*
−

0.
12

*
−

0.
07

*
0.

00
0.

18
*

16
La

ge
−

0.
04

*
−

0.
04

*
0.

31
*

−
0.

17
*

0.
19

*
0.

10
*

0.
07

*
0.

00
−

0.
06

*
−

0.
06

*
0.

05
*

0.
04

*
0.

02
*

−
0.

15
*

−
0.

12
*

17
Pu

bf
un

0.
00

0.
07

*
0.

08
*

0.
24

*
0.

02
0.

25
*

0.
01

−
0.

02
0.

06
*

0.
05

*
−

0.
02

0.
02

0.
00

0.
02

0.
06

*
−

0.
00

*p
-v

al
ue

<
0.

05

28 A. BARGE-GIL ET AL.



Appendix 2. Construction of PhD supply measure

To build our PhD supply measure we need to determine which scientific fields are relevant to a 
given industry. We follow Abramovsky, Harrison, and Simpson (2007) and match scientific fields 
to industries, using data from the 1994 Carnegie Mellon Survey (CMS). This survey asks firms 
about the importance they attach to 10 research fields: biology, chemistry, physics, computer 
science, material science, medical and health science, chemical engineering, electrical engineering, 
mechanical engineering and mathematics. As in Abramovsky, Harrison, and Simpson (2007), we 
consider a research field relevant if more than 50% of the CMS respondents in that industry rank 
the field moderately or very important.

Data on new PhD graduates by field and university are available at: http://www.ine.es/dyngs/ 
INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176744&menu=resultados&idp= 
1254735573113

We compute new PhDs by year, university and scientific field, and match them to each firm, 
based on the firm’s region and industry, in order to develop a firm-specific measure of PhD supply. 
More precisely, we compute the number of new PhDs from universities in the same region, and in 
scientific fields relevant to the firms’ economic activity.16

Note that, for this instrument to satisfy the inclusion restriction, we do not need new PhDs to be 
perfectly immobile. There is a requirement only for some degree of stability. Consider two firms (A 
and B) that are equal in all observable characteristics except that firm A is located in a region with a 
high level of availability of new PhD graduates in relevant scientific fields, and firm B is located in a 
region with a low level of availability of new PhDs in relevant scientific fields. The inclusion 
restriction is satisfied since firm A is expected to be more likely than firm B to hire doctoral 
graduates due to these firms’ distinct locations.

Data from the 2009 Survey of Human Resources for R&D shows that only 36.9% of PhDs work 
in another region than their birth region,17 suggesting that mobility is far from perfect.

Appendix 3. Oster’s method for the analysis of coefficient stability

The method departs from the key assumption that selection in the unobservables is proportional to 
selection in the observables. Accordingly, a lower bound of the coefficient can be calculated using 
the following formula: 

β� ¼ βF � βW � βF� �Rmax � RF

RF � RW

where :

βF is the coefficient in the regression with full controls
RF is the R2 in the corresponding regression

βW is the coefficient in the regression without controls ðwe usedjusttime dummiesÞ
RW is the R2 in the corresponding regression
Rmax is 1:3RF ðaccording to Oster0s estimationÞ

Alternatively, the parameter δ can be calculated as the ratio between selection in the unobser
vables and selection in the observables, required for the coefficient to be zero. If δ > 1, selection in 
the unobservables will be higher than selection in the observables, for the coefficient to be zero.

The method can be implemented using the Stata package: psacalc

16The indicator is normalised by the total number of R&D employees in each region.
17Ideally, we would want to know the percentage of PhDs working in the same region as the institution that awarded 

their degree; however, these data are not available. Presumably, the figure would be lower than 36.9% because some 
individuals move regions before beginning their PhD studies.
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Appendix 4. Robustness check: whole sample of R&D performers and 
orientation to upstream R&D

Table A4. Orientation to upstream R&D and PhDs. Results.
(1) (2) (3) (4) (5) (6)

SimpleOLS Multiple OLS RE FE IV IV Wool

Lsphd 0.214*** 0.200*** 0.087*** 0.038** 1.057*** 0.871***
[0.019] [0.020] [0.016] [0.019] [0.087] [0.079]

