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Abstract

Feature selection is a key step when dealing with high-dimensional data. In
particular, these techniques simplify the process of knowledge discovery from
the data in fields like biomedicine, bioinformatics, genetics or chemometrics
by selecting the most relevant features out of the noisy, redundant and irrel-
evant features. A problem that arises in many of these applications is that
the outcome of the feature selection algorithm is not stable. Thus, small
variations in the data may yield very different feature rankings. Assessing
the stability of these methods becomes an important issue in the previously
mentioned situations, but it has been long overlooked in the literature. We
propose an information-theoretic approach based on the Jensen-Shannon di-
vergence to quantify this robustness. Unlike other stability measures, this
metric is suitable for different algorithm outcomes: full ranked lists, top-k
lists (feature subsets) as well as the lesser studied partial ranked lists that
keep the k best ranked elements. This generalized metric quantifies the dif-
ference among a whole set of lists with the same size, following a probabilistic
approach and being able to give more importance to the disagreements that
appear at the top of the list. Moreover, it possesses desirable properties for
a stability metric including correction for change, and upper/lower bounds
and conditions for a deterministic selection. We illustrate the use of this
stability metric with data generated in a fully controlled way and compare
it with popular metrics including the Spearman’s rank correlation and the
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Kuncheva’s index on feature ranking and selection outcomes respectively.

Keywords: Feature selection, feature ranking, stability, robustness,
Jensen-Shannon divergence

1. Introduction

Feature selection is a key step in many classification problems [22, 48, 5],
in particular in those with high dimensional datasets. It is well known that
the size of the training data set needed to calibrate a model grows exponen-
tially with the number of dimensions (the curse of the dimensionality prob-
lem). Feature selection techniques measure the importance of the features
according to the value of a given function [22]. The main motivation to im-
plement these techniques has been to improve the classification performance
by selecting an optimum subset of features. Numerous papers have examined
feature selection with respect to classification performance [42, 12, 33].

Additionally, the process of knowledge discovery from the data in fields
like biomedicine, bioinformatics, genetics or chemometrics is simplified with
the use of feature selection methods. Removing the noisy and irrelevant fea-
tures while keeping the most relevant features is essential for understanding
the underlying process. In the medical field, for instance, it is well known that
preventive screening for colorectal cancer and specialized care are changing
the trends in reported mortality [3]. For these risk prediction applications,
reducing the data dimensionality can mitigate overfitting and improve model
performance [4, 13, 17, 14] to identify people at increased risk of developing
this type of cancer. Moreover, feature selection methods become an impor-
tant tool to uncover the risk factors (features, in the context of this work)
for this disease [30, 16].

Identifying the most relevant features for the problem studied has been
the goal of many research papers. It has been applied to discriminate different
types of cancer [8, 21], to categorize healthy and diseased tissue [18], to
identify people with higher risk to develop a disease [16] or to select genes
related to a disease [43, 6, 2].

Although feature selection techniques are of great help to identify the
most relevant features in these domains, a problem that arises in many prac-
tical problems is that the outcome of the feature selection algorithm does
not tend to be stable in the sense that small variations in the data may yield
to very different feature rankings. Stability (or robustness) issues have long
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been overlooked in the literature. However, the topic of robustness of feature
selection techniques has attracted an increasing interest in the machine learn-
ing field in the past few years [29, 25, 11, 50, 23, 51, 40, 1, 20, 39]. The issues
have arisen perhaps as a consequence of the difficulties of reproducing differ-
ent research findings. Evaluating the stability of ranked feature (or top-k)
lists that come out of the feature ranking (or selection) techniques becomes
crucial before trying to gain insight into the data. Otherwise, the conclusions
derived from the study may be completely unreliable. In order to measure
the stability, suitable metrics for each output format (full ranked feature
lists, partial ranked lists or top-k lists) of the feature selection algorithms are
required.

The Spearman’s rank correlation coefficient [28, 29? ] and Canberra dis-
tance [25] have been proposed to measure the similarity when the outcome
representation is a full ranked list. When the goal is to measure the simi-
larity between top-k lists (also referred to as feature subsets), a wide variety
of measures have been proposed: Jaccard distance [29? ], an adaptation
of the Tanimoto distance [29], Kuncheva’s stability index [32], Consistency
measures [45], Dice-sorense’s index [36], Ochiai’s index [52] or Percentage of
overlapping features [24]. Among all of them, the Spearman rank correlation
coefficient SR, Jaccard stability index [29, 41] or Kuncheva’s stability index
[32] KI are possibly the most widely used metrics.

