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José Alberto Benítez-Andrades , Francisco Carro-De-Lorenzo , and Carmen Benavides

Abstract— One of the main challenges in simultaneous
localization and mapping (SLAM) is real-time processing. High-
computational loads linked to data acquisition and processing
complicate this task. This article presents an efficient feature
extraction approach for mapping structured environments. The
proposed methodology, weighted conformal LiDAR-mapping
(WCLM), is based on the extraction of polygonal profiles and
propagation of uncertainties from raw measurement data. This is
achieved using conformal M bius transformation. The algorithm
has been validated experimentally using 2-D data obtained from
a low-cost Light Detection and Ranging (LiDAR) range finder.
The results obtained suggest that computational efficiency is
significantly improved with reference to other state-of-the-art
SLAM approaches.

Index Terms— Computational efficiency, feature extraction,
light detection and ranging (LiDAR), simultaneous localization
and mapping (SLAM), weighted conformal mapping.

I. INTRODUCTION

AN AUTONOMOUS robotic unit must be capable of mov-
ing in a potentially unknown environment. Consequently,

it requires a navigation subsystem based on three distinct steps:
mapping, location, and navigation [1]. This process can be
summarized in the concept simultaneous localization and map-
ping (SLAM). SLAM combines data from available sensors,
maps the environment, and locates the robotic unit within it.
The process is completed by the estimation of uncertainties,
both of the mapped common features and of the unit itself.
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In this context, cumulative errors act as a stark constraint to
the quality of the navigation step. A proof of success in this
step is the capacity to return to the starting position; a problem
known as loop closure detection [2], [3], [4].

Light Detection and Ranging (LiDAR) sensors are currently
gaining momentum in SLAM applications. They are range
finders capable of determining distances based on the time
of flight of a laser pulse [5]. The increased volume and
robustness of data, along with its improved accuracy, are the
main reasons for choosing LiDAR sensors [5], [6]. In any case,
these sensors are still insufficient to become the only source of
data for SLAM. Therefore, it is usual to resort to sensor fusion.
We can name inertial measurement units (IMUs) or global
navigation satellite systems (GNSSs) as examples of auxiliary
technologies to complement LiDAR in SLAM applications [3].

We identify two key aspects in the implementation of
LiDAR SLAM algorithms: uncertainty propagation and the
processing of high volumes of data. These issues, specially
the latter, become increasingly critical in real-time applications
with computational and energy constraints. Regarding uncer-
tainty obtention, the algorithm must transform LiDAR 2D data
into a collection of uncertainty matrices associated with the
obtained natural landmarks [7]. Deriving these matrices from
raw sensor data may occasionally be problematic. However,
the viability of the system depends entirely on the reliability
of the generated map. Offsets in position are directly linked to
the precision of the calculated references. The mapping step
in SLAM algorithms requires the processing of large volumes
of data. Ideally, larger numbers of measurements would result
in better performance. Unfortunately, this is antagonistic to
resource constraints expectable in real robotic units. Thus,
computational efficiency is of paramount importance. The
current tendency is to extract map features directly from raw
data [2]. The nature of the surroundings plays an important
role in the complexity of the mapping process. We may distin-
guish structured, generally indoor environments in which the
dominant natural features are straight lines, corners, and curves
from unstructured environments with higher irregularity [7],
[8]. Extrapolating, structured SLAM places lower computa-
tional strain on the algorithm than unstructured SLAM.

In this work, we propose a new formulation, based on
conformal transformation, that allows for the extraction of the
features characterizing the profile of a structured environment.
The profile is eventually defined as a combination of straight
lines and representative points, with their associated uncertain-
ties. A LiDAR sensor provides the raw measurements required
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for profile characterization and uncertainty propagation. The
main contribution of this work lies in the reduction of the
computational cost associated with the mapping step.

This article is organized as follows. Section II provides
a review of related work. In Section III, the mathematical
introduction of the new model is presented. Section IV shows
the details of our methodology for feature extraction. LiDAR
experiments are presented in Section V. Finally, Section VI
concludes this article.

