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Abstract

The determination of analytical solutions is a vital step in understanding the dif-

ferent physical systems and building confidence in the numerical methods that

are required for more complex models. In the present work, analytical solutions

are derived for axisymmetric and near-axisymmetric rigid body problems. The

formulation proposed is based on a complex variable which characterizes all

the different kinds of problems in similar terms. The described methodology is

introduced for simple cases and, progressively, extended to other advanced prob-

lems such as random perturbations. As an application, this complex variable

formulation can be used to characterize the asteroid’ motions, showing a depen-

dence between their inertia coefficients and their rotational velocities when the

asteroid is perturbed from its relaxed state. A Montecarlo experiment is done in

order to determine how well the inertia ratios of the asteroid can be estimated

knowing only information about its angular velocities.
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Nomenclature

A, B, C Principal moments of inertia

CDF Cumulative Density Function
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DAMIT Database of Asteroid Models from Inversion Techniques

FFT Fast Fourier Transform

I Parameter defined for a quasi-cylindrical inertia tensor as I = A+B
2

I13 Inertia ratio I1
I3

I23 Inertia ratio I2
I3

I13e Estimated inertia ratio I1
I3

I23e Estimated inertia ratio I2
I3

i Imaginary unit

Im[x] Imaginary part of x

k Parameter defined as ω30tc
C−A
A

k0 Parameter defined as C−A
A

k1 Parameter defined as ω30tc
C−B
A

k2 Parameter defined as ω30tc
C−A
B

kc Parameter defined as
√
k1k2

km Parameter defined as
√
k2/k1

ls, ss Major and minor semi-axes

m1, m2, m3 Body-fixed Torques

M12 Moment complex variable, m1+im2

A

Re[x] Real part of x

SM12
Spectral density of M12

SW12
Spectral density of W12

T Dimensionless time, T = t
tc

YORP effect Yarkovsky-O’Keefe-Radzievskii-Paddack effect

W12 Complex angular velocity, ω1 + iω2

α1, α2 Parameters use for the change of variable Ωi = αiΩi

δωi Small perturbation of ωi

ε Misalignment angle/perturbation parameter

θ, φ, ξ Euler angles

θ12 Complex variable defined as θe−iφ

ω Angular velocity
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Ω First order perturbed angular velocity

τ Independent variable for spinning-up manoeuvres defined as m3

C t+ ω30

Subscripts

1, 2, 3 Body-fixed coordinates using body frame

0 Initial condition

Superscripts

i Order of the perturbation problem

x̂ Complex amplitude of x

ẋ Time derivative

x∗ Complex conjugate

x
′

Dimensionless time derivative ∂x
∂T

Ωi Change of variable defined as Ωi = αiΩi

1. Introduction.

The lack of linearity presented in the real world phenomena is one of the

major obstacles that engineers find when they are trying to model it. Although,

in many cases, it is possible to know the equations which govern a particular

problem, the complexity caused by this non-linearity prevents us from using

an analytical approach to obtain the solutions. In these circumstances, the

numerical methods can achieve a precise enough solution. However, this is done

without gaining a valuable, significant knowledge about the physical driving

process. It is for this reason that the analytical solution deserves the pertinent

attention. Furthermore, analytical solutions are powerful tools for verifying and

studying the errors originated by the numerical methods [1, 2].

The present work focus on the study of the rigid body rotation using the

4
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Euler’s rotation equations [3]:

Aω̇1 + ω2ω3(C −B) = m1, (1a)

Bω̇2 + ω1ω3(A− C) = m2, (1b)

Cω̇3 + ω1ω2(B −A) = m3, (1c)

where A, B and C are the principal moments of inertia about axes 1, 2 and

3 respectively. In these equations, the rotation of the body is studied using

a rotating reference frame with its axes fixed to the body and parallel to the

body’s principal axes of inertia, see Figure 1. The angular velocities around the

principal axes are ω1, ω2 and ω3.
1

2

3

Figure 1: Instead of using an inertial reference frame xyz, the Euler equations are referred to

body fixed principal axes of inertia 123.

Although these equations are well-known, the non linearity of the second

term complicates the search for analytical solutions. Therefore, in many cases,

the numerical solutions are the only viable method to solve the problem.

The general purpose of the present work is to simplify the analytic treatment

of the rigid body dynamics and show the possibility of determining, in a simple

and unified way, the rotational dynamics of bodies with an axisymmetric inertia

tensor, which is useful from a view of both theoretical research and aerospace

applications.
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Indeed, there are a set of problems in this field (torque free motion, stability

of rotation, thrust misalignment, etc) whose analysis is generally presented in

a case by case basis, which makes the whole presentation more complex and

intricate. However, all these situations can be treated using the same basic

tools, as will be shown in this paper.

The unified approach here proposed, reduces the work needed to explain

the set of problems and the effort to understand the solutions, which, in this

way, are naturally related to each other. This unified approach is based on

the mathematical structure of the Euler equation when the inertia tensor is

totally or nearly axisymmetric. In this case, the Euler equations become linear

with regard to the transversal rotational speeds and the motion around the

longitudinal axis is decoupled (if the external moments fulfill some conditions).

The structure of the paper is as follows. In Section 2, different axisymmetric

problems that are common in aerospace engineering are described. These prob-

lems can be studied using complex variable as it is described in Section 3. In

Section 4, the complex variable is applied to the different problems of Section 2.

The methodology described is also extended to more general problems, includ-

ing the non axisymmetric case, in Section 5, and it is applied to the movement

of asteroids in Section 6. Finally, the conclusions are summarized in Section 7.