An alternative that lies between full ranked lists (all features with ranking
information) and partial lists (a subset with the top-k features, where all of
them are assumed to have the same importance) is the use of partial ranked
lists, that is, a list with the top-k features and the relative ranking among
them. This approach has been used in the information retrieval domain [7]
to evaluate queries and it seems more natural when the goal is to analyze a
subset of features. To our knowledge only a modified version of the Canberra
distance has been proposed for this purpose [27].

It seems reasonable that when it comes to assess the robustness of feature
selection techniques, two ranked lists should be considered much less similar
if their differences occurred at the ”top” rather than at the ”bottom” of the
lists. Unlike metrics such as the Kendall’s tau and the Spearman’s rank corre-
lation coefficient that do not capture this information, we propose a stability
measure based on information theory that takes this into consideration. Our
proposal is based on mapping each ranked list into a probability distribution
and then, measuring the dissimilarity among these distributions using the
information-theoretic Jensen-Shannon divergence. Furthermore, this single

3



metric, SJS (Similarity based on the Jensen-Shannon divergence) applies to
full ranked lists, partial ranked lists as well as top-k lists with equal length.
Furthermore, it also fulfills the desirable properties for a stability metric.

The rest of this paper is organized as follows: In Section 2 we formulate
the problem of feature selection. In Section 3 we describe the robustness
issue and common approaches to deal with it. The new metric based on the
Jensen-Shannon divergence SJS is presented in Section 4. A discussion of the
desired properties of the stability metrics is in Section 5 and a comparison
among several feature and ranking techniques in Section 6. Experimental
evaluation is shown in Section 7. Finally Section 8 summarizes our main
conclusions.

2. Feature Selection Techniques

Consider a training dataset D = {(xi, di), i = 1, . . . ,M} with M examples
and a class label d associated with each sample. Each sample xi is a t-
dimensional vector xi = (xi1, xi2, . . . xit) where each component xij represents
the value of a given feature fj for that example i, that is, fj(xi) = xij.

Feature selection techniques measure the importance of a feature or a sub-
set of features according to a given measure. These techniques may provide
many benefits, the most important ones being [48]: (a) to mitigate the curse
of dimensionality, (b) to gain a deeper insight into the underlying processes
that generated the data, and (c) to provide faster and more cost-effective
prediction models.

From a structural point of view, these algorithms can be divided into
three categories [22, 10, 12]: filter, wrapper and embedded approaches. The
filter techniques rely on general characteristics of the training data to rank the
features according to a metric without involving any learning algorithm. The
wrapper approaches incorporate the interaction between the feature selection
process and the classification model in order to determine the value of a
given feature subset. Finally, in the embedded techniques, the feature search
mechanism is built into the classifier model and are therefore specific to a
given inductive learning algorithm.

From a functional point of view the output of a feature selection algorithm
may be a ranking (weighting-score) on the features or feature set. Obviously,
representation changes are possible and thus, a feature subset can be ex-
tracted from a full ranked list by selecting the most important features and
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a partial ranked list can be also derived directly from the full ranking by
removing the least relevant features.

Consider now a feature ranking algorithm that leads to a ranking vector
r with components

r = (r1, r2, r3, . . . , rt) (1)

where 1 ≤ ri ≤ t. Note that 1 is considered the highest rank.
Consider also a top-k list as the outcome of a feature selection technique

s = (s1, s2, s3, . . . , st), si ∈ {0, 1} (2)

where 1 indicates the presence of a feature and 0 the absence and
∑t

i=1 si = k
for a top-k list.

Lists with a full ranking of features can be converted into top-k lists that
contain the most important k features. Converting a ranking output into a
feature subset is easily conducted according to

si =

{
1 if ri ≤ k
0 if otherwise

3. Related work: Robustness of feature selection techniques

A fundamental property of a feature selection method is its robustness [23,
39, 46]. This becomes critical in many domains where the stability of a feature
selection method is crucial for interpretation by domain experts. Robustness
has been defined as the sensitivity of the method to small perturbations in
the training set [29].

Non-stability of feature selection is a problem that may appear in prac-
tical applications, but in particular it is more noticeable when the available
dataset is small and the feature dimensionality is high, as is common in
biomedicine, bioinformatics, and chemometrics. Instability issues make the
feature rankings unreliable for clinical use. Therefore, it becomes essential
to provide metrics to evaluate the robustness of given feature selection tech-
niques when applied to our data. Efforts have also been made in order to
increase the robustness of feature selection methods [40, 1, 35, 44, 9].

Suppose we ran a feature ranking algorithm K times and obtained a set
of rankings A = {r1, r2, . . . rK}. For the purpose of illustration, Figure 1
shows an example where instances are defined by ten features (t = 10) and
the feature ranking algorithm is applied to five different subsamples of the
data (K = 5)
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Figure 1: Illustration of the stability problem for feature ranking methods.