Lsize −0.103*** −0.063** −0.104 −0.172*** −0.157***
[0.039] [0.031] [0.076] [0.043] [0.042]

D_intensity −0.083** −0.049* −0.045 −0.179*** −0.158***
[0.033] [0.025] [0.029] [0.038] [0.037]

Export 0.009 0.007 −0.016 −0.051 −0.038
[0.078] [0.067] [0.090] [0.086] [0.083]

Lsizeteam 0.209*** 0.158*** 0.118*** 0.174*** 0.181***
[0.045] [0.035] [0.042] [0.050] [0.048]

Parent 0.210** 0.045 −0.052 0.035 0.073
[0.084] [0.070] [0.089] [0.099] [0.093]

Joint_venture 0.038 −0.027 −0.048 0.022 0.025
[0.227] [0.184] [0.210] [0.250] [0.241]

Newmer 0.000 0.001 0.001 0.001 0.001
[0.001] [0.001] [0.001] [0.001] [0.001]

Obstacle_funds 0.065 0.069 0.061 0.081 0.078
[0.058] [0.046] [0.054] [0.064] [0.061]

Appropriability −0.414* −0.042 0.147 −0.183 −0.234
[0.230] [0.162] [0.182] [0.244] [0.238]

Mediumlow −0.471*** −0.454*** −0.188 −0.386*** −0.404***
[0.080] [0.074] [0.276] [0.087] [0.084]

Mediumhigh −0.423*** −0.322*** −0.158 −0.388*** −0.396***
[0.085] [0.075] [0.254] [0.093] [0.090]

High −0.385*** −0.226** −0.244 −0.571*** −0.531***
[0.118] [0.101] [0.284] [0.132] [0.127]

Park −0.061 −0.175 −0.317 −0.165 −0.142
[0.148] [0.140] [0.212] [0.181] [0.168]

Lage 0.037 0.031 0.065 0.034 0.035
[0.042] [0.040] [0.162] [0.047] [0.045]

Pubfun −0.228*** −0.098*** −0.047 −0.279*** −0.268***
[0.048] [0.033] [0.037] [0.053] [0.051]

_cons 2.551*** 4.727*** 3.319*** 2.840*** 4.813*** 4.796***
[0.044] [0.744] [0.542] [0.844] [0.797] [0.775]

N 17,699 17,699 17,699 17,699 17,699 17,699

Coefficients reported with clustered standard error between brackets. All models include year dummies. ***p-value<0.01; 
**p-value<0.05, *p-value<0.1
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Appendix 5. Robustness check: a different weigthing matrix

Table A5. A different weighing matrix for the instrumental variable. Results.
(1) (2) (3) (4)

IV-GMM IV-GMM Wool IV Probit IV Probit Wool

Lsphd 0.121*** 0.082*** 0.388*** 0.287***
[0.032] [0.028] [0.108] [0.086]

Lsize −0.004 −0.004 −0.014 −0.016
[0.009] [0.009] [0.033] [0.033]

D_intensity −0.012 −0.011 −0.042 −0.040
[0.008] [0.008] [0.028] [0.029]

Export 0.014 0.015 0.053 0.059
[0.018] [0.017] [0.067] [0.067]

Lsizeteam −0.007 −0.007 −0.034 −0.028
[0.010] [0.010] [0.039] [0.039]

Parent 0.012 0.018 0.056 0.069
[0.024] [0.022] [0.084] [0.083]

Joint_venture 0.069 0.069 0.222 0.236
[0.059] [0.057] [0.185] [0.182]

Newmer 0.000 0.000 0.001 0.001
[0.000] [0.000] [0.001] [0.001]

Obstacle_funds 0.026** 0.025** 0.100** 0.102**
[0.013] [0.012] [0.050] [0.050]

Appropriability −0.066 −0.067 −0.263 −0.276
[0.046] [0.045] [0.185] [0.185]

Mediumlow −0.022 −0.022 −0.077 −0.083
[0.017] [0.017] [0.065] [0.065]