II. RELATED WORK

High data volumes obtained from LiDAR sensors allow for
high-precision mapping. However, this comes at the expense
of large computational efforts [6]. The current state of the art
is to condense this raw data into representative features of the
mapped environment. Memory consumption and data-handling
benefit significantly from this approach [9], particularly in
structured SLAM.

Straight line characterization can be achieved using two
parameters. Arras and Siegwart [10] extract the slope and
normal distance of the line containing the segment under study,
starting from data obtained in polar coordinates and consider-
ing angle magnitudes so as to avoid ambiguity. Vandorpe et al.
[11] characterize the line using its slope and intersection
and perform lineal regression on both axes. Thus, they avoid
numeric overflow caused by tangents in the vicinity of π/2.
Taylor and Probert [12] and Siadat et al. [13] conceptualize
the line as a linear expression defined by variable coefficients
and propose global least squares fitting. Several authors,
such as Nuñez et al. [7], Jensfelt and Christensen [14]
or Fortin et al. [15] use the line-fitting procedure described
in [10] without weighting. Sack and Burgard [16] add the
expectation about each measurement belongs to line base on
expectation-maximization (EM) algorithm as weighting factor.
Yan et al. [17] use a factor equal to the inverted sum of the
angle and distance variances. This last approach is not useful
in the case of LiDAR sensors, where angle and distance
uncertainties are specified by the manufacturer as constants.

Corners are also relevant geometric characteristics of a
structured environment. They are of particular importance in
the positioning step. The existing literature suggests several
approaches to tackle corner identification. The most com-
mon procedure, used by Nuñez et al. [7], Yan et al. [17]
and Castellanos et al. [18] is to characterize corners as the
intersection of two consecutive straight lines. The simplest
approach is to identify a corner every time there is a sign
change in the distance difference between two consecutive
points [19]. However, this may lead to spurious detections.
Some authors, such as Amri et al. [20], suggest using the
cosine theorem as a solution.

The methodology proposed here is based on the extraction
of polygonal profiles, whose intersection defines keypoints
(corners). In this sense, it is comparable to the approaches
developed in [10] and [13]. We will, therefore, use these
methodologies as reference for comparisons. Uniformity
requires that we complete certain aspects of the formulation
described in [10] and [13] (e.g. weighting factors). This is
done following procedures found in the literature or in our

Fig. 1. Conformal transformation of line r in plane Z to its inverted red
circumference counterpart in plane W.

own developments. The algorithms are later implemented and
used in real environments. We identify a significant reduction
of processing times, which necessarily translates into a faster
mapping phase.

III. MATHEMATICAL MODEL

Angles and distances provided by LiDAR can be naturally
transferred to a 2-D polar diagram. The origin of the repre-
sentation is located at the instrument position; the polar axis
is fixed to the instrument direction. In the complex plane,
every obtained measurement can be represented by a module
(distance) and a phase (angle). It is important to remark that
the sensor cannot provide measurements corresponding to a
line passing through the origin.

The mathematical basis of the proposed mapping approach
is the inversion in the complex plane (C). It is an application
f : C → C that transforms lines that do not pass through the
origin into circumferences that do. It is a particular case of the
M bius transformation, to which the properties of conformity
and isogonality are inherent [21]. Consequently, angles and
rotation directions are kept from the complex plane Z to its
inverted counterpart W. This behavior reduces the complexity
of discerning between concavity and convexity.

Fig. 1 shows point z j belonging to line r in Z. The result
of the inversion of z j in plane W is point w j . The locus of
the inverted points of r is represented in red, corresponding
to a circumference passing through the origin O (common
to both Z and W). The inversion of point P , closest point
of r to the origin, is Q. The segment O Q is seen under an
angle of π/2 from all possible iterations of w j . Therefore, all
segments Ow j are perpendicular to their counterparts Qw j .
Please note that, for each point z j , the inverse of the module
is equal to the module of its inverse. In a real application,
any point z j has an associated measurement uncertainty.
Consequently, inverted points w j will also present dispersion.
Relative uncertainties are maintained between pairs of inverted
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and non-inverted points. Least-squares fitting allows for the
calculation of point Q.