Once obtained, the dissimilarity among ranked lists can be measured at
different levels:

• Among full ranked lists
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• Among feature subsets (top-k lists)

• Among partial ranked lists (top-k ranked lists)

Thus, the outcomes for full ranked lists can be gathered in a matrix A with
elements rij with i = 1, . . . , t and j = 1, . . . , K that indicate the rank assigned
in run j for feature i. Note that Afr stands for set of lists with full ranking.

Afr =
[
r′1 r′2 r′3 r′4 r′5

]
=



3 9 7 8 7
2 1 2 3 3
4 7 3 5 2
9 6 10 9 8
5 3 5 1 4
10 5 8 7 9
7 10 9 10 10
8 2 6 6 5
1 4 1 2 1
6 8 4 4 6


10×5

Figure 2 shows the top-4 ranked lists and the top-4 lists for the exam-
ple presented above. Additionally, some of the stability metrics that are
commonly applied for each output format are also shown.

The outcomes for the top-4 lists can also be gathered in a matrix A∫ with
elements sij with i = 1, . . . , t and j = 1, . . . , K that indicate whether or not
the feature-i has been selected among the top-4 most relevant in the run-j.

As =
[
s′1 s′2 s′3 s′4 s′5

]
=



1 0 0 0 0
1 1 1 1 1
1 0 1 0 1
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
1 0 1 1 1
0 0 1 1 0


10×5

In the case of dealing with partial ranked lists, the set of lists can be
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Figure 2: Formats for feature selection techniques: full ranked lists, partial ranked lists
(top-k ranked lists) and top-k lists.
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represented in matrix Apr

Apr =



3 0 0 0 0
2 1 2 3 3
4 0 3 0 2
0 0 0 0 0
0 3 0 1 4
0 0 0 0 0
0 0 0 0 0
0 2 0 0 0
1 4 1 2 1
0 0 4 4 0


10×5

Ideally, this metric should be bounded by constants that do not depend
on the size of the sublist k or on the total number of features t. Additionally,
it should have a constant value for randomly generated subsets/rankings.

In general, stability is quantified as follows: (a) Given a set of rankings
(or subsets), pairwise similarities are computed and then reduced to a single
metric by averaging. (b) Defining a function applied on matrix A but not
based on pairwise similarities. (c) Visual analysis of stability.

3.1. Robustness analysis based on computing pairwise similarities

The most widely use approach to evaluate the stability of a feature selec-
tion (or ranking) algorithm that provides several results A = {r1, r2, . . . rK},
is to compute pairwise similarities and average the results. This approach
leads to a scalar value:

Φ(A) =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

SM(ri, rj) (3)

where SM refers to any similarity metric which takes as input the appropriate
format of A.

3.1.1. Similarity metric for full ranked lists

Consider r and r′ the output of a feature ranking technique applied to
two subsamples of D. The Spearman’s rank correlation coefficient [29? ,
37, 24] and Kendall’s tau coefficient [47, 49] have been proposed to measure
the similarity between rankings. Of the two, Spearman’s rank correlation
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coefficient (SR) is perhpas the most popular. The SR between two ranked
lists r and r′ is defined by

SR(r, r′) = 1− 6
t∑

i=1

(ri − r′i)
2

t(t2 − 1)
(4)

where ri is the rank of feature-i and t the total number of features. SR values
range from −1 to 1. It takes the value one when the rankings are identical
and the value zero when there is no agreement between rankings. This metric
is only suitable for lists with the same size.

3.1.2. Similarity metric for feature subsets

When the goal is to measure the similarity between feature subsets (also
referred as top-k lists) different authors have proposed similarity metrics:
Jaccard distance [29], Tanimoto distance [29], Kuncheva’s stability index [32],
Relative Hamming distance [19], Consistency measures, Dice-sorense’s index
[36], Ochiai’s index or Percentage of overlapping features [24]. Of these, the
Kuncheva’s stability index and the Jaccard distance appear to be the most
widely accepted [32, 1, 24].

Let consider now s and s′ as the output vector of a feature selection
algorithm applied to two different subsamples of D. The Kuncheva’s index
(KI) for these two top-k lists is given by

KI(s, s′) =
ot− k2

k(t− k)
(5)

where t is the total number of features, o is the number of features that are
present in both lists and k is the length of the sublists, that is,

∑t
i=1 si =∑t

i=1 s
′
i = k. The KI satisfies −1 < KI ≤ 1, achieving its maximum when

the two lists are identical (o = k) and values close to zero for independently
drawn lists s and s′ (i.e. o expected to be around k2/t).

