
Prepared for submission to JCAP

Non-minimally coupled dark matter:
effective pressure and structure
formation

Dario Bettoni,a,b Valeria Pettorino,a,c Stefano Liberatia,b and Carlo
Baccigalupia,b

aSISSA/ISAS, Via Bonomea 265, 34136, Trieste, Italy
bINFN, Sezione di Trieste, Via Valerio, 2, 34127, Trieste, Italy
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Abstract. We propose a phenomenological model in which a non-minimal coupling between gravity
and dark matter is present in order to address some of the apparent small scales issues of ΛCDM model.
When described in a frame in which gravity dynamics is given by the standard Einstein–Hilbert action,
the non–minimal coupling translates into an effective pressure for the dark matter component. We
consider some phenomenological examples and describe both background and linear perturbations.
We show that the presence of an effective pressure may lead these scenarios to differ from ΛCDM at
the scales where the non–minimal coupling (and therefore the pressure) is active. In particular two
effects are present: a pressure term for the dark matter component that is able to reduce the growth of
structures at galactic scales, possibly reconciling simulations and observations; an effective interaction
term between dark matter and baryons that could explain observed correlations between the two
components of the cosmic fluid within Tully–Fisher analysis.
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1 Introduction

Our present understanding of the universe is encoded in the so called ΛCDM model which is able to
explain in a simple and elegant way the evolution and the formation of structures. However, despite
its great successes [1] and successful tests at the solar system scale [2], General Relativity is still
far from being the ultimate theory of our universe. In particular, the present day energy density is
dominated by dark fluid(s) whose nature has not been completely understood so far. At the largest
scales the accelerated expansion is still a puzzle to be solved while, at smaller scales, galaxy clusters
and galaxies are dominated by a dark matter component whose particle nature is still unknown.

Dark matter, introduced in the realm of astrophysics in 1934 by Fritz Zwicky [3], is still missing
both a definitive detection and a unique theoretical candidate. Over the years many particles have
been proposed as viable candidates for dark matter (see [4–6] for comprehensive presentations) but
up to now no convincing indirect [7–9] nor direct [10–14] detection has led to a resolutive answer.
At cosmological and astrophysical scales there is no need for a particle description of dark matter
and its dynamics is described via a fluid approximation. This fluid is obtained from the particle
description through some averaging procedure that keeps track only of those microscopic properties
that are relevant from a macroscopic point of view, like pressure, velocity and density.

The most accredited model, the Cold Dark Matter paradigm (CDM), describes dark matter as a
non–interacting, pressureless fluid with small dispersion velocity. As already pointed out, despite its
simplicity this model is able to describe the formation and evolution of structures with remarkably
high precision. However, although its success, recent observations seem to indicate that the CDM
picture may not be able, as it stands, to explain in a natural way dark matter dynamics at clusters and
galactic scales. In particular some tension exists between dark matter simulations and observations,
with regard to both the density profiles of dark matter halos [15–19] and for the number of predicted
substructures inside a given host halo [20–23].1 Indeed, many attempts have been made to solve these
issues: baryons feedback on dark matter distribution [25–28], self interacting dark matter [29–31],
fuzzy cold dark matter [34], frustrated cold dark matter [35] in the context of unified dark matter
dark energy models or warm dark matter (WDM) [32, 33, 36–39], whose free streaming length is
able to erase structure formation below it. These problems may be related to the lack of a minimum
length scale for the clustering of dark matter that hence keeps collapsing down to small scales. In
other words, the net effect can be interpreted as the insurgence of an effective pressure term in the
dark matter fluid. Recently it has been proposed a method [40] to test the DM equation of state at

1The possibility that these issues may be related to a too low resolution of the simulations has been investigated too
[24].
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small scales in a rather model independent way by comparing the gravitational potentials measured
from galaxy rotational curves and from weak lensing which has been applied to data in [41]. The
results show a value for the equation of state parameter compatible with zero but with a preferred
value of w = −1/3 at 1σ. From cosmological observations, and hence large scales, the equation of
state for DM is compatible with zero [42, 43]. Interestingly, even if no incompatibility with w=0 has
been found, a model with w 6= 0 is still compatible with CMB data [43].

