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Abstract: The data obtained from air quality monitoring stations, which are used to carry out studies
using data mining techniques, present the problem of missing values. This paper describes a research
work on missing data imputation. Among the most common methods, the method that best imputes
values to the available data set is analysed. It uses an algorithm that randomly replaces all known
values in a dataset once with imputed values and compares them with the actual known values,
forming several subsets. Data from seven stations in the Silesian region (Poland) were analyzed for
hourly concentrations of four pollutants: nitrogen dioxide (NO2), nitrogen oxides (NOx), particles of
10 µm or less (PM10) and sulphur dioxide (SO2) for five years. Imputations were performed using
linear imputation (LI), predictive mean matching (PMM), random forest (RF), k-nearest neighbours
(k-NN) and imputation by Kalman smoothing on structural time series (Kalman) methods and
performance evaluations were performed. Once the comparison method was validated, it was
determine that, in general, Kalman structural smoothing and the linear imputation methods best
fitted the imputed values to the data pattern. It was observed that each imputation method behaves
in an analogous way for the different stations The variables with the best results are NO2 and SO2.
The UMI method is the worst imputer for missing values in the data sets.

Keywords: imputation; linear imputation; predictive mean matching; random forest; k-nearest
neighbours; Kalman smoothing; air quality; air pollution

1. Introduction

Air pollution is one of the problems affecting cities and industrialized areas [1,2] and
causes the deaths of approximately 8.5 million people each year worldwide [3].

According to European legislation [4], administrations are obliged to make information
on the state of air quality in their member states available to the public.

The use of data mining (KDD) techniques is very useful for data characterization
and decision making [5–7], since air quality monitoring stations that measure pollutants
generate a huge amount of data. This use has become widespread in recent years for air
pollution problems, and one of the most important problems encountered is that of missing
data or missing values [8]. Missing data are observations that are not available in a study’s
dataset, either because they have not been captured or because they were removed. This
is a problem that arises very frequently [9,10]. It occurs most frequently in air pollutant
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research studies because the data are measured by air quality monitoring stations at regular
time intervals and there may be reading or recording failures. These failures may be due to
maintenance shutdowns, filter clogging, periodic calibrations, power failures, etc., resulting
in the absence of measurements at certain time intervals [11–13].

This absence of data creates an added difficulty in scientific research [14], firstly,
because of the absence of the data itself, which impoverishes the data as a whole [15,16]
and, secondly, because most of the existing data analysis procedures are not designed or
adapted for the absence of observations [17].

Improper handling of missing data can lead to erroneous subsequent statistical analy-
sis and cause the conclusions drawn to be erroneous [18,19].

There are numerous studies in the literature on the prediction of missing values in
air pollution data. Each of these studies employs different techniques to determine which
one best fits their data, without being able to establish a single method that is best suited
to solve the problem of missing value imputation [20]. Therefore, there is no golden
rule that establishes the steps to determine the best imputation method. Sometimes very
sophisticated methods produce worse approximations than simpler ones [21].

In a study [22] using a cellular neural network model, the model was compared with a
multiple linear regression algorithm for the prediction of the missing data corresponding to
PM10 and SO2 in various regions of Turkey. Ref. [23] used IDW (inverse distance squared
weighting) and mean value imputation to determine missing values in the prediction of
BTEX (benzene, toluene, ethylbenzene and xylene) in two areas in Ontario, Canada. In
paper [24], statistical imputation methods such as the generation of a Weibull distribution
were applied to substitute for missing values in gaseous pollutant data sets. In another
study, [25], five different methods–mean imputation, k-NN, conditional mean imputation,
multiple imputation and Bayesian principal component analysis imputation–were used
to reconstruct air quality data sets in Temuco, Chile. In Ref. [26], the method for the
imputation of missing values of a variable was proposed as the mean of all observations
taken at the same time during a year at the same station (hour mean method), the mean of
all values taken at the same time at different stations (row mean method) and the mean
between the previous and next known values (last and next method). For the imputation of
missing data from an air quality study in London, ref. [27] used and compared the methods
of linear interpolation, cubic spline interpolation, EWMA (exponentially weighted moving
average), multivariate imputation from the mean and MICE (multiple imputation by
chained equation). In [28], the authors used a new method to impute missing values in two
sets of air quality data. They compared MTCAN (multi-directional temporal convolutional
artificial neural network) with other known methods: SVR (regression support vector
machine), recurrent neural networks (RNN) and convolutional neural networks (CNN). In
ref. [29], a new imputation method for a large number of consecutive missing values of air
pollutant measurements for the case of PM2.5 (particles of 2.5 µm or less) in New York was
proposed.