Let us consider point z j = |z j |eiθ j , with an associated
inverted counterpart w j = (1/|z j |)e−iθ j . For any value of j ,

the lines containing segments Qw j can be expressed as

|wQ | cos
(
θ ′

j − θ ′

0

)
= |w j | (1)

which leads to

xQ · x j − yQ · y j = 1 (2)

where xQ and yQ are the coordinates of point Q in plane W
and x j and y j are the coordinates of point z j in plane Z.

IV. METHODOLOGY

Let us now define the procedure to obtain poligonal char-
acteristics and their associated uncertainties in structured
environments. We define a novel methodology, weighted con-
formal LiDAR-mapping (WCLM), based on the inversion
model defined previously. The LiDAR sensor is placed on a
rotatory base. The system measures two magnitudes: distance
(provided directly by the LiDAR sensor) and angle (obtained
from an encoder). Since we deal with uncoupled sensors,
we expect their uncertainties to be uncorrelated. Furthermore,
we assume them as Gaussian with null mean. They are defined
by a bivariate distribution [22] of the form

f (ερ, εθ ) =
1

2πσρρσθ

e
−

1
2

[
ε2
ρ

σ2
ρ

+
ε2
θ

(ρσθ )2

]
(3)

where ερ and εθ are the Gaussian uncertainties associated with
the distance (ρ) and angle (θ ), respectively; and σ 2

ρ and σ 2
θ are

their variances. Please note that there are no cross-correlated
terms C(ερ ,εθ ), due to the aforementioned independence of the
sensors.

Based on the assembly described above, we perform the
same series of steps for the three analyzed methods. First,
the environment is segmented into straight sections (following
a standard methodology, described in [13]). The parameters
characterizing the lines are then extracted and their uncertain-
ties estimated. Finally, corners are obtained as intersection of
consecutive straight lines and their uncertainties are estimated.

A. Straight Line Characterization

1) WCLM for Line Fitting: Parameters xQ and yQ which
define line r , can be obtained using least-squares fitting.
We achieve this by minimizing the Euclidean norm of the
error vector ∥ε∥, as defined in

xQ · x − yQ · y − 1 = ε (4)

where x = [x1, x2, . . . , x j , . . .]
T , y = [y1, y2, . . . , y j , . . .]

T

and ε = [ε1, ε2, . . . , ε j , . . .]
T .

Let us assume errors in the X - and Y -axes. The error
distribution is bivariate, defined by

xQ(x j − εx j ) − yQ(y j − εy j ) − 1 = 0 (5)

where the total error corresponds to the error in both axes
weighted by the value of parameters xQ and yQ . Usage of

a global term simplifies the handling of singularities (i.e.,
vertical or horizontal lines)

ε j = xQ · εx j − yQ · εy j . (6)

Let us now consider a set of sample points associated with
line r , written in matrix form

xi yi 1
xi+1 yi+1 1
xi+2 yi+2 1
· · · · · · · · ·

xn yn 1

 ·

 xQ

−yQ

−1

 =


εi

εi+1
εi+2
· · ·

εn

. (7)

which can be expressed as

H · V = ε (8)

where H is the observation matrix and V is the vector of
coordinates of point Q. Minimizing the weighted error vector

V T
· H T

· W · H · V =

n∑
i=1

wiε
2
i (9)

where W = PT
· P is the diagonal matrix which contains the

weighting terms ωi . Each of these terms can be defined as

ωi =
1

Vxi Vyi − C2
xi yi

. (10)

With Vxi and Vyi representing the conditioned variances in
both axes, with covariance Cxi yi . The terms correspond to
the inverse of the dispersion in the bivariate distribution in
Cartesian coordinates, given by

f (εx , εy) =
1

2πσεx σεy

√
1 − p2

i

ek (11)

where k = −(1/(2(1 − p2
i )))[(ε

2
x/σ

2
εx

) + (ε2
y/σ

2
εy

) −

((2pεxεy)/(σεx σεy
))].