Another source of tension concerns empirical tests like the baryonic Tully-Fisher relation [44, 45]
or the constant galactic surface density [46]: they both hint towards a connection between dark
matter and baryonic properties; these observations are hardly explained within the ΛCDM paradigm
unless the amounts of dark matter and baryons are accurately balanced. On the other hand, dark
matter–baryon interactions are strongly constrained in the context of particle physics so that it is
very unlikely they can address these issues.

Curiosly, a model capable of predicting at least some of these empirical tests is the well known
MOND paradigm [47, 48] where the mass discrepancy problem is explained via a modified Newtonian
dynamics without requiring dark matter. MOND is a non relativistic model and several generalizations
to a fully relativistic theory have been attempted [49–52]. At present, none of them seems however
able to reproduce with accuracy and most of all, simultaneously, all well established cosmological
features, like the CMB acoustic peaks, the matter power spectrum, the Bullet cluster (see for example
[53, 54] for attempts in this direction).

An alternative appealing solution to CDM problems that may reconcile ΛCDM successes at large
scales with MONDian behavior at galactic scales, comes from a new class of non-standard dark matter
gravity couplings [55–57]. In this scenario the fluid content of the ΛCDM paradigm is maintained but it
is rather the dynamics of the dark matter fluid at suitable late times and small scales to be changed. In
particular, we shall here entail the idea that dark matter could, at suitable scales, have undergone some
sort of phase transition (e.g. something analogue to a Bose-Einstein condensation) and consequently
developed a finite coherence length of size comparable to the local spacetime curvature. In this sense
dark matter would be capable to probe gravity - e.g. to “feel” second derivatives of the metric - hence
becoming non–minimally coupled to curvature terms.

In this paper we further investigate the model proposed in [57] deriving for the first time its
cosmological implications. We show how this class of models gives rise to two effects: a pressure term
for dark matter, able to reduce the growth of structures at small scales, plus an effective interaction
term between dark matter and baryons that might be able to explain observed correlations between
the two components.

The paper is organized as follows. In section 2 we introduce the model, in section 3 we describe
the field/fluid formalism used and write the equations in their general form. In section 4 we specialize
them to a flat FRLW universe and study the modifications of our model with respect to ΛCDM while
in section 5 numerical results are presented. Finally in section 6 we draw out our conclusions.

2 Non–minimally coupled dark matter

The most general–scalar tensor theory that gives second order field equations is encoded in the Horn-
deski action [58]. Unfortunately due to its generality, it is very hard to build a constrained and reliable
cosmology using this action (see however [59, 60] for attempts in this sense). In [57] a minimal recipe
was used to build an action in which the dark matter fluid is non–minimally coupled to curvature
terms and the astrophysical consequences of this couplings were addressed. The action reads:

S =
c3

16πGN

∫
d4x

√
−g̃(1 + αScalΥ(ρDM ))R̃+

αRicc
3

16πGN

∫
d4x

√
−g̃R̃µνΞ(ρDM )uµDMu

ν
DM + SDM [g̃, ρDM ] + SB [g̃, ρB ]. (2.1)

where g̃ is the metric in the Jordan frame (we will use the tilde to indicate quantities in the Jordan
frame), c is the velocity of light, GN is the Newton constant, R̃ and R̃µν are the curvature scalar and
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Ricci tensor respectively in the metric g̃, αScal and αRic are constants, ρDM is the Dark Matter (DM)
energy density, ρB is the baryonic energy density. Υ(ρDM ) and Ξ(ρDM ) are two generic functions of
the DM density. Here αScal introduces a coupling between ρDM and the curvature; in addition, αRic

couples the metric and its derivatives also to the DM four velocity uDM . This model gives rather
precise predictions in the Newtonian limit: the Newtonian gravitational potential Ψ̃ is sourced not
only by the energy density but also by its gradient and Laplacian:

∇2Ψ̃ = 4πGN

(
ρDM −

αRic

2
∇2Ξ(ρDM ) + αScal∇2Υ(ρDM )

)
. (2.2)

These features are interesting ingredients in the tentative solution of ΛCDM small scales issues as
they generate corrections that may reduce the cuspiness of the DM density profiles and reduce the
number of satellite halos. We note that our model was developed in a context which is independent
from Horndeski; it can still be seen as a subclass of those theories, when only fluid quantities related
to density and quadrivelocity and their coupling to curvature terms are taken into account.