Sometimes researchers eliminate observations with missing values or a known impu-
tation method is chosen without the certainty that the chosen method achieves a better,
equal or worse approximation than other known methods in relation to the data pattern
inherent in the set. There is no perfect method and it generally depends on the preferences
of the researchers [20].

The aim of this study is to investigate which of the common missing data imputation
methods best fits the available data pattern. For this purpose, missing data imputation
simulations were performed with different methods as an application to a real case which is
used as a first step for a further study on pollution prediction in the region of Silesia, Poland.

This study provides a relatively fast and efficient computational method to choose
the imputation method among the best known ones or those to be tested in order to
perform the imputations of missing values of data sets prior to other subsequent studies
that require complete data sets, as is the case for time series. For this purpose, the method
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was applied to data from seven pollution stations to observe the performance of the method
for comparison.

This methodology consists of taking a data set and eliminating the observations that
contain at least one missing value in any of the variables so that a data set with all known
observations is obtained. For each of the variables, known values are replaced by missing
values in k groups of equal size. These replacements are random and in such a way that
each observation of the variable is replaced only once by a missing value and assigned to
one of the k groups. All observations end up being replaced only once. In each variable
the replacement is performed independently of the rest; therefore, in the same observation
index (row of a table of values) there may be variables that contain a missing value and
others containing a known value. The missing values are imputed with each method in
each round. Thus, the performance can be compared when imputing the same missing
values by different methods. Another advantage is that, since the algorithm has replaced,
imputed and compared all observations only once, the entire set of values is trained and
validated so that the imputation methods demonstrate their ability to represent the data set
and its inherent distribution under equal conditions for all imputation methods.

Studies related to the absence of missing data in air quality research usually consider
the data to be Missing at Random (MAR) [23,30,31].

For each of the seven available stations, the following imputation methods were
applied: linear imputation (LI), predictive mean matching (PMM), random forest (RF),
unconditional mean (UMI), k-nearest neighbours (k-NN) and imputation by Kalman
smoothing on structural time series (Kalman).

To evaluate the performance of each of the above methods and for each station, RMSE
was used as a metric.

2. Materials and Methods
2.1. The Database

Observations of four air pollutants were used for this study: NO2, NOX, PM10 and SO2.
The selected air pollutant measurement stations are located in the region of Silesia

(Poland). The map in Figure 1 shows their geographical distribution in the region and
Table 1 shows the geographical coordinates and altitude of each station.
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Table 1. Stations.

Station Code Site Latitude
(Degree)

Longitude
(Degree) Elevation (m)

ST 1 PL0184A Czestochowa 50.836389 19.130111 265
ST 9 PL0242A Zabrze 50.316500 18.772375 255
ST 11 PL0529A Sosnowiec 50.285956 19.184399 250
ST 12 PL0008A Katowice 50.264611 18.975028 273
ST 18 PL0239A Rybnik 50.111181 18.516139 245
ST 19 PL0240A Tychy 50.099903 18.990236 252

ST 20 PL0241A Wodzislaw
Slaski 50.007629 18.455548 271

The pollutant records belonging to these stations span from 1 January 2016 to 31
December 2020, i.e., a period of 5 full years, with the frequency of observations being
hourly. Table 2 shows the total number of observations in the original dataset for each
station and the number of missing observations for each pollutant and station.