Correlation term p can be expressed as

p2
=

C2
εx εy

σ 2
εx

σ 2
εy

. (12)

Terms Vxi , Vyi and Cxi yi , from covariance matrix C pi , can
be obtained from[

Vxi Cxi yi

Cxi yi Vyi

]
= Jxy ·

[
Vρi Cρi θi

Cρi θi Vθi

]
· JT

xy (13)

where Vρi and Vθi are the distance and angle dispersions,
respectively, and Cρi ,θi = 0. Jxy is the Jacobian of the
coordinate change, defined by

Jxy =


∂xi

∂ρi

∂xi

∂θi
∂yi

∂ρi

∂yi

∂θi

. (14)

The resulting equation is[
Vxi Cxi yi

Cxi yi Vyi

]
=

[
T11 T12
T21 T22

]
(15)
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where

T11 = Vρi cos2 θi + ρ2
i Vθi sin2 θi (16a)

T12 =
(
Vρi − ρ2

i Vθi

)
sin θi cos θi (16b)

T21 = T12 (16c)

T22 = Vρi sin2 θi + ρ2
i Vθi cos2 θi . (16d)

By substituting terms, we reach the same weighting
factor (17) found by operating in polar coordinates. Therefore,
we find it to be independent of the coordinate frame

ωi =
1

σ 2
ρ (ρσθ )2 . (17)

We derive the following expressions for xQ and yQ :

x̂Q

=

(∑
i wi xi

)(∑
i wi y2

i

)
−

(∑
i wi yi

)(∑
i wi xi yi

)(∑
i wi x2

i

)(∑
i wi y2

i

)
−

(∑
i wi xi yi

)2 (18)

ŷQ

=

(∑
i wi xi

)(∑
i wi xi yi

)
−

(∑
i wi yi

)(∑
i wi x2

i

)(∑
i wi x2

i

)(∑
i wi y2

i

)
−

(∑
i wi xi yi

)2 . (19)

Uncertainty propagation from sensor data to the line con-
siders the uncertainty values provided by the manufacturer
(σρ, σθ ). We have obtained the estimators for point Q from
polar parameters (ρi , θi ) defined for n points of line r .
Consequently, covariance matrix CQ is defined by

CQ =

[
Vx̂Q Cx̂Q ŷQ

Cx̂Q ŷQ VŷQ

]
= JxQ yQ ·

[
Vρ Cρθ

Cρθ Vθ

]
· J T

xQ yQ

(20)

where JxQ yQ is the 2 × 2n Jacobian matrix of the coordinates
of point Q (xQ, yQ) with respect to sensor data (ρi , θi ). The
following uncertainty matrix results:

CQ = σ 2
ρ ·

∑
i


(

∂ x̂Q

∂ρi

)2
∂ x̂Q

∂ρi

∂ ŷQ

∂ρi

∂ x̂Q

∂ρi

∂ ŷQ

∂ρi

(
∂ ŷQ

∂ρi

)2



+ σ 2
θ ·

∑
i


(

∂ x̂Q

∂θi

)2
∂ x̂Q

∂θi

∂ ŷQ

∂θi

∂ x̂Q

∂θi

∂ ŷQ

∂θi

(
∂ ŷQ

∂θi

)2

 .(21)

Which we shall abbreviate as

CQ = σ 2
ρ

∑
i

CQ1i + σ 2
θ

∑
i

CQ2i (22)

where

CQ1i =

(
−ωi

Mρi

)2[ A2
i −Ai Bi

−Ai Bi B2
i

]
(23)

CQ2i =

(ωi

M

)2
[

C2
i Ci Di

Ci Di D2
i

]
. (24)

In which Ai , Bi , Ci , Di , Ri , and M can be calculated as

Ai = xi Y 2 − yi XY (25a)

Bi = yi X2 − xi XY (25b)

Ci = Ri

(
yi Y 2 + xi XY

)
+ ρ2

i Y (25c)