We will now further extend the analysis of this class of models, investigating their cosmological
consequences. In order to do this we choose to move to a frame in which the action for gravity
is described by the standard Hilbert–Einstein action. When in the Jordan frame the non–minimal
coupling is taken to be with the Einstein tensor, αScal = 1/2αRic ≡ ε, this can be achieved with the
following metric transformation:

g̃µν = gµν + hµν , hµν =
(
A(ρDM )2 − 1

)
gµν +B(ρDM )uµuν , (2.3)

where A(ρDM ) and B(ρDM ) are generic functions of the DM density; this is the most general relation
between metrics that respect both causality and the equivalence principle (WEP) and is called disfor-
mal transformation [61]. We stress that here hµν is not only a function of the metric but depends also
on the DM density itself. If we re-express action (2.1) in terms of the metric gµν and then expand in
powers of hµν up to order O(h2

µν) we obtain the following action:

S = SHE [g] + SDM [g, ρDM ] + SB [g, ρB ] + Sint[g, ρB , ρDM ], (2.4)

where SHE [g] is the standard Einstein–Hilbert gravitational action, SDM [g, ρDM ] and SDM [g, ρDM ]
are the DM and baryonic actions in the metric g, Sint is

SInt = −1

2

∫
d4x
√
−g (TµνDM + Tµνb )hµν(g, ρDM ), (2.5)

and represents a new interaction term which in general involves the metric, dark matter and baryons.
As usual the stress energy tensor Tµν for the i component (DM or baryons) is given by

T iµν = − 2√
−g

δSi
δgµν

. (2.6)

In this new frame the effects of the non–minimal coupling have been transferred into a coupling term
for the stress energy tensors of both dark matter and baryons and hµν which, as stressed before,
is itself a function of the metric as well as of dark matter fluid variables. This translates directly
into a coupling between DM and baryons and a self coupling for dark matter. Notice that those
two couplings are not to be intended in the particle physics sense but they rather emerge from a
geometrical coupling between dark matter and gravity.

We further stress here that the action (2.4) is obtained from (2.1) through an expansion and
hence the two actions are equivalent up to order O(h). This doesn’t matter as we could have started
directly from the action (2.4).

As argued in the introduction we assume the coupling to be active at late times and small scales
when dark matter dynamics changes giving rise to a coherence length that activates the non–minimal
coupling.
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3 Dark matter with an effective pressure

As a first investigation of this model we neglect the baryon contribution and set the value of the
conformal function in eq. (2.3) to be A = 1. We also switch to field formalism using standard
conventions [62]:

ρ→ ρ(X,ϕ), p→ p(X,ϕ), uµ = ∇µϕ/
√

2X (3.1)

where now ϕ is the dark matter scalar field and X = −gµν∇µϕ∇νϕ/2 is its kinetic part. The field
variables are not fundamental fields, but rather stand for a different representation of the fluid. In
this sense we must ensure that in absence of a coupling we recover the equations for the standard
dark matter fluid. In general a scalar field will not behave as a pressureless dust; thus, we have to
enforce this requirement. In order to do this we introduce a Lagrangian multiplier in the Lagrangian
for the dark matter field

L = λ(xµ)

(
X − 1

2
V 2(ϕ)

)
(3.2)

where V (ϕ) is a generic potential so that when we take the variation of the action with respect to λ
we get

δSDM
δλ

= 0⇒ X − 1

2
V 2(ϕ) = 0 (3.3)

which exactly sets the pressure to zero [63, 64]. We conjecture that in order for the interaction to be
active, the temperature of the cosmological bath (i.e. time or redshift) must be below a certain thresh-
old. This explains the time dependence of the coupling. However, even after the critical temperature
has been reached, the density may be too low for the interaction to be efficient. Hence one needs
high densities in order to make the interaction relevant. In order to implement phenomenologically
the wished scale and time dependences of the coupling, we fix the parametrization of the coupling
function in the following way:

hµν(X,ϕ) =
F (X,ϕ)

ρ∗
∇µϕ∇νϕ. (3.4)

The function F gives the scale dependence of the interaction by suppressing it until the density is
large enough to overcome a given threshold fixed by ρ∗.