2. Common axisymmetric problems.

There are certain situations in aerospace engineering in which axisymmetric

problems appear naturally. Some of them are described below.

2.1. Body with A = B and zero external moment.

This is the simplest axisymmetric problem, where the rigid body is sym-

metric along axis 3 (without loss of generality) and there is no external torque.

6
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Then Eq. (1) can be simplified, with A = B and m1 = m2 = m3 = 0 as:

Aω̇1 + ω2ω3(C −A) = 0, (2a)

Aω̇2 + ω1ω3(A− C) = 0, (2b)

Cω̇3 = 0. (2c)

In this situation, the velocity around the axis of symmetry is decoupled from

the other two. Typically, these equations can be used to model the movement

of an axisymmetric spacecraft in the outer space. In that case, for a limited

time interval, the external perturbations can be neglected. In general, these

perturbations can be associated with inertial forces, tides, applied torques or the

Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect [4], which is a change in

the rotation rate caused by the asymmetric reflection and thermal re-radiation

of sunlight from an irregularly shaped body [5].

2.2. Stability of rotation about principal axis.

It is known that permanent rotations are possible about each one of the

principal axes [6]. To study the stability of rotation about the symmetry axis,

axis 3, let us assume as initial condition ω1 = ω2 = 0 , ω3 = ω30 and a perturbed

condition so ω1, ω2 << ω30 and ω3 = ω30 + ε. Linearising equations (1) with

m1 = m2 = m3 = 0, the following equations are obtained:

Aω̇1 + (C −A)ω2ω30 = 0, (3a)

Bω̇2 + (A− C)ω1ω30 = 0, (3b)

Cω̇3 = 0. (3c)

2.3. Thrust misalignment.

This problem is another typical axisymmetric problem. As shown in [3],

a spinning missile with a misalignment of the thrust line can be modeled in

the following way: the missile is assumed axisymmetric so that the x, y, z axes

coincide with the principal axes: 1, 2 and 3, with I1 = I2 = A, I3 = C. Axis
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Figure 2: Reference system for the case of thrust misalignment. ε, misalignment angle.

1 is perpendicular to the thrust containing symmetry plane, and axis 3 is the

revolution symmetry axis as shown in Figure 2.

The Euler’s equations for the missile motion are:

Aω̇1 + ω2ω3(C −A) = m1, (4a)

Aω̇2 + ω1ω3(A− C) = 0, (4b)

Cω̇3 = 0, (4c)

in which m1 refers to the perturbation moment, independent of time and caused

by the misalignment.

3. Use of the complex variable in axisymmetric problems.

In the case of an axisymmetric rigid solid, when axis 3 is the axis of symme-

try, Eqs. (1) are simplified to:

Aω̇1 + (C −A)ω2ω3 = m1, (5a)

Aω̇2 + (A− C)ω1ω3 = m2, (5b)

Cω̇3 = m3. (5c)

where A = B.
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It can be realized that when A = B and m3 fulfills some conditions (i.e, m3

is independent of ω1, ω2) the dynamics of rotation around axis 3 is decoupled

from rotations ω1 and ω2 [7]. Actually, from (1c), the velocity around the third

axis can be calculated from:

ω̇3 =
m3(t)

C
. (6)

If the solution of (6) can be obtained as ω3(t), which means m3 = m3(ω3, t),

then Eqs. (5a) and (5b) can be solved by using the complex variable W12 defined

in [6] as:

W12 = ω1 + iω2. (7)

By adding Eqs. (5a) and (5b) in quadrature [6], the two equations are

replaced by one in terms of the complex variable W12:

Ẇ12 − i kω3W12 = M12, (8)

where the new variables k and M12 can be calculated from:

k =
C −A
A

, (9a)

M12 =
m1 + im2

A
. (9b)

The above method can be used not only in the situation of an axysimmetric

body (which gives the exact solution for that case) but also when the product of

ω1 and ω2 is very small [8]. The main advantage of equation (8) is its linearity.

Its solutions can be easily obtained and, therefore, the problems presented in

Section 2 and others of interest can be derived at once, as it is shown in what

follows.

3.1. Rotations referred to inertial coordinates.

The determination of the motion using inertial coordinates are required in

different kinds of situations like sun-tracking attitude motion [9]. Complex

variable can also be useful in the case that the nutation angle θ is small enough.

9
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In that case, the classical solution for the rotation angles referred to inertial

coordinates [3] are obtained from:

ω1 = ψ̇ sin θ sinϕ+ θ̇ cosϕ, (10a)

ω2 = ψ̇ sin θ cosϕ− θ̇ sinϕ, (10b)

ω3 = ψ̇ cos θ + ϕ̇, (10c)

which relate rotation velocity components with Euler’s angles θ, ϕ, ψ using a

3-1-3 sequence. A graphical representation of these angles can be seen in Figure

3.

Figure 3: Angular rates of Euler angles.

By following the procedure explained in [3], the complex variable θ12 is

defined as:

θ12 = θ e− iϕ . (11)

When the new variable is used in Eq. (10), the coming expression is obtained:

θ̇12 + iω30θ12 = W12(t), (12)

10
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where ω30 = cte, considering the case m3 = 0. In Eq. (12) W12 is known, as

it is a solution of one of the above-mentioned problems. Eq. (12) is a linear

ordinary differential equation with constant coefficients. This expression can be

generalized for the cases referred to before, in which W12 is obtained as indicated

and m3 is not a constant but a function of time m3(t). In such a case, following

the same procedure, a similar expression to (12) is obtained:

θ̇12 + iω3(t)θ12 = W12(t), (13)

which is also a linear ordinary differential equation but with time-dependent

coefficients. It should also be noted that while W12 is an exact solution, θ12 is

only an approximation for small θ angles.