Di = Ri

(
xi X2 + yi XY

)
+ ρ2

i X (25d)

Ri = 1 − 2xi x̂Q − 2 yi ŷQ (25e)

M =

(∑
wi

)[
X2 Y 2 −

(
XY

)2
]
. (25f)

where average values are weighted using factor ωi .
2) Arras-Siegwart Method for Line Fitting: The parameters

used in [10] to define a line are r , distance of the line to the
origin of coordinates, and α, angle between the normal to r
and the polar axis

r =

∑
wiρi cos(θi − α)∑

wi
(26)

tan(2α)

=

2∑
j w j

∑
i
∑

j wiρiw jρ j sin θi cos θ j −
∑

i wiρ
2
i sin 2θi

1∑
j w j

∑
i
∑

j wiρiw jρ j cos(θ j + θi ) −
∑

i wiρ
2
i cos 2θi

(27)

α =
1
2

tan−1
(

N
D

)
(28)

where N and D are the numerator and denominator of (27)
respectively.

The development of this methodology in [10] leaves an open
choice regarding the weighting coefficients. Some alternatives
are provided, but these are not easily accessible parameters in
the case of low-cost instruments. Here, we will consider the
inverse of the deviation associated with a bivariate distribution,
as defined in (17), in analogy to the methodology WCLM
followed in Section IV-A1. Parameters r and α are not
uncorrelated. Their uncertainty matrix [10] is defined by

Cline =

[
Vα Crα

Crα Vr

]
= Jrα ·

[
σ 2

ρ Cρθ

Cρθ σ 2
θ

]
· J T

rα (29)

where covariance Cρθ is zero, Jrα is the Jacobian matrix of
line parameters C(r, α) with respect to sensor data (ρi , θi )

Cline = σ 2
ρ ·


(

∂α̂

∂ρi

)2
∂α̂

∂ρi

∂ r̂
∂ρi

∂α̂

∂ρi

∂ r̂
∂ρi

(
∂ r̂
∂ρi

)2



+ σ 2
θ ·


(

∂α̂

∂θi

)2
∂α̂

∂θi

∂ r̂
∂θi

∂α̂

∂θi

∂ r̂
∂θi

(
∂ r̂
∂θi

)2

. (30)

3) Siadat Method for Line Fitting: Siadat et al. [13] use
the implicit representation of the straight line in the following
equation to define the unweighted line:

ax + by + c = 0. (31)
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The weighting factor ωi applied in (31) is defined in (17).
To extract the parameters a, b, and c, the Lagrange Multiplier
method [22] has been used, subjected to the constraint: a2

+

b2
= 1. Parameters a–c are not uncorrelated. Their uncertainty

matrix is

Cabc =

 Va Cab Cac

Cab Vb Cbc

Cac Cbc Vc

 = Jabc ·

[
σ 2

ρ Cρθ

Cρθ σ 2
θ

]
· J T

abc

(32)

where covariance Cρθ is zero and Jabc is the Jacobian matrix of
line parameters C(a, b, c) with respect to sensor data (ρi , θi ).

Cabc = σ 2
ρ ·



(
∂ â
∂ρi

)2
∂ â
∂ρi

∂ b̂
∂ρi

∂ â
∂ρi

∂ ĉ
∂ρi

∂ â
∂ρi

∂ b̂
∂ρi

(
∂ b̂
∂ρi

)2
∂ b̂
∂ρi

∂ ĉ
∂ρi

∂ â
∂ρi

∂ ĉ
∂ρi

∂ b̂
∂ρi

∂ ĉ
∂ρi

(
∂ ĉ
∂ρi

)2



+ σ 2
θ ·



(
∂ â
∂θi

)2
∂ â
∂θi

∂ b̂
∂θi

∂ â
∂θi

∂ ĉ
∂θi

∂ â
∂θi

∂ b̂
∂θi

(
∂ b̂
∂θi

)2
∂ b̂
∂θi

∂ ĉ
∂θi

∂ â
∂θi

∂ ĉ
∂θi

∂ b̂
∂θi

∂ ĉ
∂θi

(
∂ ĉ
∂θi

)2


. (33)