The Jaccard stability index (JI) is defined as

JI(s, s′) ==
|s ∧ s′|
|s ∨ s′|

=
o

l
(6)

where s and s′ are the two feature subsets, o is the number of features that
are common in both lists and l the number of features that appear only in
one of the two lists. The JI lies in the range (0, 1).

10



3.1.3. Similarity metrics for top-k ranked lists

These include metrics like the Canberra distance, initially proposed to
assess the similarity between full feature rankings. These were extended to
partial ranked lists using a location parameter [26]. Additionally the Pear-
son’s rank correlation coefficient [29? , 37, 24] can also fall in this category.

3.2. Robustness analysis based on a function definition

Generally, we can define a function Φ(A) to avoid computing all pairwise
similarities. A popular measure in this category is the Relative Weighted
Consistency Measure CWrel [45]. This stability metric is a direct function of
the frequency of the features after feature selection. Other proposals within
this category include the frequency of selection normalized by the number of
feature subsets and averaged over all features [20].

3.3. Visual Analysis of Robustness

The outcome of a feature ranking algorithm can be interpreted as a point
in a high dimensional space (with t dimensions). The stability of a pairwise
ranking can be viewed as computing distances between points in that high
dimensional space and averaging the results. These (scalar) metrics can be
seen as projections to one dimensional space and their use only provides
guidance as to where the feature selector stands in relation to a stable and a
random ranking algorithm.

The use of graphical methods as a simple alternative approach to evaluate
the stability of feature ranking algorithms has been proposed in [16]. It has
been highlighted that if we change from a projection to a space with one
dimension, into a space with two or more dimensions, we can conduct a
visual analysis that allows the user to visually assess stability as well as
establish comparisons with other feature ranking or selection methods.

In [16], a dimensionality reduction technique like Multi-Dimensional Scal-
ing (MDS) [15] has been proposed for a visual analysis of robustness. It allows
the projection of data from a high dimensional space to a 2D or 3D space
while preserving the distance in the original high dimensional space.

Figure 3 illustrates this approach with several feature ranking algorithms:FR-
a, FR-b, FR-c, FR-d, FR-e. The algorithms are run on seven sub-samples of
the data. This figure allows the user to see in a single figure that the most
unstable algorithm is FR-a since the points are very scattered. The outcomes
of FR-d, however, are clustered together. The same applies to the FR-e and
these therefore are the most stable. This figure also allows the user to see
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Figure 3: Visual-based stability analysis for five hypothetical feature rankings (FR).

that FR-e generates a similar ranking to FR-d. Finally, note that FR-c is
very different to the aforementioned groups.

4. An Information Theoretic Approach to Measure Robustness

We propose a stability measure based on the Jensen-Shannon Divergence
[34] able to measure the discrepancy among several full ranked lists, among
partial ranked lists (top-k ranked lists) and also among feature subsets (top-k
lists). When the ranking is taken into account, the differences at the top of
the list would be considered more important than differences at the bottom
part, regardless of whether it is a full or a partial list. When we focus on top-
k lists, all the features would be given the same importance. This stability
metric applies to feature sets or feature rankings with the same cardinality.

Our approach to measure the stability of feature selection/ranking tech-
niques is based on mapping the output of the feature selection/ranking al-
gorithm into a probability distribution. Then, the distance between these
distributions is measured with the Jensen-Shannon divergence [34]. Below
we present our proposal for full ranked lists and then Section 4.1 and Section
4.2 describe its extension to top-k ranked lists and top-k lists, respectively.

Given the output of a feature ranking algorithm, features at the top of
the list should be given the highest probability (or weight) and it should
smoothly decrease according to the rank. Thus, following [7] the ranking
vector r = (r1, r2, r3, . . . , rt) would be mapped into the probability vector
p = (p1, p2, p3, . . . , pt) where

pi =
1

2t

(
1 +

t−ri∑
j=0

(ri + j)−1

)
(7)

where by design
∑t

i=1 pi = 1. We can thus quantify the similarity be-
tween two ranked lists r and r′ by measuring the divergence between the
distributions p and p′ associated with them.
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The most widely used metric for measuring the difference between two
probability distributions is the Kullback-Leibler (KL) divergence DKL [31],
given by

DKL(p||p′)) =
∑
i

pi log
pi
p′i

(8)

This measure is always non negative, taking values from 0 to∞, and DKL(p||q)) =
0 if p = q. The KL divergence, however, has two important drawbacks, since
(a) in general it is asymmetric (DKL(p||q)) 6= DKL(q||p)) thus not a true dis-
tance measure, and (b) it does not generalize to more than two distributions.
For this reason, we use the related Jensen-Shannon divergence [34], that is a
symmetric version of the Kullback-Leibler divergence and is given by