The action (2.4) can then be rewritten as:

S = SHE [g] + SDM [g, ϕ, λ] + ε

∫
d4x
√
−gLnmc(X,ϕ), (3.5)

where now SDM depends on {ϕ, λ} rather than on ρDM and

Lnmc = −F (X,ϕ)

ρ∗
X

(
X +

1

2
V 2(ϕ)

)
(3.6)

is the interaction term generated by the non–minimal coupling. The coupling ε is a switch that
is chosen to be zero at t < tc, tc being the time when the coupling is activated; for t > tc, ε
becomes different from zero, reaching a constant value of about ε < 1, as required by the expansion
of hµν to order (ε2). In other words, ε becoming different from zero indicates the onset of the non–
minimally coupled epoch. At the same time, for the purpose of the present analysis, which is limited
to order O(ε2), its value must be small compared to one.2 From a cosmological point of view the
time dependence of the coupling is required because we want to study how the non–minimal coupling
modifies the ΛCDM behavior at small scales and late times only, as we stressed in the introduction.
To be fully rigorous we should have given ε a spatial dependence as well. That would cause the
activation of the non–minimal coupling to happen at different times and in different regions. Such
a spatial dependence would give rise to a most interesting phenomenology but strongly dependent

2The parameter ε is just a phenomenological parameter that should be given dynamically by the non–minimal
coupling mechanism. In this sense we are not introducing a non–dynamical field and background independence is
preserved.
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on which powering mechanism is chosen for such a dependence on space. We therefore feel that
this treatment would go beyond the scope of the present paper, requiring a dedicated analysis in a
separated work.

The variation with respect to ϕ and λ gives the two combined equations of motion which together
specify the fluid dynamics:

λ̇ = V −2(ϕ) [V (ϕ)ρ,ϕ − (ρ+ εp)θ] , (3.7)

ϕ̇ = −V (ϕ), (3.8)

where

(̇) ≡ uµ∇µ, θ ≡ ∇µuµ, (3.9)

and where ρ,ϕ is the derivative of the density with respect to the field ϕ. The energy density ρ and
pressure p are derived from the total dark matter stress energy tensor:

Tµν =
(
λ+ εLnmc,X

)
V 2(ϕ)uµuν − εLnmcgµν (3.10)

by a direct confrontation with the form ad the perfect fluid stress energy tensor. We can identify the
following thermodynamic quantities:

ρ =
(
λ+ εLnmc,X

)
V 2(ϕ)− εLnmc, (3.11)

p = Lnmc, (3.12)

uµ = V −1(ϕ)∇µϕ. (3.13)

Notice that these quantities are not the same appearing in action (2.4) because here the interaction
term is directly involved in the definition of both density and pressure. In other terms in (2.4) ρDM
is the DM density for a pressureless fluid which has some non trivial self interaction while here the
interaction has been absorbed into the definition of the DM energy. ρDM in (2.4) is related to the
{λ, ϕ} variables by the relation ρDM = λV (ϕ)2. Since our knowledge of the DM distribution comes
through its gravitational effects, definition (3.11) gives the actual measured DM density.

We also notice that the pressure defined in (3.12) acts only along the direction defined by the
fluid four velocity, as can be seen from the fact that the four acceleration aµ = uν∇νuµ is identically
zero. As a consequence we don’t have anisotropic stresses that in more general situations may be
present [57].

The effect of the non–minimal coupling is twofold: on the one side it modifies the dark matter
energy density while on the other side it introduces a pressure term that would be absent in the
standard ΛCDM scenario. We expect both these terms to have relevant cosmological consequences at
the time and scales of interest, as will be shown below. We anticipate that this model is able, with
appropriate potential shapes, to reduce the source of the gravitational potential with the consequence
of smoothing out the overdensities at small scales. The equations for a pressureless dust (3.7)-(3.8)
in the limit of vanishing coupling are independent on the choice for the potential [63] that is to say
the density scales like a−3 no matter what potential is chosen. This does not represent a problem
since once the mechanism that generates the non–minimal coupling is fixed, so is the interaction
term which in turns fixes the shape of the potential. We will not investigate the ultimate nature of
the non–minimal coupling here but we will give some examples of potentials that could lead to an
interesting phenomenology.