4. Solution of axisymmetric problems.

The problems presented in the previous section have analytical solutions

when the variables meet certain conditions. Some of these solutions are well-

known, as in the case of the thrust misalignment problem. In this section,

a list of situations collected from the available literature is presented. The

different problems, when they are written in terms of the complex variable,

have analytical solutions. Without being totally exhaustive, this compilation

can give the reader an idea of the kind of problems that can be addressed with

this tool.

4.1. Body with zero external moment.

The zero external moment implies that M12 = 0 in (9b) and ω3 = ω30 in

(6), where ω30 is the initial value of ω3. Eq. (8) reduces to:

Ẇ12 − i kω30W12 = 0, (14)

whose solution is:

W12 = W0 ei kω30t, (15)

where W0 is a complex constant, W0 = ω1(0) + iω2(0), obtained from the initial

conditions. Eq. (15) is the classical solution of the free body rotation.

11
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Figure 4: Comparison between numerical and analytical solutions for the case of a body with

zero external moment. On the left, the absolute value of W12 is shown as a function of time.

Although |W12| = W0 = cte, due to the errors in the numerical method, the absolute value

decays. On the right, difference between the phase of W12 is shown as a function of time.

Parameters: A/C = B/C = 0.5, ω10/ω30 = 0.1, ω20/ω30 = 0.

The difference between the numerical and analytical solutions is shown in

Figure 4. The integration scheme is a Dormand & Price —member of the

Runge–Kutta family— of order 8(5,3) —an 8th order scheme using a 5th order

estimator with a 3th order correction.

As explained in a previous section, the complex variable also can be used

for solving analytically the attitude of the body. Angle θ can be calculated

using Eq. (13). An example of the solution using the analytical and numerical

methods is shown in Figure 5. The difference between both methods is mostly

due to linearization.

4.2. Constant transverse moments with zero axial moment.

In this case m1 and m2 are non-zero and m3 = 0 (and, therefore, ω3 = ω30).

An example of this case is the motion due to thrust misalignment. Eq. (8) can

be written as:

Ẇ12 − i kω30W12 = M12. (16)

Eq. (16) is a well known ordinary differential equation with constant coeffi-

cients, whose solution [10] is:

W12 = W0 ei kω30t +
iM12

kω30
(1− ei kω30t). (17)
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Figure 5: Comparison between numerical and analytical solutions in the case of rotations

referred to inertial coordinates. On the left, absolute value of θ12 is shown as a function of

time. On the right, error of θ12 as a function of time. Parameters: A/C = B/C = 0.5,

ω10/ω30 = 0.1, ω20/ω30 = 0, k12/k3 = 1, θ0 = 0.001, ϕ0 = 0, ψ0 = 0 and zero external

moments.

The physical meaning of the solution is that the attitude is determined by

the combination of torque-free motion (15) and a driving term proportional to

M12.

4.3. Non-constant transversal moments with zero axial moment.

This case is a generalization of the previous one, where the complex moment

M12 is a function of time, M12(t). Therefore Eq. (16) becomes

Ẇ12 − i kω30W12 = M12(t), (18)

whose solution can be obtained by standard methods using the Laplace trans-

formation:

W12 = W0 ei kω30t +

∫ t

0

M12(τ) ei kω30(t−τ) d τ. (19)

Similar to the previous case, solution (19) is a combination of the torque-free

motion and the response to the driving torque M12(t) as it is shown in Figure

6.
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Figure 6: Comparison between numerical and analytical solution in the case of non-constant

transversal moments with zero axial moment. On the left, the absolute value of W12 is shown

as a function of time. 0n the right, the phase error of W12 is shown as a function of time.

Parameters: A/C = B/C = 0.5, ω10/ω30 = 0.1, ω20/ω30 = 0, M12(t) = A eiπt/8.

4.4. Time-independent axial moment.

The spinning-up maneuvers can be treated as in [8] and [11], where ω3 is

approximated using its Taylor series expansion up to degree one:

ω3 =
m3

C
t+ ω30. (20)

A new independent variable τ is defined as τ = ω3. Once the variable change

dt = C/m3 dτ is applied and after some substitutions, the following equation

is obtained:

Ω̇12 − i τρΩ12 = M12, (21)

in which Ω12=ω1

√
B + iω2

√
A and ρ =

C
√

(C−A)(C−B)

m3

√
AB

. The solution of this

equation is:

Ω12 = Ω0 e
1
2 i ρτ2

+

∫ τ

0

M12(ξ) e
1
2 i ρ(τ2−ξ2) d ξ. (22)
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4.5. Moments with linear dependence on the rotation speed components.

Consider the case where m1 and m2 are linear functions of ω1, ω2, and ω3

and m3 is only a function of ω3:

m1 = m1(ω1, ω2, ω3), (23a)

m2 = m2(ω1, ω2, ω3), (23b)

m3 = m3(ω3). (23c)

From Eq. (6) one can obtain ω3 = ω3(t) and by substituting it into (8):

Ẇ12 − i kω3(t)W12 = M12(W12,W
∗
12, ω3), (24)

where W ∗12 is the complex conjugate of W12.