B. Corner Characterization

1) WCLM for Corner Extraction: The coordinates of point
Q are sufficient to define line r . We can define two lines ri and
ri+1, characterized by points Qi and Qi+1. The circumferences
in W resulting from the inversion of ri and ri+1 intersect at
point Qc. This point is the inverse of the intersection point
of lines ri and ri+1 in Z (Pc) and is contained by segment
Qi Qi+1. In fact, we can invert the blue circumference found
in Fig. 2, which verifies

xQ j · xPc − yQ j · yPc = 1 (34)

where Q j represents any point in lines ri and ri+1, specially Qi

and Qi+1. We can obtain the coordinates of Pc and derive its
covariance matrix from those of Qi and Qi+1. Let us consider

xQi · xPc − yQi · yPc = 1
xQi+1 · xPc − yQi+1 · yPc = 1. (35)

Solving the system, we calculate the coordinates of the
corner (xPc , yPc)

xPc =
yQi+1 − yQi

xQi · yQi+1 − yQi · xQi+1

(36)

yPc =
xQi+1 − xQi

xQi · yQi+1 − yQi · xQi+1

. (37)

The covariance matrix that determines corner uncertainty is
given by

CPc = JPc ·


VxQi

CxyQi
0 0

CxyQi
VyQi

0 0
0 0 VxQi+1

CxyQi+1

0 0 CxyQi+1
VyQi+1

 · J T
Pc

(38)

Fig. 2. Extraction of corners as the intersection of the inverse red circum-
ferences of the straight lines, ri and ri+1, in plane W. The intersection point
obtained is Qc , the inverse of Pc .

where

JPc =


∂xPc

∂xQi

∂xPc

∂yQi

∂xPc

∂xQi+1

∂xPc

∂yQi+1

∂yPc

∂xQi

∂yPc

∂yQi

∂yPc

∂xQi+1

∂yPc

∂yQi+1

.

2) Corner Extraction Based on Arras–Siegwart: The
parameters defined in [10] serve as the basis for the corner
characterization procedure proposed in [7]. Considering two
lines ri and ri+1

ri = xc cos(αi ) + yc sin(αi )

ri+1 = xc cos(αi+1) + yc sin(αi+1). (39)

The coordinates of Pc are found by solving the system

xc =
ri sin(αi+1) − ri+1 sin(αi )

sin(αi+1 − αi )
(40)

yc =
ri+1 cos(αi ) − ri cos(αi+1)

sin(αi+1 − αi )
. (41)

The uncertainty propagation of line parameters to corner
parameters is reflected in matrix Cc

Cc =

[
Vxc Cxc yc

Cxc yc Vyc

]
= Jc · Cri αi ri+1αi+1 · J T

c (42)

where Cri αi ri+1αi+1 is the covariance matrix associated with the
parameters of the two lines and Jc is the Jacobian matrix of
corner parameters with respect to line parameters

Cri αi ri+1αi+1 =


Vri Cri αi 0 0

Cri αi Vαi 0 0
0 0 Vri+1 Cri+1αi+1

0 0 Cri+1αi+1 Vαi+1

 (43a)

Jc =


∂xc

∂ri

∂xc

∂αi

∂xc

∂ri+1

∂xc

∂αi+1
∂yc

∂ri

∂yc

∂αi

∂yc

∂ri+1

∂yc

∂αi+1

. (43b)
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Fig. 3. Raw data supplied by the RPLiDAR S1 sensor. The sensor position is represented by the red cross while black dots show the mapped environment
data. The real environment is furnished with cabinets, some of which are glazed, represented in yellow, brown lines show doors, while the green areas
correspond to curved cabinets. (a) Environment A. (b) Environment B.