Table 2. Total observations and missing values.

ST 1 ST 9 ST 11 ST 12 ST 18 ST 19 ST 20

Total observations 43,494 43,784 43,370 43,641 43,681 43,582 43,768
NO2 357 343 116 311 392 62 222

Missing values NOX 358 344 115 312 396 62 235
PM10 174 605 173 867 238 106 168
SO2 419 310 255 281 203 91 150

2.2. Methodology

In order to obtain the most appropriate imputation method for the available data, the
following procedure was followed, which can be generalized for j variables and k validation
set. In this paper, the study was carried out for 4 pollutants (Xj), j = 1, 2, 3, 4, from 7 air

quality measurement stations
(
Xj

)s s = 1, 2, . . . , 7 and 5 validation sets per pollutant (X j
k),

k = 1, 2, . . . , 5.
The study was repeated in a similar way for each of the s stations and for each

imputation method to be compared.

2.2.1. Pruning of Observations with Missing Values

For each of the stations belonging to the study, all the observations in which a missing
value is found for any of the four pollutants were eliminated, i.e., if a value was missing
for a given measurement of a pollutant on a given day, the record for that measurement of
the four pollutants at that station was eliminated. This results in a data set that consists of
100% of real, observed values and has no empty observations. Table 3 shows the resulting
number of observations for each station after pruning, and Figure 2 clarifies the procedure
followed in a schematic way.

Table 3. Total observations after missing values purge.

ST 1 ST 9 ST 11 ST 12 ST 18 ST 19 ST 20

42,718 42,765 43,313 42,255 42,977 43,372 43,296
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Figure 2. Purging missing values.

2.2.2. Formation of Training and Validation Sets

For each station and for each of the variables Xj, j = 1, 2, 3, 4 random extractions
of values are performed to form training and validation sets to perform a k training and
validation sets to perform a k-fold cross validation.

Extractions are made without replacement of n
k observations of the variable Xj variable

in such a way that the i indices of the observations extracted from one variable need not
be equal to those of another variable for the same index k, as shown in Figure 3. In this
way, known values are replaced by missing values, such that each known value is extracted
once and only once among the sets and, after the extraction process, each known value
is extracted once and only once among the K sets and, after the process of extractions, no
value is left without being extracted and replaced by a missing value.
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The union of the values extracted in each round for each variable equals the pruned
set of observations.

2.2.3. Imputation

Imputation is performed for each of the imputation methods studied on the set of
values resulting from extraction k, with a training data set consisting of 80% of the data for
each variable

(
n − n

K
)
. See Figure 4.
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In this way, all known values can be replaced by missing values and the imputation
of all known values divided into K groups can be carried out and compared with 100%
of the known values and determine a performance for each imputation model, variable
and station. The missing values that are imputed in each round are the same for each
imputation method. In this way, the performance of the methods can be compared with
each other.

2.2.4. Measurement of Model Performance (Error Metrics)

To determine the validity of the imputation method, a comparison is made between the
imputed missing value and the known missing value that was extracted. The performance
of each imputation model and for each pair of sets (training/validation) is measured by
RMSE error. To represent the performance of each model, the average RMSE value obtained
from the average of each variable for each of the imputations is taken as the result. See
Figure 5.



Appl. Sci. 2022, 12, 6465 7 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18 
 

 
Figure 5. Comparison and measurement of performance. 

Since the values in the study correspond to measurements of air pollutants and these 
must be greater than or equal to zero, imputation models that obtained any negative val-
ues were rejected. 

In relation to possible outliers, a previous analysis was carried out detecting extreme 
values; however, these observations are validated data and therefore they are real and 
considered correct. Non-validated data were eliminated as they are not considered correct 
and were taken as missing values. 