DJS(p||p′) =
1

2
(DKL(p||p̄) + DKL(p′||p̄)) (9)

where p̄ is the average of the distributions.
Given a set of K distributions {p1,p2, . . . ,pK}, where each one corre-

sponds to a run of a given feature ranking algorithm, we can use the Jensen-
Shannon divergence to measure the similarity among the distributions pro-
duced by different runs of the feature ranking algorithm, what can be ex-
pressed as

DJS(p1, . . . ,pK) =
1

K

K∑
i=1

DKL(pi||p̄) (10)

or equivalently as

DJS(p1, . . . ,pK) =
1

K

K∑
j=1

t∑
i=1

pij log
pij
p̄i

(11)

with pij being the probability assigned to feature i in the ranking output j
and p̄i the average probability assigned to feature i.

Some desirable constraints that this stability measure possesses includes:

• It falls in the interval [0 ,1]

• It takes the value zero for completely random rankings

• It takes the value one for stable rankings

• It is invariant to the ordering of the ranking probability distributions
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We define the stability metric SJS (Stability based on the Jensen-Shannon
divergence) as:

SJS(p1, . . . ,pK) = 1− DJS(p1, . . . ,pK)

D∗JS(p1, . . . ,pK)
(12)

where DJS is the Jensen-Shannon Divergence among the K ranking outcomes
and D∗JS is the divergence value for a ranking generation that is completely
random. In a random setting, p̄i = 1/t which leads to a constant value D∗JS

D∗JS(p1, . . . ,pK) =
1

K

K∑
j=1

t∑
i=1

pij log(pijt) =
1

K
K

t∑
i=1

pi log(pit) =
t∑

i=1

pi log(pit)

(13)
where pi is the probability assigned to a feature with rank ri. Note that this
maximum value depends exclusively on the number of features and it can be
computed beforehand with the mapping provided by (7).

We can check that:

• For a completely stable ranking algorithm, pij = p̄i in (11). That is,
the rank of feature-j is the same in any run-i of the feature ranking
algorithm. This leads to DJS = 0 and a stability metric SJS = 1

• A random ranking will lead to DJS = D∗JS and therefore SJS = 0

• For any ranking neither completely stable nor completely random, the
similarity metric SJS ∈ (0, 1). The closer to 1, the more stable the
algorithm is.

4.1. Extension to partial ranked lists

The similarity between partial ranked lists, that is, partial lists that con-
tain the top-k features with relative ranking information can be also measured
with the SJS metric. In this case, the probability is assigned to the top-k
ranked features is:

pi =


1

2k

(
1 +

k−ri∑
j=0

(ri + j)−1

)
if ri ≤ k

0 otherwise

(14)

The SJS is computed according to (12) with the normalizing factor D∗JS
given by (13) and the probability pi assigned to a feature with rank ri com-
puted as stated in (14).
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4.2. Extension to feature subsets

When we deal with feature subsets with a given number of top-k features,
a uniform probability is assigned to the selected features according to

pi =

{ 1

k
if ri ≤ k

0 otherwise
(15)

The SJS is computed according to (12) with the probability pi assigned
to a feature according to (15) and the normalizing factor D∗JS given by

D∗JS(p1, . . . ,pK) =
t∑

i=1

pi log(pit) =
t∑

i=1

1

k
log

(
1

k
t

)
= log

(
t

k

)
(16)

where k is the length of the sublist and t the total number of features.

5. Properties of Stability Metrics

There are some properties that a stability metric should possess so that
it allows for a useful interpretation of stability and similarly comparisons
among feature selection/ranking techniques. Kuncheva [32] was the first to
provide a list of desirable properties for a similarity measure SM between two
feature subsets of equal length (top-k lists). We should keep in mind that
the SM is then averaged over all pairs to obtain a stability metric according
to (3). We list the various properties in this section.

These properties, however, only refer to distance metrics and and they do
not necessarily imply that the stability index obtained by computing pairwise
similarities have the same properties as the stability measure. On the other
hand, there are other proposals such as [45] (or ours) that are not based
on calculating pairwise similarities. These properties were later refined in
[39] where the authors study the properties from the wider viewpoint of the
stability metric and not for the similarity metric.

Nogueira et al. [39] focused on feature selection techniques that may select
feature subsets of arbitrary cardinality identifying some properties necessary
for a given stability measure. These desirable properties are: upper and lower
bounds, correction for chance, maximum stability, and fully defined. They
further showed that many stability measures widely used in the literature do
not possess all these properties.

The four properties proposed by [32] are:
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Property 1: Upper and Lower Bounds

The stability metric Φ should have upper and lower bounds that do not
depend on the total number of features or the feature subset length.