The analytical integration of (24) can be performed in some cases [12]. As an

example, let us consider the case where the external torque is a linear damping,

which can be modeled as follows:

m1 = −k1ω1A, (25a)

m2 = −k2ω2A, (25b)

m3 = −k3ω3C. (25c)

If k1 = k2 = k12, from (9b) and (24), we can obtain:

M12 = −k12W12, (26a)

Ẇ12 − i kω3(t)W12 = −k12W12. (26b)

The solution of (6) using (25c) is:

ω3(t) = ω30 e−k3t = ω30 e−t/tc3 , (27)

which represents an exponential decay with characteristic time tc3 = 1
k3

, during

which the value of ω3 has been reduced approximately a 63%.

Eq. (26b) together with Eq. (27) becomes:

Ẇ12 − [k12 − i k12ω30 e−t/tc3 ]W12 = 0, (28)
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Figure 7: Comparison between numerical and analytical solution in the case of moments with

linear dependence on the rotation speed components. On the left, the absolute value of W12

is shown as a function of time. The exponential decay of the absolute value is clear, which

causes that both solutions reach the same final value. On the right, the phase of W12 as a

function of time. Parameters: A/C = B/C = 0.5, ω10/ω30 = 0.1, ω20/ω30 = 0, k12/k3 = 1.

whose solution is given by

W12(t) = W0e
−k12t ei g(t), (29)

where:

g(t) = k

∫
ω3(t) dt = kω30tc3(1− e−t/tc3), (30)

and tc3 = 1/k3. The constant in (30) has been arbitrarily selected to fulfill the

condition g(0) = 0 —i.e., ω2(0) = 0— without lose of generality.

The solution W12 (see Figure 7) is composed of two factors. The first one

e−k12t represents the decay of the transverse rotation speed components am-

plitude with a time scale 1/k12. The second factor is a unitary vector which

represents the two harmonic components of a rotating vector whose angular

speed is:

Ω(t) =
kω30tc3(1− e−t/tc3)

t
=
g(t)

t
, (31)

and therefore changes with time. The rate of change is determined by the

characteristic time tc3. As an example, for times t << tc3 the angular speed

can be approximated, by neglecting larger order terms, as:

Ω(t) ≈ kω30

[
1− t

2tc3

]
, (32)
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which shows that the initial value of the angular speed of vector W12 is kω30

and this speed decreases with characteristic time tc3.

The angle, θ, between the angular velocity vector and the symmetry axis

(axis 3) can be obtained with equations (27) and (29) and is given by:

tan θ =
|W0|
ω30

A

C
e(−k12+k3)t . (33)

It is shown that the angular velocity vector changes its position with regard

to axis 3 due to the change in angular momentum caused by the external torque

(m1, m2, m3). The rate of change is determined by the characteristic time

1
|k12−k3| and the change of direction (increase or decrease) is determined by the

sign of the difference k12 − k3.

5. Generalized problem.

Although the above examples may seem very specific, the complex variable

has shown utility and can be applied to more general cases. In this section the

authors present methods for applying this tool to quasi-axilsymmetric bodies

and more general disturbances.

5.1. Time-dependent moments.

This case is more general than the previous ones. ω3 can be calculated

integrating the equation (6)[13], with initial condition ω30, that is:

ω3 = ω30 +
1

C

∫ t

0

m3(t), (34)

which introduced into (8) gives:

Ẇ12 − i kω3(t)W12 = M12(t). (35)

Eq. (35) is a linear differential equation with time-dependent coefficients

whose solution can be obtained by standard methods [14].
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5.2. Response to harmonic or random inputs.

There are situations in which the inputs are known to be periodic and can

be decomposed into harmonics. This is the case, for example, when studying a

sun-synchronous frozen orbit [9]. In this case, the solutions of Eqs. (6) and (8)

are found when m1(t),m2(t),m3(t) are harmonic or random functions of time.

Let us consider the definition of variables ω3, m3, W12 and M12:

ω3 = ω̂3(ω) eiωt +ω30, (36a)

m3 = m̂3(ω) eiωt, (36b)

W12 = Ŵ12(ω) eiωt, (36c)

M12 = M̂12 eiωt, (36d)

where ω̂3, m̂3, Ŵ12, M̂12 are the complex amplitudes, function of the angular

frequency, ω, and ω30 is a constant.

Solution of (6) gives the following relationship between ω̂3 and ω̂30:

ω̂3(ω) =
m̂3(ω)

iωC
, (37)

when introduced in (8) leads to:

Ŵ12(ω) =
M̂12(ω)

iω − i k

[
ω30 + m̂3(ω)

iωC eiωt

] . (38)

In order for the solution (38) to be a harmonic one, the condition m̂3(ω) = 0

should be fulfilled, and therefore Eq. (38) reduces to:

Ŵ12(ω) =
i

kω30 − ω
M̂12(ω), (39)

which shows the possibility of a resonant response when the angular frequency

ω fulfills the condition ω = ω30. The factor i denotes the quadrature between

the torque and the rotation speed.

In the case of a random input, Eq. (39) can be used to define the relationship

between the spectral density of the input —the torque M̂12(ω)— and of the

output —the transverse rotation speed Ŵ12(ω):

SW12
(ω) =

SM12(ω)

(kω30 − ω)2
, (40)
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where SW12and SM12 are the spectral densities of the transverse rotation speed

and of the external transverse torque, respectively. Eq. (39) allows us to deter-

mine the variance of the transverse rotation speed modulus from the spectral

density of the transverse torque. In order to do so, some damping should be

introduced into Eq. (38) to manage the response in the resonant range.

5.3. Quasi-cylindrical inertia tensor.

It is also possible to relax the axilsymmetry requirement for the rigid solid.