2.3. Imputation Models 
2.3.1. Imputation by Linear Interpolation (LI) 

The R package used to perform imputation by linear interpolation is imputeTS [32] 
and the na_interpolation function. The imputation of missing values by interpolation is a 
simple method and relatively good performance is obtained when the imputation is of 
isolated missing values of time series. The following paper, [33], gives a general overview 
of the package and the functions it provides and refs. [34,35] explain the theory and com-
putation of the interpolation function. 

2.3.2. Random Forest Imputation (RF) 
The random forest algorithm for imputation used in this study is the one incorpo-

rated in the R package MICE [36], which is based on Breiman’s algorithm and is detailed 
in [37,38]. This non-parametric method [39] is based on establishing a model for each of 
the features using the instances of the rest of the attributes and makes a prediction. In this 
way, the missing values for that feature are obtained. The process is repeated until the 
stop criterion is reached and this is performed in the same way for the rest of the attributes 
in an iterative way [40]. 

In this study the value of parameter ntree chosen was 10. 

2.3.3. K-nearest Neighbour Imputation (k-NN) 
The k-NN algorithm used to perform the imputation is the one developed by [41] 

from R’s VIM package and explained in [42]. This method identifies the k-nearest neigh-

Figure 5. Comparison and measurement of performance.

Since the values in the study correspond to measurements of air pollutants and these
must be greater than or equal to zero, imputation models that obtained any negative values
were rejected.

In relation to possible outliers, a previous analysis was carried out detecting extreme
values; however, these observations are validated data and therefore they are real and
considered correct. Non-validated data were eliminated as they are not considered correct
and were taken as missing values.

2.3. Imputation Models
2.3.1. Imputation by Linear Interpolation (LI)

The R package used to perform imputation by linear interpolation is imputeTS [32]
and the na_interpolation function. The imputation of missing values by interpolation
is a simple method and relatively good performance is obtained when the imputation
is of isolated missing values of time series. The following paper, [33], gives a general
overview of the package and the functions it provides and refs. [34,35] explain the theory
and computation of the interpolation function.

2.3.2. Random Forest Imputation (RF)

The random forest algorithm for imputation used in this study is the one incorporated
in the R package MICE [36], which is based on Breiman’s algorithm and is detailed in [37,38].
This non-parametric method [39] is based on establishing a model for each of the features
using the instances of the rest of the attributes and makes a prediction. In this way, the
missing values for that feature are obtained. The process is repeated until the stop criterion
is reached and this is performed in the same way for the rest of the attributes in an iterative
way [40].

In this study the value of parameter ntree chosen was 10.

2.3.3. K-Nearest Neighbour Imputation (k-NN)

The k-NN algorithm used to perform the imputation is the one developed by [41] from
R’s VIM package and explained in [42]. This method identifies the k-nearest neighbour
observations that have non-missing values for each feature, taking as distance measure a
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variation of the Gower distance [43]. Finally, it performs the imputation with the weighted
average of their k neighbours [44].

The value of k chosen for the feature imputations is the same for each station and for
each of the stations it is the root of n [9,15] where n is the number of complete observations
of the station after pruning.

2.3.4. Unconditional Mean Imputation (UMI)

The method used in this study to perform the unconditional imputation of the mean
is “mean” from the MICE package of R [45,46], whereby in the instances that are unknown,
the algorithm completes them by introducing into all of them a single value obtained by
calculating the mean of the other samples that are known [47]. In this way, the missing
instances are imputed by values that lie in the centre of the distribution. This type of
imputation usually has some undesirable problems such as an inadequate estimation of
the variance and a deviation from the correlation between the features [48].

2.3.5. Predictive Mean Matching (PMM)

The MICE package was used to implement the predictive mean matching (PMM)
method.

The general idea of this semi-parametric method is that a random instance is chosen
from all complete cases that have a predictive value close to the missing case [49]. The
method takes values from the data set, so they are reasonable and there are no meaningless
imputed values [45,50]. In [51], the idea described above and computational details are
expanded.

PMM is a method that is particularly suitable for quantitative variables that do not
have a normal distribution [52].