Property 2: Maximum ←→ Deterministic Selection

The stability metric Φ(A) should reach its maximum if-and-only-if all
feature sets in A are identical.

Property 3: Correction For Chance

When the selection is random, that is feature sets of size ki have an
equal probability of being drawn, the expected value of Φ(A) should
be constant, which is set for convenience to 0.

Property 4: Fully Defined

The stability metric Φ(A) should be completely defined for any set A
of features. This property ensures the stability metric can cope with
feature subsets of any size.

This latter property enables the application of a stability metric to do-
mains where the feature selection algorithm may return subsets with different
number of features. Nonetheless, we consider this property as optional but
not essential since there are many scenarios in which the number of selected
features is fixed to a number k for a given study.

5.1. Properties of the Stability Metric SJS

The SJS stability measure presented in this work possesses the first three
of the aforementioned properties:

Property 1: Upper and Lower Bounds

The stability metric SJS takes values in the interval [0 ,1]

Property 2: Maximum ←→ Deterministic Selection

The stability metric SJS reaches its maximum value 1 if-and-only-if all
feature sets in A are identical.

Property 3: Correction For Chance

When the selection is random, there is a normalizing term D∗JS(p1, . . . ,pK)
that corresponds to the divergence value for a feature set or ranking
that is completely random. In that case, SJS takes the value 0.
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The stability metric we propose in this paper focusses on problems where
the feature rankings or feature subsets have the same length, hence the fully
defined property does not apply.

6. Comparison of Stability Metrics

The output of a technique that selects the most relevant features may
come in the form of: (a) a full ranking of features , (b) a top-k ranked list
either with a fixed length k or different cardinality, (c) feature sets with a
fixed length or (d) feature sets with arbitrary length. Table 6 summarizes for
which output format some widely known stability metrics can be applied.

It is evident that the stability metrics developed for feature subsets can-
not deal with rankings and in general the opposite is also true. There are
metrics, however, such us the Canberra distance initially proposed for full
feature rankings. By using the location parameter, this distance can also be
computed between upper partial lists of the original rankings [26]. Later, it
was extended [27] to partial ranked lists that may have different length.

Many of the metrics proposed for computing the distance between feature
sets can cope with lists of different length: Tanimoto, ASM, CWrel, the
relative Hamming distance, the Jaccard distance and Dice-Sorense’s index.
The popular Kuncheva index applies only to lists with equal length, though.
By contrast, our stability measure SJS can deal with full and partial ranked
lists as well as feature sets. In all cases the feature lists should have the same
number of elements.

Table 6 shows a general overview of the previously mentioned three prop-
erties: Upper and Lower Bounds, Maximum←→ Deterministic Selection and
Correction For Chance. Note that the Fully defined property defined in [39]
was included in Table 6 (last column with label top-k lists with arbitrary
length). As before, we consider it useful to determine whether or not a sta-
bility metric can be applied to a given output format but in our opinion this
cannot be viewed as an essential property by itself.

Some well known stability metrics do not verify the correction for change
property, such as Tanimoto, Relative Hamming distance, Jaccard distance,
Dice-sorense’s index or the Relative Weighted Consistency CWrel. Other
stability metrics like the Adjusted Stability Measure (ASM) or the Relative
Weighted Consistency CWrel do not fulfill the Maximum property. The main
strength of the metric SJS is that it can deal either with feature rankings
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Table 1: Eligible stability metrics for different feature rankings and feature subset formats

Stability metric
Full

ranked
lists

Partial
ranked
lists

Partial
ranked

lists with
different
length

Feature
subset
lists

Feature
subset

lists with
different
length

Canberra distance
[26]

Yes Yes - - -

Canberra adapted
distance [27]

Yes Yes Yes - -

Spearman’s rank
correlation coefficient

[29]
Yes Yes - Yes -

Tanimoto [29] - - - Yes Yes

Adjusted Stability
Measure ASM [38]

- - - Yes Yes

Kuncheva’s stability
index [32]

- - - Yes -

Relative Weighted
Consistency CWrel

[45]
- - - Yes Yes

Relative Hamming
distance [19]

- - - Yes Yes

Jaccard distance [29] - - - Yes Yes

Dice-sorense’s index
[36]

- - - Yes Yes

Our proposal:
Jensen-Shannon
stability metric

Yes Yes - Yes -

(full /partial) or feature subsets and additionally, it possesses the essential
properties for a stability metric.
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Table 2: Properties of stability metrics for feature selection methods

Stability metric
Upper and

Lower
bounds

Maximum Correction

Tanimoto [29]
Yes Yes -

Adjusted Stability
Measure ASM [38]

Yes - Yes

Kuncheva’s stability index
[32]

Yes Yes Yes

Relative Hamming
distance [19]

Yes Yes -

Jaccard distance [29]
Yes Yes -

Dice-sorense’s index [36] Yes Yes -
Relative Weighted

Consistency CWrel [45]
Yes - -

Our proposal:
Jensen-Shannon stability

Yes Yes Yes

7. Experimental Results

In this section we illustrate the stability metric SJS for the outcomes of
some hypothetical feature ranking algorithms. We generate sets of N = 100
rankings of l = 2000 features. We simulate several Feature Ranking (FR)
algorithms:

• FR-0 with 100 random rankings, that is, a completely random FR
algorithm

• FR-1 with one fixed output, and 99 random rankings.