3) Corner Extraction Based on Siadat: The corner extrac-
tion is based on the intersection of two straight lines obtained
by Siadat

ai xc + bi yc + ci = 0
ai+1xc + bi+1 yc + ci+1 = 0. (44)

Solving the system, the corner coordinates (xc, yc) are
obtained

xc =
bi ci+1 − bi+1ci

ai bi+1 − ai+1bi
(45)

yc =
ai+1ci − ai ci+1

ai bi+1 − ai+1bi
. (46)

Matrix Cc reflects the uncertainty propagation of the line
parameters to the corner parameters

Cc =

[
Vxc Cxc yc

Cxc yc Vyc

]
= Jc · Cai bi ci ai+1bi+1ci+1 · J T

c (47)

where Cai bi ci ai+1bi+1ci+1 is the covariance matrix associated with
the parameters of the two lines and Jc is the Jacobian matrix
of corner parameters with respect to line parameters

Cai bi ci ai+1bi+1ci+1 =

[
Cai bi ci 0

0 Cai+1bi+1ci+1

]
(48)

where

Jc =


∂xc

∂ai

∂xc

∂bi

∂xc

∂ci

∂xc

∂ai+1

∂xc

∂bi+1

∂xc

∂ci+1
∂yc

∂ai

∂yc

∂bi

∂yc

∂ci

∂yc

∂ai+1

∂yc

∂bi+1

∂yc

∂ci+1

.

V. EXPERIMENTAL RESULTS

The device employed for the acquisition of the indoor
datasets is RPLIDAR S1 by SLAMTEC. It is an omnidirec-
tional laser range scanner. Its angular resolution is (σθ =

0.391/2◦), and its depth accuracy, (σρ = ±5 cm). These
values condition the uncertainty of the obtained profiles. The

TABLE I
CORNER UNCERTAINTIES OF ENVIRONMENT A IN mm: WCLM,

ARRAS–SIEGWART, AND SIADAT

measurements are represented in polar coordinates on a flat
section of the environment, centered around the sensor.

Raw sensor data is grouped into straight segments. They
correspond to the walls of the surveyed environment. In a first
approximation, this is achieved using a classic line tracking
method [13]. To associate a new point to a segment, its
distance to the line is calculated. If the value lies below a
threshold (20 mm), association takes place.

As shown in Fig. 3, two different scenarios have been
surveyed to test the effectiveness of the proposed method
(WCLM). Environment A is approximately 12 × 8 m while
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Fig. 4. Feature extraction. Corners are represented by black triangles, the sensor position by a red cross and lines obtained from the raw data are highlighted
in blue. Corners of (a) environment A and (b) environment B.

TABLE II
CORNER UNCERTAINTIES OF ENVIRONMENT B IN mm: WCLM,

ARRAS–SIEGWART, AND SIADAT

TABLE III
COMPARATIVE COMPUTATIONAL TIMES OF WCLM, ARRAS-SIEGWART,

AND SIADAT IN µs: CORNER 20 OF THE ENVIRONMENT A

environment B is approximately 5 × 3 m. Both environments
correspond to structured SLAM, with several straight segments
and two curves. A LiDAR sweep in environment A yields
884 points, which conform into 54 straight segments with
26 corners. Note that curves are split into short straight
segments. This is the case for the segments comprised between
corners 6–9 and 13–14, see Fig. 4(a). For environment B,
a LiDAR sweep delivers 1112 points, which fit into 20 straight
segments with eight corners [see Fig. 4(b)]. The datasets for
each indoor environment were obtained from a fixed position.

Tables I and II contain the processing results using the meth-
ods described above: WCLM, Arras–Siegwart, and Siadat.

TABLE IV
COMPARATIVE COMPUTATIONAL TIMES OF WCLM, ARRAS-SIEGWART,

AND SIADAT IN µs: CORNER 4 OF THE ENVIRONMENT B

Corner coordinates are very similar for all methods. The
average corner uncertainties on the x-axis for Arras–Siegwart
and WCLM are 5.6 versus 6.8 cm for Siadat. On the other
hand, the average corner uncertainties of the y-axis are 6.5 cm
for Arras–Siegwart and WCLM versus 8.5 cm for Siadat.
Siadat is thus less accurate than Arras–Siegwart and WCLM,
which yield similar uncertainties. The order of magnitude of
these values is directly comparable to the sensor distance
uncertainty (5 cm).