For both random forest, unconditional mean and PMM methods, the number of
multiple imputations m and maxit iterations is 5, in both cases.

2.3.6. Imputation by Kalman Smoothing (Kalman)

The Kalman imputation of the R package imputeTS, explained in [32,33] was used.
This method is based on the Kalman filter [53], which consists of a recursive data assim-
ilation system. This method was developed in [54,55]. In this paper, the imputation by
Kalman smoothing on structural time series models was chosen, and to obtain a more
accurate estimation, a Kalman smoothing algorithm which presents a backward recursion
was used [56,57].

2.3.7. Performance Measurements

In this study, the performance of the imputation models was evaluated using the
root-mean-squared error (RMSE) [58], establishing as the best model the one with the
lowest RMSE value.

The k-fold cross-validation method was used to use part of the data for missing value
imputations and another part to check the predicted values against the available values,
being k = 5 parts. More information on this method can be found in [59].

3. Results and Discussion

The mean RMSE values of the k = 5 imputations for each variable and each imputation
method at each of the station 1 are shown in Table 4.

Each of the cells of the indicated tables represents the average RMSE value of the
RMSE values obtained in each of the k imputations with 20% of the missing values carried
out for the corresponding method and variable.
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Table 4. RMSE STATION ST 1.

NO2 NOX PM10 SO2

LI 2.0139 6.3158 3.4445 1.2752
PMM 4.2221 12.5949 9.2199 4.1339
RF 3.9682 12.0137 9.4291 4.1745
UMI 6.2312 15.9041 12.7478 4.8826
KNN 2.9648 10.9477 8.1196 3.5951
KALMAN 2.0322 6.3102 3.3954 1.2494

That is, each of the cells in Table 4 was obtained as follows:
As an example, the results for station ST 1 for the linear imputation method are

shown in Table 5. For each variable and for each imputation method, 5 RMSE values were
determined, one for each k experiment with 20% missing values (cross validation with
k = 5) in such a way that 100% of the observations were once and only once a missing value
in one of the subsets elaborated for each k, k = 1, 2, . . . , 5. Thus, all observations were
compared between their true value and their imputed value for each variable and for each
imputation method. Once the RMSE values were determined for each of the k subsets that
have 20% of missing values, the mean value of the method is calculated for each variable
and then the mean RMSE value that determines the performance of the method at the
station is found. Therefore, the mean RMSE values for each variable NO2, NOX, PM10
and SO2 at station ST 1 for the linear imputation method are, respectively, 2.0138, 6.3158,
3.4444 and 1.2751. These are incorporated in Table 5 of station ST 1 for the linear imputation
method in order to be able to compare these results with the rest of the method at the same
station. The mean RMSE value of all the variables obtained from the mean RMSE values of
each variable is the index responsible for representing the performance of the imputation
method at that station and is included in the graph in Figure A, in order to compare the
imputation methods at each of the stations.

Table 5. RMSE Linear imputation–STATION ST 1.

k NO2 NOX PM10 SO2

1 1.9895 6.6772 3.3359 1.6199
2 1.9484 6.5174 3.6770 1.2227
3 1.9662 6.3106 3.3713 1.1784
4 2.0774 5.8708 3.6115 1.2146
5 2.0876 6.2029 3.2261 1.1401

Mean 2.0138 6.3158 3.4444 1.2751

RMSE 3.2623

In this way, by comparing the results obtained for each method and at each station,
it is possible to determine which method achieves lower RMSE results at each station
and, therefore, is the most suitable method for imputation of missing data for subsequent
studies. By comparing the different stations with each other, it allows us to determine
whether the same imputation method is suitable for all stations or whether at each station
a different method should be used to better represent the missing data.

The mean RMSE values of the k = 5 imputations for each variable and each imputation
method at other stations are shown in Tables 6–11.
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Table 6. RMSE STATION ST 9.