Let us consider the case where the inertia tensor is quasi-cylindrical, |A−B| <<

A. Therefore, the magnitudes of the problem can be expressed in the following

way:

A = I(1− ε), (41a)

B = I(1 + ε), (41b)

k0 =
C − I
I

, (41c)

I =
A+B

2
, (41d)

ε =
B −A
B +A

, (41e)

ωi = ω0
i + εω1

i , (41f)

with ε� 1.

By introducing (41) into (1c), one obtains the following equation:

ω̇0
3 + εω̇1

3 + 2ε
I

C
(ω0

1 + εω1)(ω0
2 + εω2) =

m3

C
, (42)

which leads to the following equations for ω0
3 :

ω̇0
3 =

m3

C
, (43)

and ω1
3 :

ω̇1
3 = −2

I

C
ω0
1ω

0
2 . (44)

By introducing (41) into Eqs.(1a) and (1b), the Taylor expansion can be
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applied obtaining:

ω̇1 + k0ω2ω3 − ε(1− k0)ω2ω3 =
m1

I
(1 + ε), (45a)

ω̇2 − k0ω1ω3 − ε(1− k0)ω1ω3 =
m2

I
(1− ε). (45b)

Adding (45a) and (45b) in quadrature leads to:

ω̇1 + i ω̇2 +k0ω3(ω2− iω1)− ε(1−k0)ω3(ω2 + iω1) =
m1 + im2 + ε(m1 − im2)

I
,

(46)

or:

Ẇ12 − i k0ω3W12 − i ε(1− k0)ω3W
∗
12 =

M12 + εM∗12
I

. (47)

To solve Eq. (47), let us consider the expansion:

W12 = W 0
12 + εW 1

12, (48)

introducing it into (47) together with (41f) gives two expressions for the zero

and first order problems as:

Ẇ 0
12 − i k0ω

0
3W

0
12 =

M12

I
, (49a)

Ẇ 1
12 − i k0ω

0
3W

1
12 =

M∗12
I

+ i k0ω
1
3W

0
12 + i(1− k0)ω0

3W
0∗
12 , (49b)

where:

W i
12 = ωi1 + iωi2, (50)

in which the superscript indicates the order of the problem.

The zero order problem (49a) is identical to the non-perturbed problem,

ε = 0, that is, the forced motion of a body with axisymmetric inertia tensor.

Although the first order problem (49b) has the same structure as the zero order

problem, it changes the form of the right-hand side terms. As a consequence, the

solution depends on the initial conditions and on the external torques grouped

in the symbols m3 and M12.

5.4. Quasi-cylindrical inertia tensor and torque-free motion.

One case of basic interest is the torque-free motion (m1 = m2 = m3 = 0)

where the zero-order problem (34) and (49a) leads to ω0
3 = ω0

30, being ω0
3 =
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ω0
30(0) a constant, and:

Ẇ 0
12 − i k0ω

0
30W

0
12 = 0. (51)

The solution of (51) is:

W 0
12 = W 0

120 ei k0ω
0
30t, (52)

where W 0
120 = W 0

12(0) is the initial value of W 0
12. Under suitable conditions

W12(0) = ω0
120 , and from (52) it is deduced:

ω0
1 = Re

[
W 0
]

= ω0
120 cos(k0ω

0
30t), (53a)

ω0
2 = Im

[
W 0
]

= ω0
120 sin(k0ω

0
30t). (53b)

The solution of the zero-order problem (ω0
1 , ω

0
2 , ω

0
3) is the classical solution

of the torque-free motion of a body with axisymmetric inertia tensor. In order

to determine the first order correction, introduce (53) into (44) to obtain:

ω̇1
3 = −2

I

C
(ω0

120)2 cos(k0ω
0
30t) sin(k0ω

0
30t) = − I

C
(ω0

120)2 sin(2k0ω
0
30t). (54)

whose solution is:

ω1
3 =

I

C

(ω0
120)2

2k0ω0
30

cos(2k0ω
0
30t), (55)

which shows that the rotation around axis 3 is not performed at a constant rate.

It is the result of the superposition of the zero order constant rotation ω0
30 with

ω1
3 which has an amplitude of I

C
(ω0

120)
2

2k0ω0
30

and angular frequency of 2k0ω
0
30. That

frequency is the double of the angular frequency of W 0
12.

The first order term will introduce an angular acceleration which will produce

a vibration of the body structure elements.

The transverse rotation speed correction W 1
12 is obtained from (49b), which

reduces to:

Ẇ 1
12 − i k0ω

0
3W

1
12 = i k0ω

1
3W

0
12 + i(1− k0)ω0

3W
0∗
12 , (56)
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together with (52) and (55), leading to the following expression:

Ẇ 1
12−i k0ω

0
30W

1
12 = i

I

C

(ω0
120)3

2ω0
30

cos(2k0ω
0
30t) eik0ω

0
30t + i(1−k0)ω0

30ω
0
120 e− i k0ω

0
30t =

= i
ω0
120

ω0
30

[
I

2C
(ω0

120)2 cos(2k0ω
0
30t) eik0ω

0
30t +(1− k0)(ω0

30)2 e− i k0ω
0
30t

]
. (57)

The solution of (57) with initial condition W 1
12(0) = W 0

120 is:

W 1
12(t) = W 1

120 eiαt +
B

α
sin(αt) +

A

2α
sin(2αt) eiαt, (58)

where:

α = k0ω
0
30, (59a)

A = i
I

C

(ω0
120)3

2ω0
30

, (59b)

B = i(1− k0)ω0
30ω

0
120. (59c)

Therefore, the correction W 0
12(t) for the transverse rotational speed is com-

posed of harmonic terms with angular frequencies k0ω
0
30 and 2k0ω

0
30 —coming

from the term sin(2αt)eiαt.