Mediumhigh −0.037** −0.031* −0.120* −0.120*
[0.019] [0.018] [0.069] [0.069]

High −0.043 −0.039 −0.169* −0.150
[0.028] [0.027] [0.102] [0.101]

Park 0.060 0.038 0.125 0.136
[0.042] [0.039] [0.136] [0.134]

Lage −0.015 −0.016* −0.057 −0.063*
[0.010] [0.009] [0.035] [0.035]

Pubfun −0.008 −0.005 −0.023 −0.015
[0.012] [0.011] [0.044] [0.044]

_cons 0.477*** 0.486*** 0.276 0.311
[0.159] [0.156] [0.618] [0.622]

N 5,815 5,815 5,815 5,815

Coefficients reported with clustered standard error between brackets. All models include year dummies.***p- 
value<0.01, **p-value<0.05, *p-value<0.10
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Appendix 6. Robustness check: transition to basic research

Table A6. Transition to basic research Results.
(1) (2) (3) (4) (5) (6) (7)

SimpleOLS Multiple OLS IV IV Wool Probit IV Probit IV Probit Wool

Lsphd 0.005*** 0.004** 0.025*** 0.019*** 0.038** 0.220*** 0.157***
[0.002] [0.002] [0.006] [0.007] [0.015] [0.050] [0.049]

Lsize −0.007** −0.007** −0.007** −0.067** −0.078*** −0.075**
[0.003] [0.003] [0.003] [0.029] [0.029] [0.029]

RD_intensity −0.005** −0.007*** −0.007*** −0.055** −0.073*** −0.068***
[0.002] [0.002] [0.002] [0.025] [0.025] [0.025]

Export −0.001 −0.002 −0.001 −0.011 −0.020 −0.017
[0.006] [0.006] [0.006] [0.058] [0.057] [0.058]

Lsizeteam 0.011*** 0.009*** 0.010*** 0.107*** 0.098*** 0.101***
[0.003] [0.003] [0.003] [0.033] [0.033] [0.033]

Parent 0.011 0.005 0.007 0.094 0.046 0.060
[0.007] [0.007] [0.007] [0.064] [0.064] [0.064]

Joint_venture 0.047* 0.046* 0.047* 0.357** 0.343** 0.350**
[0.024] [0.025] [0.025] [0.145] [0.152] [0.149]

Newmer 0.000 0.000 0.000 0.001 0.001 0.001
[0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Obstacle_funds 0.001 0.002 0.002 0.012 0.015 0.014
[0.004] [0.004] [0.004] [0.044] [0.043] [0.044]

Appropriability −0.005 0.003 −0.001 −0.031 0.046 0.021
[0.016] [0.015] [0.016] [0.158] [0.160] [0.159]

Mediumlow −0.001 0.001 0.000 −0.013 0.007 −0.000
[0.005] [0.005] [0.005] [0.056] [0.056] [0.056]

Mediumhigh 0.006 0.007 0.006 0.060 0.068 0.068
[0.006] [0.006] [0.006] [0.058] [0.058] [0.058]

High 0.000 −0.004 −0.002 0.014 −0.022 −0.009
[0.008] [0.009] [0.009] [0.082] [0.084] [0.084]

Park 0.007 0.003 0.005 0.059 0.035 0.041
[0.013] [0.013] [0.013] [0.113] [0.113] [0.113]

Lage −0.001 −0.001 −0.001 −0.010 −0.009 −0.009
[0.003] [0.003] [0.003] [0.031] [0.030] [0.030]

Pubfun 0.001 0.000 0.000 0.008 −0.002 0.002
[0.004] [0.004] [0.004] [0.037] [0.037] [0.037]

_cons 0.036*** 0.104** 0.087* 0.101* −1.144** −1.210** −1.190**
[0.004] [0.052] [0.052] [0.052] [0.536] [0.539] [0.535]

N 15,165 15,165 15,165 15,165 15,165 15,165 15,165

Coefficients reported with clustered standard error between brackets. All models include year dummies.***p- 
value<0.01, **p-value<0.05, *p-value<0.10
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