NO2 NOX PM10 SO2

LI 2.1045 5.9004 5.1703 1.9180
PMM 5.1576 13.6044 15.5133 5.9317
RF 4.6459 13.4225 15.5702 5.8177
UMI 7.0666 19.8137 23.4081 6.9183
KNN 3.4742 12.4591 14.0098 4.7293
KALMAN 2.0923 5.7102 5.1888 1.9426

Table 7. RMSE STATION ST 11.

NO2 NOX PM10 SO2

LI 1.9863 4.4286 3.8917 1.5538
PMM 4.0866 9.6485 11.9426 5.1804
RF 4.1306 9.6750 11.5941 5.0176
UMI 6.5735 13.4647 15.2220 5.9825
KNN 3.0239 7.6957 9.1227 3.8284
KALMAN 1.9719 4.3355 3.7875 1.5584

Table 8. RMSE STATION ST 12.

NO2 NOX PM10 SO2

LI 2.5307 9.1267 3.6796 1.3225
PMM 6.0611 23.8287 12.1254 4.7245
RF 5.8515 22.6786 11.7949 4.5565
UMI 8.1936 27.8836 14.8984 4.6735
KNN 4.3469 19.0391 9.4373 3.4929
KALMAN 2.4808 9.6010 3.6274 1.3312

Table 9. RMSE STATION ST 18.

NO2 NOX PM10 SO2

LI 2.0815 5.2487 8.5045 2.0955
PMM 4.5285 11.2938 20.5134 5.6155
RF 3.9959 11.0202 20.2237 5.3490
UMI 6.2930 15.8865 31.1047 7.3355
KNN 2.9743 9.5360 18.5270 4.6613
KALMAN 2.0940 5.1613 8.3576 2.0418

Table 10. RMSE STATION ST 19.

NO2 NOX PM10 SO2

LI 2.1384 7.3054 3.6977 1.5708
PMM 4.6330 17.7836 13.8532 5.1149
RF 4.4213 17.1405 13.2735 4.9543
UMI 6.3013 19.9789 17.8213 6.0724
KNN 3.2546 13.9541 10.9494 3.9191
KALMAN 2.1361 7.2839 3.8053 1.5541
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Table 11. RMSE STATION ST 20.

NO2 NOX PM10 SO2

LI 1.8332 3.9101 6.6309 1.9148
PMM 3.6602 7.7101 14.8029 4.9421
RF 3.4418 7.6308 14.7711 4.8554
UMI 6.0967 11.6046 22.8886 6.6373
KNN 2.5108 6.4942 12.7487 3.8834
KALMAN 1.8604 3.8728 6.5369 1.8960

In addition to the imputation methods indicated above, other imputation methods
from the MICE package of the R software such as random Bayesian linear regression (norm
function), bootstrap linear regression (norm.boot function) and linear regression predicted
values (norm.predict function) were also tested but were discarded because they impute
negative values in data sets which, by their nature as records of air pollutant concentration
measurements, contain all non-negative values.

Figure 6 shows the total RMSE value assigned to each station as the average RMSE
error value of the 4 variables at each station indicated as a point for each of the imputation
methods. The imputation methods are represented by different colours. The points between
stations for each method were joined in the plot to emphasize how the RMSE error increases
or decreases analogously at each station according to the imputation method used. Thus, a
different colour curve is displayed for each imputation method.
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As shown in Figure 6, the average RMSE for each of the methods at each station
behaves similarly at all stations. It can be seen that all the imputation methods have a
lower RMSE at stations ST 1, ST 11 and ST 20. The linear and Kalman imputation methods
have practically identical results and their curves in the graph in Figure 6 are the ones with
the smallest variations between the maximum and minimum RMSE between stations in
relation to the rest of the stations, i.e., they are the ones with the flattest curves.