4 Cosmological framework: background and linear perturbations

We will now study the cosmological consequences of our model. We will assume a flat FRLW universe
filled with the dark matter field plus a cosmological constant.3 In terms of the conformal time

3Since we are interested in cluster/galaxy scales we are not concerned here about the nature of dark energy. We
thus make the minimal choice of a cosmological constant.
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Potential Pressure F(φ,X) Effective coupling coupling redshift

V (ϕ) =
√
ρDM0 p(z) = −(ρDM0 )2/ρ∗ 1 (ερDM0 /ρ∗) = 1 zc = 5

V (ϕ) =
√
ρDM0 e−κϕ p(z) = −K arcsinh

[(
ΩΛ/ΩDM

(1+z)3

)1/2
]4

1 (ερDM0 /ρ∗) = −10−3 zc = 5

Table 1: Functions and parameters. In the first column are reported the two potentials used in the
paper while in the second column are reported the related pressures as a function of the redshift. The
third column reports the used value for the scale function F. The value is set to a constant meaning
that no scale dependence is present. The last two columns report the value for the effective coupling
constant ερDM0 /ρ∗ and the redshift at which the non–minimal coupling is activated.

dτ = dt/a we have that:

H2 =
8πG

3

[(
λ+ εLnmc,X

)
V 2(ϕ)− εLnmc + ρΛ

]
, (4.1)

λ′ = −a(τ)V −2(ϕ) [V (ϕ)ρ,ϕ + 3H(ρ+ εp)] , (4.2)

ϕ′ = a(τ)V (ϕ), (4.3)

where primes indicate derivatives with respect to the conformal time and ρΛ = 3Λ/(8πG). The
equation for λ can be rewritten in terms of the more physical quantity ρ defined by equation (3.11)
which is what appears on the right hand side of the Friedman equation 4.1 with no cosmological
constant. In this respect we are defining the density of the dark matter fluid as the quantity which
plays the role of gravitational source. With this consideration the previous system of equations is:

H2 =
8πGa2

3
[ρ+ ρΛ] (4.4)

ρ′ + 3H(1 + εw(ϕ))ρ = 0 (4.5)

ϕ′ = a(τ)V (ϕ) (4.6)

where w(ϕ) = p/ρ. The continuity equation can be interpreted as that of a fluid with a field dependent
equation of state which in turns means a time dependent equation of state.

We now present the equations for the linear perturbations in the Newtonian gauge for scales which
are well inside the horizon following the notation of [65]. For a detailed derivation of the equations
we refer to appendix (B). The system of equations governing the evolution of the linear perturbations
is given as usual by the continuity equation, the Euler equation and the Poisson equation:

δ′(k, τ) + 3H(τ)ε

(
δp(k, τ)

δρ(τ)
− w(τ)

)
δ(k, τ) + (1 + εw(τ))kv(k, τ) = 0 (4.7)

v′(k, τ) +H(τ)v(k, τ) + kΨ(k, τ) = 0 (4.8)

k2Ψ(k, τ) = 4πGa2Q(k, τ)ρmc(τ)δ(k, τ), (4.9)

where δ ≡ δρ/ρ and ρmc is the minimally coupled background DM density. With this formalism the
Q function takes the general form Q(k, τ) = (1+O(ε)), where the corrections come from the modified
background DM density.

From eq. (4.7) we can see that the continuity equation is modified in two ways: the last term can
lead to a speed up or slow down of the growth of perturbations, depending on the sign of ε; the second
term on the left hand side is a new genuine effect of this model that closely resembles a dilution term.

The Euler equation is modified in two parts: H(τ) is modified as in the Friedman equation (4.1)
and the gravitational potential is changed as from the Poisson equation. Notice also that despite the
presence of an effective pressure, no Jeans length appears in the equation. This is a consequence of
the time–like character of the pressure term, as noted above. Deviation from the ΛCDM model can
be parametrized by two functions [66]: ζ = (Ψ + Φ)/Φ, that characterizes the effects of anisotropic
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stresses, and Q related to deviation from the standard Poisson equation. The ΛCDM model has ζ = 0
and Q = 1. In our class of models there are no anisotropic stresses and hence ζ = 0 as well. However
the Q function is in general different from unity and hence it is a measure of the departure from
ΛCDM on which next generation surveys will cast strong constraints. As said, Q = 1 + εf(ρ, p) in
general. Explicit forms for the function f will be given below.