All algorithms have been implemented in MATLAB
R2021a, running on an Intel Core i9-9900K processor
CPU and 64 GB RAM. We have selected four corners
(environment A: 20 and 22; environment B: 1 and 4) for
performance assessment. These corners have been deemed
representative of the ensemble, since all of them feature
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Fig. 5. Analysis of corner parameters as a function of the number of points used in their estimation. The left axis shows the uncertainty in Cartesian
coordinates of the corner for Arras-Siegwart, Siadat, and WCLM. The right axis shows the computational cost of the Arras-Siegwart and Siadat with respect
to the WCLM. (a.1) Corner 20 of the environment A. (a.2) Corner 22 of the environment A. (b.1) Corner 1 of the environment B. (b.2) Corner 4 of the
environment B.

equivalent behavior patterns in terms of uncertainty and com-
puting effort. For each of them, uncertainties and required
computational times (of the full algorithm) have been obtained
as a function of the number of available points. The values are
available for WCLM, Arras–Siegwart, and Siadat.

Fig. 5 represents the evolution of uncertainties and computa-
tional time ratio with the number of computed points. Table III
contains detailed computational time results for corner 20
(environment A) while Table IV compiles the computational
time for corner 4 (environment B).

The proposed method (WCLM) requires less computation
time than Arras–Siegwart and Siadat. On the one hand,
the Jacobian matrices used in the Arras–Siegwart for the

propagation of the uncertainties from the sensor to the line
parameters are computationally more complex than their
WCLM counterparts. Indeed, these Jacobian matrices are
obtained from double summations and inverse tangents, which
results in a higher computational cost of the Arras–Siegwart
algorithm. On the other hand, the Siadat requires the calcu-
lation of three parameters (a–c), their uncertainties and their
propagation to the corners. These requirements are softened
in WCLM, where only two parameters (xQ and yQ) are used.

Regarding uncertainty levels, Fig. 5 shows Siadat to be
sistematically less accurate with respect to the other analyzed
methods. In the case of Arras–Siegwart and WCLM, even
if uncertainties remain comparable, WCLM remains more
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efficient computationally as the number of points increases.
Uncertainties follow an asymptotical pattern, converging at a
certain value. In the “transient” phase before this stabilization
happens, the computational time ratio reaches values up to
10–15 between Arras–Siegwart and WCLM, to the advantage
of the latter.

As a final remark, it is worth noting that the variability
in uncertainty convergence between the six combinations
of figures and axes is linked to the number of available
points and their position relative to the sensor. Despite an
expectable dependence on the specific geometry under anal-
ysis, WCLM processing times are shown to be significantly
shorter.

VI. CONCLUSION

A new 2-D LiDAR feature extraction methodology has been
presented in this article. The key contribution of WCLM to the
state-of-the-art SLAM is the improved efficiency in terms of
computational time, while preserving uncertainty levels. The
fact that processing times show restrained growth with the
number of processed points implies that higher data volumes
may be managed simultaneously. Thus, the potential of certain
sensors can be fully or partially unlocked, alleviating the bot-
tleneck that the SLAM algorithm constitutes. Beside this, the
fact that larger sets of measurements can be processed results
in incremental uncertainty reductions in a given computation
timespan.

WCLM characterizes the line by its inversion point.
The associated mathematical treatment is based on global
least-squares fitting and prevents typical numerical overflow
when the line slope tends to infinity. The linear nature of the
algorithm enables its implementation on edge devices such as
FPGA or ASIC.

We propose WCLM as a competitive alternative for
real-time SLAM applications. The experimental results
obtained are comparable in terms of quality and robustness to
those of other algorithms, incorporating non-trivial enhance-
ments. Further investigations are likely to yield additional
efficiency leaps, such as those associated with improved
segmentation methodologies. The final objective would be to
implement WCLM in the complete SLAM process, aiming to
provide more accurate and efficient solutions for the deter-
mination of the position and trajectory followed by a robotic
element.
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