Figures 7–10 show the RMSE values for each pollutant: NO2, NOx, PM10 and SO2. In
each of the figures, for each method, the RMSE values obtained are shown in bar graphs.
These bars are grouped by each of the imputation methods and each one represents the
value obtained at each station, differentiated by colours, as shown in the legend of the
graph. The following sections discuss the results obtained for each of the variables.
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3.1. NO2

Studying the performance of each variable individually, Figure 7 shows the results
obtained for the variable NO2.

It is clear that the linear and Kalman imputation methods are the ones that obtain the
lowest RMSE values, being between 1.83–2.53 for LI and between 1.86–2.48 for Kalman.
The values obtained are quite consistent for each method for all stations. Slightly higher
values were obtained at station ST 12 (2.53 and 2.48, respectively) and the lowest RMSE
values were obtained at station ST 20, with an error of 1.83 for LI and 1.86 for Kalman. ST
12 is the station that obtained the highest RMSE in all the methods, being that the UMI
method is the one that generates a much higher RMSE error in all the stations.

3.2. NOX

Figure 8 shows the mean RMSE of each imputation method used in each of the stations
selected in the study for the variable NOX. It can be seen that the profile of mean RMSE
values is not as regular as in the case of the variable NO2. The linear imputation and
Kalman smoothing methods are the ones that obtain lower values, with station ST 20
followed by ST 11 having the lowest mean RMSE values. At station ST 20, the RMSE error
is 3.91 for LI and 3.97 for Kalman, while at ST 11 the RMSE error is 4.42 for LI and 4.33
for Kalman. Again, ST 12 is the station with the highest mean RMSE values and the worst
performing imputation method is unconditional mean imputation, with an error value
of 27.88.

3.3. PM10

In contrast, in Figure 9 it can be seen that the worst performance for the PM10 variable
corresponds to station ST 18 (light blue-coloured bars) for all imputation methods. The
lowest RMSE value is 3.39 and it was obtained for Kalman at ST 1, followed by 3.44 for LI,
also at ST 1. However, at station ST 12, the mean values of RMSE obtained for all imputation
methods remain approximately at the mean level of the rest of the stations. This station
had the highest RMSE values for the variables NO2 and NOX, as discussed above. Again,
the best performing imputation methods for all stations are the linear imputation method
and Kalman smoothing. The station with the lowest mean RMSE for all the imputation
methods studied is station ST 1. The RMSE value obtained for the unconditional mean
imputation at station ST 18 is 31.10, which is very high with respect to the rest.
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3.4. SO2

The results for the SO2 variable can be seen in Figure 10, with the range of mean
RMSE, in relation to the stations, for each method, being lower than in the case of the
NOX and PM10 variables. As in the case of the other variables, the linear imputation and
Kalman smoothing models are the ones that obtained the lowest mean RMSE values for
all the stations, and the unconditional mean imputation method is the one with the worst
performance. The lowest RMSE value is 1.24 and it was obtained for the Kalman method at
station ST 1, followed by 1.27 for linear imputation, also at ST 1. However, for this variable,
the highest mean RMSE value is not achieved with the unconditional mean imputation
method but occurs for the PMM method at station ST 1, with a value of 9.42, which is
strangely high. The rest of the stations achieved similar mean RMSE values for this method.
ST 1 is the station that achieved the lowest mean RMSE value for the rest of the methods.

As we have seen for each of the variables, the worst performing imputation method is
UMI. This result corresponds to [60], which indicated that, in general, the UMI method is
not recommended.

In the existing literature, it has been observed that authors use different methods to
create the training and validation sets as well as the way of performing the imputations.
In a study conducted on the air quality monitoring dataset [61], it was determined that
the method that achieved the best results in MAE and RMSE metrics was random forest
imputation, with missing value rates of 5, 10, 20, 20, 20, 30 and 40%. In our study, the
best results were obtained for the Kalman and linear imputation methods. The number of
packets to be used depends on the methods selected for comparison. For example, ref. [61]
used five R packages (MICE, VIM, AMELIA, missForest and missCompare) compared
to the three R packages (MICE, VIM, imputeTS) used in this study, resulting in a lower
computational cost.