• FR-2 with two identical fixed outputs, and 98 random rankings.

• FR-i with i identical fixed outputs, and 100− i random rankings.

• FR-100 with 100 identical rankings, that is, a stable FR technique.

Figure 4 shows our stability metric based on the Jensen-Shannon diver-
gence (SJS) compared ton the Spearman’s rank correlation coefficient (SR)
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Figure 4: SJS metric and Spearman rank correlation for Feature Ranking (FR) techniques
that vary from completely random (FR-0 on the left) to completely stable (FR-100 on the
right).

for FR techniques that vary from completely random (FR-0, on the left) to
completely stable (FR-100 on the right). For the FR-0 method, the stability
metric SJS takes the value 0, while its value is 1 for the stable FR-100 algo-
rithm. Note that SJS takes similar values to the Spearman’s rank correlation
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coefficient SR.
Suppose now we have some Feature Selection (FS) techniques, for which

stability needs to be assessed. These FS methods (FS-0,FS-1,...,FS-100) have
been obtained from the corresponding FR techniques described above, ex-
tracting the top-k features (k = 600). In the same way, they vary smoothly
from a completely random FS algorithm (FS-0) to stable FS a completely
stable one (FS-100). The Jensen-Shannon metric SJS together with the
Kuncheva Index (KI) are depicted for top-600 lists in Figure 5. Note that
the SJS metric applied to top-k lists provides similar values to the KI metric.
The Jensen-Shannon based measure SJS can be applied to full ranked lists
and partial lists, while the KI is only suitable for partial lists and the SR

only to full ranked lists.
Generating partial ranked feature lists is an intermediate step between:

(a) generating and comparing full ranked feature lists that are, in general,
very long and (b) extracting sublists with the top-k features, but with no
relevance information for each feature. The SJS metric based on the Jensen-
Shannon divergence also allows to compare these partial ranked lists.

Suppose we have sets of sublists with the 600 most important features out
of 2000 features. We generated several sets of lists: some of them show high
differences in the lowest ranked features whilst others show high differences
in the highest rank features. The same sublist can come either with the
ranking information (partial ranked lists) or with no information about the
feature importance (top-k lists). The overlap among the lists is around 350
features. Figure 6 shows the value SJS (partial ranked lists), SJS (top-k list)
and the Kuncheva index (top-k lists) for the lists.

Even though the lists have the same average overlap (350 features), some
of them show more discrepancy about which are the top features (Figure 6,
on the right), while other sets show more differences at the bottom of the list.
The KI can not handle this information since it only works with top-k lists
and therefore, it assigns the same value for these very different situations.
When the SJS works at this level (top-k list), it also gives the same measure
for all the scenarios. The SJS can also handle the information provided in
partial ranked lists, considering the importance of the features and therefore
assigning a lower stability value for those sets of lists with high differences at
the top of the lists, that is with high discrepancy about the most important
features. Likewise, it assigns a higher stability value for those sets where
the differences appear in the least important features, but there is more
agreement about the most important features. Figure 6 illustrates this fact
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Figure 5: SJS metric and the KI for Feature Selection (FS) techniques that vary from
completely random (FS-0 on the left) to completely stable (FS-100 on the right). The
metrics work on top-k lists with k=600.

where SJS (for partial ranked lists) varies according to the location of the
differences in the list, while SJS (top-k lists) and the KI assign the same
value regardless of where the discrepancies appear.

Next, consider the situation where the most important 600 features out
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Figure 6: SJS (partial ranked lists), SJS (top-k list) and the Kuncheva index (top-k lists)
for Feature Selection (FS) techniques that extract the top-600 features out of 2000. The
overlap among the lists is around 350 common features. The situations vary smoothly
from sets of partial lists with differences at the bottom of the list (left) to sets of lists that
show high differences at the top of the list (right).

of 2000 have been extracted and the overlap among the top-600 lists is 100%.
We have evaluated several scenarios:
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• The feature ranks are identical in all the lists (Identical)

• The ranking of a given feature is assigned randomly (Random)

• Neither completely random nor completely identical.