It is a standard procedure to take the derivative of eq.(4.7) and using eq.s (4.8) and (4.9) to
obtain one single equation describing the evolution of the linear perturbations. In our case this gives:

δ′′(k, τ)− 3H′(τ)ε

(
δp(k, τ)

δρ(k, τ)
− w(τ)

)
δ(k, τ)− 3Hε

[(
δp(k, τ)

δρ(k, τ)

)′
− w′(τ)

]
δ(k, τ)

− 3H(τ)ε

(
δp(k, τ)

δρ(k, τ)
− w(τ)

)
δ′(k, τ)− εw′(τ)kv(k, τ) + (1− εw(τ))kv′(k, τ) = 0 (4.10)

which reduces to the standard ΛCDM equation δ′′ = −kv for ε → 0. For completeness we give also
the Euler equation in real space:

v′(x, τ) +H(τ)v(x, τ) = −∇Ψ(x, τ). (4.11)

Note again that here both H(τ) and Ψ(x, τ) are modified according to equations (4.1) and (4.9)
respectively.

5 Results

In this section we present the results of the integration of equations (4.5)-(4.10) for different choices
of the potential which directly translates in different time behaviors for the pressure. In the absence
of a clear mechanism that can predict the form of the potential, we consider various examples and
derive their possible cosmological implications. We will first explore the case in which the potential
for the field ϕ is a constant and then we will consider a decaying exponential potential. These can
be seen as the extrema of the general class of decaying potentials. In fact, all power law potentials
would have an intermediate behavior, while a potential linear in the field would give an exponentially
decaying time behavior.

As a further work assumption we choose F = 1. This means that the coupling is only time
dependent and not also scale dependent so that as soon as the critical temperature is reached the
coupling is active everywhere. This is a crude simplification which enables us to illustrate, in a first
concrete example, the impact that the dark matter non–minimal coupling illustrated in section (3)
can have on observations. We leave more realistic scale dependent scenarios to future study. The set
of functions and parameters used are reported in table ??. We also fix cosmological parameters as
follows: ΩΛ = 0.76, ΩDM = 0.24 and H0 = 74 km/s/Mpc.

Constant potential

In the case of a constant potential the effects on the background density evolution are shown in figure
(1a) as compared to the evolution of standard cold dark matter. Remarkably the effect of the coupling
is to mimic a cosmological constant as can be seen from the background solution:

ρ(z) = ρ0
dm(1 + z)3 +

εeff
2
ρ0
dm (5.1)

p(z) = −εeff
2
ρ0
dm (5.2)

where εeff = ερ0
dm/ρ∗ with ρ0

dm the present day density of dark matter, and ρ∗ a reference density
characteristic of the scale under analysis. In this case the background dark matter fluid behaves as
if it were composed by two fluids, one standard pressureless fluid plus a fluid with a cosmological
constant equation of state p = −ρ, as pointed out also in [63] in a different context, so that there is no
extra need to include a cosmological term in eq (4.1) The evolution for the density contrast is shown
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in figure (2a) as compared to that of the density contrast for the ΛCDM model. The suppression is
enhanced for illustrative purposes but it is clear that the growth of linear perturbation is suppressed
with respect to the one in standard ΛCDM model, in a way that resembles a ΛCDM model with a larger
cosmological constant. This is also clear from figure (2b) where growth function f ≡ − log δ/ log z for
our model decreases faster compared to the ΛCDM function.

The Q function, defined in the Poisson equation and responsible for deviation in the gravitational
potential has the following form in the case of a constant potential:

Q(k, z) =

(
1− εeff

2(1 + z)3

)
(5.3)

which implies that the effective gravitational constant that generates the gravitational potential is
reduced at those scales at which the interaction is active.

To conclude, the effect of the gravitational self coupling with a constant dark matter potential is
to add an extra contribution analogous to that given by a cosmological constant with the result that
the growth of the density contrast is more suppressed than in the standard ΛCDM model.

Exponential potential

The exponential potential acts in a completely different way. The background DM density is shown
in figure (1b) as compared to the evolution of standard pressureless dark matter. The effect of the
non–minimal coupling is to slow down the dilution of the dark matter density as soon as the coupling
is switched on. Notice that the sudden change in the evolution behavior is a mere consequence of the
step function that switches on the coupling only for t > tc. More realistically, a smoother crossing
is expected. The effect of the coupling fades away with time and the model tends asymptotically
to ΛCDM . This is a welcome feature as it could possibly boost the number of high redshift clusters
observed around z ∼ 2 without affecting present day halos [67, 68], similarly to the scenario pictured
in [69, 70] but here relying only on the dark matter non–minimal coupling to gravity.