5.5. Rotating non-cylindrical inertia tensor with small perturbation torques.

Finally, an example is presented where axilsymmetry is not needed, the case

of small perturbations acting on a relaxed body rotating around the principal

axis of inertia. The description of its motion using the Euler equations and

integrating the inertia tensor for different cases could be complex. However,

there is a simple case in which the inertia tensor is cylindrical [3] and the problem

can be resolved using a change of variable to the complex domain. This method,

for a cylindrical inertia tensor, can be generalized to non-cylindrical in the case

of small perturbations. This is done with a change in the angular velocities

scale.

The stable solution when m1 = m2 = m3 = 0 is given by ω3 = ω30, ω1 =

ω2 = 0. If the equilibrium state is perturbed with a small perturbation, the new
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solution is given by

ω3 = ω30(1 + εΩ3), (60a)

ω2 = εω30Ω2, (60b)

ω1 = εω30Ω1. (60c)

Substituting Eqs. (60) into Eqs. (3), the new approximated equations are:

Ω̇1 +
C −B
A

Ω2ω30 =
1

ε

m1

ω30A
, (61a)

Ω̇2 +
A− C
B

Ω1ω30 =
1

ε

m2

ω30B
, (61b)

Ω̇3 +
B −A
C

Ω1Ω2ω30ε =
1

ε

m3

ω30C
. (61c)

The perturbations moments must be small enough in order to fulfill the

condition that the right-hand side of the equations are first order perturbations.

With all this, the equations (61a), (61b) are decoupled from (61c) and are linear.

A dimensionless time T with t = tcT will be used where tc is a characteristic

time to be defined. Using X
′

= ∂X
∂T , the dimensionless equations are:

Ω
′

1 +
C −B
A

Ω2ω30tc =
1

ε

tc
ω30

m1

A
, (62a)

Ω
′

2 +
A− C
B

Ω1ω30tc =
1

ε

tc
ω30

m2

B
, (62b)

Ω
′

3 +
B −A
B

Ω1Ω2ω30tcε =
1

ε

tc
ω30

m3

C
. (62c)

In the case of a symmetrical tensor, the problem is greatly simplified. With

k = ω30tc
C−A
A > 0 and considering the homogeneous problem, one obtains:

Ω
′

1 + kΩ2 = 0, (63a)

Ω
′

2 − kΩ1 = 0. (63b)

Next, define a new complex variable W as:

W = Ω1 + i Ω2, (64)
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in a similar way as it had been done in [6].

Adding the equation (63a) to the equation (63b) in quadrature results in:

Ω
′

1 + i Ω
′

2 + k(Ω2 − i Ω1) = 0⇒W
′
− i kW = 0. (65)

Therefore, the solution to the problem is a spin of constant velocity k of the

vector W0 = Ω10 + i Ω20, as:

W = W0 ei kT . (66)

When there is no symmetry around the principal inertial axis, the case is

more interesting. The method requires a transformation with Ωi = αiΩi defining

k1 = ω30tc
C−B
A > 0 and k2 = ω30tc

C−A
B > 0. The new equations are:

Ω
′

1 + k1
α2

α1
Ω2 = 0, (67a)

Ω
′

2 − k2
α1

α2
Ω1 = 0. (67b)

These equations can be transformed into (63a) and (63b) by choosing the

values of α1 and α2 as:

k1
α2

α1
= k2

α1

α2
=⇒

(
α2

α1

)2

=
k2
k1

= k2c , (68a)

α1 = 1 =⇒ α2 =
√
k2/k1 = kc, (68b)

k1kc =
√
k1k2 = km. (68c)

Values of α1 and α2 are arbitrary as long as Eq. (68a) is fulfilled. With

these values, the following equations are obtained:

Ω
′

1 + kmΩ2 = 0, (69a)

Ω
′

2 − kmΩ1 = 0. (69b)

Therefore, changing the scale of amplitude of the traditional variables, the

non-cylindrical problem is converted to a cylindrical one with a straightforward

solution as:

W = Ω1 + i Ω2 = Ω1 +
i

kc
Ω2 ; W = W 0 ei kmT ; W 0 = Ω10 + i Ω20 (70)
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6. Study case: asteroids.

In this section an application of one of the previously proposed methods to

a real problem is presented. As explained above, the axilsimmetry requirement

is not essential for the application of the complex variable method. To illustrate

this fact, a problem in which the body does not necessarily have axial symmetry

has been chosen: the motion described by asteroids.

For the analysis, the low-amplitude rotations of asteroids are considered.

They will be modeled as small perturbations around the principal axis of inertia

[15]. The reason for this choice is the fact that observable asteroids are in a

relaxed rotation state and low speed, because of the nutation relaxation [16],

and the fact that large speed reduces their life. This dynamic is an example of

the motion analyzed in Subsection 5.5.

The solution of this motion, equation (70), indicates that the vectorW 0 spins

at a constant rate km —dimensionless— and the vector W moves following an

ellipse with semiaxis |W 0| and |W 0

kc
|, where |W 0| is the circumference radius

that encloses the ellipse:

Ω1 ≡ Re
[
W
]

= Ω1 = Re
[
W 0 ei kmT

]
, (71)

Ω2 ≡ Im
[
W
]

=
Ω2

kc
=

1

kc
Im
[
W 0 ei kmT

]
. (72)

Figure 8 shows the graphical interpretation of these results. The constants

km and kc can be computed from the observation of the asteroid movement.