Some authors, such as those in ref. [62], divide the training and validation sets accord-
ing to a 70:30 ratio and according to the assumptions they use, randomly but manually
removing 50% every 21 days in each quarter to simulate the MCAR and using the RMSE
as a metric. In [63], they constructed sets with missing data percentages of 10% and 25%,
varying the gap lengths up to 50 h. Another study, [64], proposes a time series imputation
method using deep learning, with good performance, but with the drawback that the model
presents difficulties for series with seasonality, using the MAPE as a performance metric.

Numerous studies, such as [44,62,65,66], use various types of neural networks to
perform missing value imputations. Although they can obtain high performances, they
have a very high computational cost, especially for large data sets, and require powerful
computational equipment. For example, a computationally powerful computer such
as Intel® Xeon® E5-2650v4 equipped with 128 GB of RAM and NDIVIA TitanX GPU
acceleration was used for the calculations performed in [64], while in our study, we used
an HP Pavilion laptop Intel® Core™ i7 CPU@1.30GHz equipped with 16 GB of RAM.

In the studies, the total rate of missing data in the original data set can be very different
from the rate of data presented by each variable [61]. In our study the rate of data that
was removed is always the same for each variable and equal to the total once the initial
purging is performed, but with the consideration that, with the same number of missing
values in each variable, these correspond to different observations in each variable for each
of the rounds.

In [22], it is stated that linear imputation methods are not suitable because meteorology
may affect the missing values. In our study, we found that this method obtains good results
by replacing actual observations with missing data and imputing the same values with
each imputation method at several stations and calculating the RMSE error. This may be
true, but with hourly records, isolated missing values do not seem to penalize this method.

In this study we established a methodology for comparing imputation methods to be
applied in subsequent studies. During the validation of the method with seven different
stations and five imputation methods, it was seen that sometimes more complex methods
do not perform better than simpler ones. As indicated by [67], the methods that best impute
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missing data from a station may change depending on the type of pollutant, the type of
station or the frequency with which the data are recorded, among other factors.

4. Conclusions

Missing value imputation is a preliminary step to be performed in many research
studies when incomplete data sets are obtained.

This article develops a methodology to compare various imputation methods, studying
which method best fits the missing data for four pollutants recorded at seven different
air quality measurement stations in Silesia, Poland as a pre-analysis to another study.
The imputation methods used are linear imputation, PMM, RF, UMI, k-NN and Kalman
structural smoothing.

All methods were evaluated by RMSE and validation was carried out using a cross-
validation method.

The novelty of this study is the way in which the substitutions of missing values from
the fully known data set are made. To perform the comparison, a pruning of missing
values from the observed data set was performed beforehand and missing values were
introduced to the data set with all known values so that, throughout the method, all known
observations were replaced once and only once by a missing value and compared with the
known value. In this way, it can be analyzed which imputation method performs best with
the data pattern of the study and choose it for further investigation. This is achieved at
relatively low computational cost.

The lowest RMSE error values were obtained for the NO2 and SO2 variables relative
to NOx and PM10. However, this was not the case for all stations, indicating that not all
variables have the same performance when imputations are performed on their missing
data. The lowest RMSE values for each variable occurred only at two stations out of the
total seven studied, stations ST 1 and ST 20. Both are located 100 km away in a straight line.
At station ST 20, the pollutant NO2 obtained an RMSE of 1.83 with the linear imputation
method, and NOx obtained an RMSE of 3.87 with Kalman imputation. At station ST 1, the
pollutant PM10 using Kalman imputation achieved an RMSE of 3.39, and SO2 achieved an
RMSE of 1.27 using linear imputation.

The results show that the Kalman structural smoothing and linear imputation methods
obtained the best results with a mean RMSE value very close to each other at all stations.
The PMM and RF methods also obtained very similar results, although with higher RMSE
values than the Kalman and linear imputation methods. The worst performing method in
this study was UMI.
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