Working with top-k lists (KI), the stability metrics provide a value of 1
that is somewhat misleading considering the different scenarios that may
appear. It seems natural that, even though all agree about the 600 most
important features, the stability metric should be lower than 1 when there
is low agreement about which are the most important features. The SJS

measure allows us to work with partially ranked lists and therefore establish
differences between these scenarios. Figure 7 shows the SJS (partial ranked
lists) and the SJS, KI (top-k lists) highlights this fact. SJS (partial ranked
lists) takes a value slightly higher than 0.90 for a situation where there is
complete agreement about which are the most important 600 features, but
complete discrepancy about their importance. Its value increases to 1 as the
randomness in the feature ranking assignment decreases. In contrast with
this, KI would assign a value of 1 which may mislead when studying the
stability issue.

8. Conclusions

Quantifying the stability of feature selection/ranking algorithms becomes
a crucial issue when the aim of these techniques is to gain insight into the
underlying process. The stability of feature selection algorithms concerns a
wide area of recent interest that includes the development of more robust
feature selection techniques and different approaches to measure their stabil-
ity.

In this work, we addressed the problem of assessing the stability and
have proposed an information theoretic metric based on the Jensen-Shannon
divergence (SJS) able to capture the mismatch among the lists generated in
different runs by a feature selection algorithm. From a functional point of
view the output of a feature selection algorithm may be: a ranking of the
features or a feature set. Unlike most metrics that are specifically designed for
a given output format, this stability metric applies to: (i) full ranked feature
lists, (ii) top-k features, that is to say, lists that contain the k most relevant
features giving a uniform relevance to all them and (iii) partial ranked lists
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Figure 7: SJS (top-k list) and SJS (partial ranked lists) for Feature Selection (FS) tech-
niques that extract the top-600 features out of 2000. The overlap among the sublists with
600 features is complete. The ranking assigned to each feature varies from FS techniques
for which it is random (left) to FS techniques for which each feature ranking is identical
in each sublist (right).

that keep the k most ranked features. To our knowledge, no metric has been
proposed so far which is able to measure the similarity at all these levels.
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Unlike other metrics that evaluate pairwise similarities, SJS evaluates the
whole set of lists directly (with the same size). Besides accepting whatever
representation of the feature selection output, its behavior is: (a) close to the
Spearman’s rank correlation coefficient for full ranked lists and (b) similar
to the Kuncheva’s index for top-k lists. When the ranking is taken into
account, the differences at the top of the list would be considered more
important than differences that appear at the bottom part. Additionally,
the new metric SJS quantifies the relative amount of randomness of the
ranking/selection algorithm and when dealing with sublists, it is independent
of the fixed number of features.

It is noteworthy that the SJS stability metric verifies the desired proper-
ties for a stability metric: upper and lower bounds, conditions for a determin-
istic selection and correction for change. Therefore, it enables a useful inter-
pretation of stability as well as comparisons among feature selection/ranking
techniques.

Potential future work includes the exploration of visual techniques with
this new metric embedded and the extension of it to partial lists (either
ranked or not) with different number of features.
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N. Aragonés, and R. Alaiz-Rodŕıguez. A comparative study on feature
selection for a risk prediction model for colorectal cancer. Computer
Methods and Programs in Biomedicine, 177:219 – 229, 2019.

[17] P. Desbordes, S. Ruan, R. Modzelewski, S. Vauclin, P. Vera, and
I. Gardin. Feature selection for outcome prediction in oesophageal can-
cer using genetic algorithm and random forest classifier. Computerized
Medical Imaging and Graphics, 60:42–49, 2017.

[18] S. Dudoit, J. Fridlyand, and T.P. Speed. Comparison of discrimina-
tion methods for the classification of tumors using gene expression data.
Journal of the American statistical association, 97(457):77–87, 2002.

[19] K. Dunne, P. Cunningham, and F. Azuaje. Solutions to instability
problems with sequential wrapper-based approaches to feature selection.
Technical report, Journal of Machine Learning Research, 2002.

[20] W.W.B. Goh and L. Wong. Evaluating feature-selection stability in
next-generation proteomics. Journal of bioinformatics and computa-
tional biology, 14(05):1650029, 2016.

[21] T. R Golub, D. K Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P
Mesirov, H. Coller, M.L. Loh, J.s R Downing, M.A. Caligiuri, et al.
Molecular classification of cancer: class discovery and class prediction
by gene expression monitoring. science, 286(5439):531–537, 1999.

[22] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction:
Foundations and Applications (Studies in Fuzziness and Soft Comput-
ing). Springer-Verlag, 2006.

[23] R. Guzmán-Mart́ınez and R. Alaiz-Rodŕıguez. Feature selection stabil-
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