On the other hand, both km and kc can also be computed from the asteroid

inertial matrix. From the relation of the ellipse semi-axis, kc can be obtained

as:

kc =

√
k2
k1

=

√
C −A
C −B

A

B
=

√
1− I13
1− I23

I13
I23

=
√
a, (73)

where I13 = A/C and I23 = B/C. A relationship between the spin velocity of

the vector W with these ratios is given by:
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Figure 8: Trajectory of the complex rotation speed W and the stretched one W .

km
tc

=

√
k1k2
t2c

=

√
(C −B)(C −A)

t2c

ω2
30t

2
c

AB

= ω30

√
C −B
A

C −A
B

= ω30

√
1− I23
I13

1− I13
I23

=
√
bω30. (74)

Rearranging equations (73) and (74) we can obtain:

a =
(I13 − 1)I13
(I23 − 1)I23

, (75)

b =
1− I23
I13

1− I13
I23

. (76)

that can be used to calculate the possible values of I13 and I23 as:

I13 =
−1±

√
ab

b− 1
, (77a)

I23 =
−a±

√
ab

a(b− 1)
. (77b)

The Eqs. (77a) and (77b) give two possible values for I13 and I23, however,

there are additional requirements that can be used to find the true solution.

First, the inertia ratios must be a positive quantity. Second, the considered

rotation movements are around the main inertial axis so, by definition, I3 >

I2 > I1 > 0. Both conditions imply that 0 < I13 < I23 < 1. Figures 9 and 10

show the two possible values of I13 and I23 from Eqs. (77a) and (77b). However,
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if the condition 0 < I13 < I23 < 1 is now applied, a unique solution is obtained:

the one which has the positive sign before the root square.
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Figure 9: Logarithm of I13 for different a and b using the solution of sign ”+” (left) and(right).
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Figure 10: Logarithm of I23 for different a and b using the solution of sign ”+” (left) and ”−”

(right).

The interest of these equations yields in the fact that they can be used

to calculate the inertial properties of the asteroids —I13 and I23— from the

characteristics of the rotation speeds that are easily measured: the ratio between

ellipse axes and the frequency of the complex velocity W12.

6.1. Numerical examples.

In the previous subsection, it has been shown how the inertia ratios of aster-

oids can be estimated from their un-relaxed angular velocities. In this section,

the accuracy that can be obtained with that approach is studied starting from

data of real asteroids’ inertia and angular velocities.The objective will not be to

get information from a specific asteroid, but to verify that most asteroids meet
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the requirements for the use of this method.

In order to obtain real data of inertia matrices and angular velocities of

asteroids, the asteroid database DAMIT has been used —acronym of Database

of Asteroid Models from Inversion Techniques [17]. For each asteroid —they are

around 1600— the database gives its shape, represented as polyhedrons with

triangular surface facets. From their shape, using the hypothesis of constant

density, their inertial parameters can be calculated. Their real inertia matrices

will be slightly different, but this simplification serves as an approximation to the

set of inertia matrices of all the asteroids. At this point it is worth remembering

that the objective is not to model a particular asteroid, but to know how well

the theory works for typical values of inertia and angular velocities than can be

found in reality.

The spin states of the different asteroids can be obtained using the pa-

rameters of the database; from the light-curves, the radial velocity around the

rotational axis can be calculated. All asteroids in the database are supposed to

be in a relaxed rotation state [17]. The principal axis with the main moment of

inertia calculated using the previous method does not exactly coincide with the

axis of rotation. However, this is a necessary requirement for the asteroid to

remain relaxed. For this reason, it will be assumed that, before the disturbance,

the axis of rotation coincides with the main axis of inertia obtained with the

geometric method.

From the relaxed state the inertia ratios cannot be obtained. However,

there is the possibility that the asteroid is perturbed by certain mechanisms

[18, 19, 20] e.g. outgassing, splitting events, collisions, thermal effects [21] even

through controlled impacts like the one proposed in the ESA’s Don Quijote

Mission [22]. In case of the asteroid being monitored at that time, it would

be possible to obtain information about its inertia matrix. To model these

mechanisms is beyond the scope of this paper, but the information that can

be extracted of a generic disturbance in the form of a random angular velocity

variation will be analyzed. For that, a Montecarlo test has been performed as

follows:
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1. First, a parameter ε which characterizes the magnitude of the perturbation

in angular velocity is defined. This parameter simulates disturbances of

different importance. In this section ε is not necessarily small.

2. Then, the absolute value |∆ω| of the perturbation is randomly selected

from a normal distribution of mean ε〈ω3〉 and standar desviation ε〈ω3〉/10,

where 〈ω3〉 denotes the mean ω3 of the asteroid dataset.

3. Finally, the direction of the perturbation in angular velocity is defined by

two angles, 0 < θ < π and 0 < ξ < 2π. These angles are also randomly

selected. The new angular velocities of the asteroids are computed as:

ω1 = δω1 = |∆ω| cos(ξ) sin(θ), ω2 = δω2 = |∆ω| sin(ξ) sin(θ) and ω3 =

ω3 + |∆ω| cos(θ).

After introducing the perturbation in the angular velocity of the asteroid,

each asteroid’s attitude is propagated for a period of time equivalent to five

rotations, ∆T = 10π/ω30. The Euler equations are numerically integrated —

using an explicit Dormand & Price of order 8(5,3), similar to that in Section 4,

so the angular velocity components —ω1, ω2 and ω3—are available. Using these

results as if they were observational data, the inertia ratios can be estimated as

follows:

1. The constant km are calculated as the period of Ω12 = ω1 + iω2. There

are several techniques that can be used in order to extract the period from

the signal [23]. For simplicity, the fast Fourier transform (FFT) has been

used, so the frequency is calculated as the frequency at which the signal

spectrum maximum is found.

2. The constant kc can be found as: kc = ls/ss, where ls is the major semi-

axis and ss the minor semi-axis of the ellipse that Ω12 traces in the com-

plex plane. A numerical method to adjust the semi-axis can be found in

Fitzgibbon [24].

From km and kc, the estimated inertia ratio I13e and I23e can be computed

by using Equations (77a) and (77b). The results can be compared against the

inertia ratios used for the simulation.
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The results obtained for all the database are shown in Figure 11. For small

perturbation ε < 0.1, the relative error in the inertia ratios is less than 5% for

more than 95% of the cases. The greater the disturbance the more the accuracy

is reduced. Nevertheless, the ratio I23 is still well estimated even when ε = 1

for the 95% of the cases. As it can be seen in this figure, the error is related to

the perturbation absolute value. This is a consequence of the linearization done

in Eq (60), which requires the perturbation to be small.
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Figure 11: Cummulative distribution function (CDF) of the inertia ratios relative errors

∆Ii3/Ii3 for different perturbation amplitude, ε = 1, 0.5, 0.1, and 0.05.

In fact, it is not the total magnitude of the disturbance that influences

the error, but only the component normal to the axis of rotation, since the

perturbation parallel to said axis does not cause any precession or nutation. As

shown in Figure 12 —for the case ε = 0.1— the joint PDF of the inertia ratio

errors depends on the normal velocity perturbations, and reveals a gradual rise

in the error as the normal perturbation magnitude increases. In this Figure, each

dot represents an asteroid and the PDF isocontour value is 1.0. Technically, this
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would indicate that the lower the disturbance the higher the precision that can

be obtained with this method. Nevertheless, there is a limit in the resolution

of the observation instruments, and this limit would determine the optimal

perturbation to minimize the error.
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Figure 12: Joint PDF of the inertia error estimation and the simulated normal velocity per-

turbation. Left image: Absolute error in I13. Right image: Absolute error in I23.

Although the magnitude of the disturbance is clearly the predominant factor

in the magnitude of the inertia estimation error, there is still a certain dispersion

in the results. This dispersion could be due to other factors such as the shape

and inertial matrices of the asteroids. To verify this hypothesis, the correlation

between the errors and the moments of inertia of the asteroids has been analyzed.

The inertia ratios of each asteroid in the database is shown in Figure 13

(up) as a point cloud. As can be seen, most asteroids have an ellipsoidal matrix

of inertia (I13 close to 0.5, I23 close to 0.9), with great variety of shapes but

few borderline cases. In the same figure (bottom), the 300 asteroids with the

largest error estimation are plotted as red squares. Correlations between inertia

ratios and errors can be appreciated. In the case of I13 estimation error, it

is smaller when I13 and I23 are comparable. And in the case of I23 estimation

error, it is smaller when I13 is close to 0.5. An explanation for these correlations

has not been determined yet, but these conclusions can help determine which

asteroids are more conducive to applying the proposed method. To highlight

these correlations, the Figure 14 has been prepared. In this figure, it can be

appreciated that the error in I13 grows with the difference I23− I13 and, on the
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Figure 13: Joint PDF of I13 and I23. Isocontour values: 0.5, 2 and 10. Bottom left: 300

asteroids (red squares) with largest error in its I13 estimation. Bottom right: 300 asteroids

with larger error in its I23 estimation.

other hand, the error in I23 grows when |I13 − 0.5| increases.

7. Conclusions

With the advent of improved computational resources, the use of numerical

methods has been growing as a powerful tool used to determine the evolution of

complex systems. However, analytic methods still have some useful applications.

In the present study, analytic solutions have been derived for different cases

of rigid body rotations that can be typically found in aerospace engineering. In

spite of their relevance, a systematic approach to the different problems was not

available in the literature. A common methodology is developed for all these
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Figure 14: Left image: Joint PDF of the absolute error in I13 and the value of I23 − I13.

Right image: Joint PDF of the absolute error in I23 and |0.5 − I13|. Isocontour values: 0.1

and 0.3.

cases, based on complex variable. The methodology has shown a useful set of

characteristics that let us simplify the analytical treatment of the several prob-

lems described. Applications of this analytical methodology may include thrust

misalignment, sun-tracking attitude motion, response to random/harmonic in-

puts, stability analysis, etc. This work organize, complements, and extends the

contributions of different authors in the literature.

As a particular application, the asteroid attitude has been studied. Due to

their low-amplitude rotations, a linearization of the equations can be done not

only for the cylindrical inertial tensor but also for the non cylindrical one. In

the latter case, new expressions are shown that relate the motion parameters to

the inertial ratios of the asteroids and vice versa. That is of particular interest

because it opens the possibility of estimating the inertial ratios of the asteroids

using only information relative to their motion.

In order to check the utility of the previous linearization, a Montecarlo ex-

periment has been done using the asteroid database DAMIT. In this experiment,

the relaxed state of real asteroids is randomly perturbed so the inertial ratios

can be calculated using the temporal evolution of the asteroid angular veloc-

ities. For perturbations of magnitude 0.1〈ω3〉 —being 〈ω3〉 the mean angular

velocity of all the database’s comets— the inertia ratios are estimated with a

relative error of less than 5% for almost all the asteroids. That error depends on
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the magnitude of the perturbation and the asteroid´s inertia matrix although

further research should be undertaken to explore and explain the influence of

the last one.
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