In this case the explicit form of the pressure term, as obtained from eq. (3.12) is:

p(z) = Karcsinh

[(
ΩΛ/ΩDM
(1 + z)3

)1/2
]4

, (5.4)

where

K =
1

2

(
3

2

)4

ρ0

(
3ρΛ

8πG

)2

. (5.5)

In figure(3a) the evolution of the density contrast as a function of redshift is plotted . In this
case the Q function has a complicated expression, not reported here, due to the non–trivial relation
between time and redshift for a ΛCDM model. We just comment that also in this case the function is
always less than one, thus reducing the gravitational potential.

In figure (3b) we plot the growth function f as a function of redshift. As in the case of the
constant potential, here again we notice that the effect of the coupling is to reduce the growth of linear
perturbations. In this case, however, the sign of the coupling constant is opposite. The coupling ε is
a phenomenological parameter and different potentials subtend different theories thus the sign of the
coupling is not a priori determined. A more mathematical explanation for this fact can be given in
the limit of Einstein–de Sitter universe. In this case the equation to be solve for the density can be
generally written as

ρ′(z)− 3

z

(
ρ(z) + ερDM0 zα

)
. (5.6)

This equation has the general solution

ρ(z) = ρDM0 z3 + 3Czα (5.7)

where C = −ε/(−3 + α) with α 6= 3.4 For a constant potential α = 0 and thus the particular
solution to the differential equation is positive, hence the density is higher compared to ΛCDM .

4Notice that the case of α = 3 would simply rescale the coefficient of the homogeneous solution.
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Figure 1: Background density plots for (a) the constant potential (left panel, red line) and (b) the
exponential potential (right panel,red line), compared to standard pressureless dark matter (black
dashed line). In both plots we fix F (X,ϕ) = 1 and zc = 5. The density is in g/cm3. The constant
εeff in the case of the constant potential is chosen in order to give a clear idea of the effects of the
geometrical interaction term. In particular, in this case, εeff = 1.
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Figure 2: (a) Evolution of the density contrast versus redshift in the case of constant potential (left
panel, red line) and (b) the growth function f(z) = −d log δ/d log z (right panel, red line), compared
to the standard ΛCDM results (black dashed line), both with F (X,ϕ) = 1 and zc = 5. The constant
εeff in the case of the constant potential is chosen in order to give a clear idea of the effects of the
geometrical interaction term. In particular, in this case, εeff = 1.

In the exponential case instead α = 6 and hence the situation is reversed. Interestingly, for an
exponential potential, this suppression is limited in time: perturbations are maximally suppressed
around the time of the switching but asymptotically the model reduces to ΛCDM . Again, This can
be interesting when trying to get a higher number of halos in the past only, without affecting present
abundances.

6 Conclusions

Several observational tests coming from future surveys will soon be able to further proof or disproof the
ΛCDM model with respect to non-standard scenarios. In this paper we have addressed the question
of whether the dark matter fluid can behave differently at galactic scales rather than at cosmological
scales, due to the presence of a non-minimal interaction between dark matter and gravity. We have
extended the analysis done in [57] and we have illustrated for the first time cosmological consequences
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Figure 3: (a) Evolution of the density contrast versus redshift in the case of exponential potential,
left panel red line and (b) the growth function f(z) = −d log δ/d log z, right panel red line, compared
with the standard ΛCDM results (black dashed line), both with F (X,ϕ) = 1 and zc = 5.

of such a scenario, both at the background level and within linear perturbation theory. In particular we
have shown that a non–minimally coupled dark matter fluid is able to produce two relevant effects: a
pressure term for dark matter able to reduce the growth of structures at small scales, plus an effective
interaction term between dark matter and baryons that can explain correlations between the two
components of the cosmic fluid.

In this scenario we have considered the situation in which dark matter, at suitably late times,
undergoes some sort of phase transition (e.g. analogous to a Bose-Einstein condensation), consequently
developing a coherence length of a size comparable to that of the local curvature radius, thus becoming
non–minimally coupled.

We have studied in details the dark matter pressure term, neglecting the roles of baryons in
the present analysis. In particular we have analysed the system for two choices of the dark matter
potential that generates the pressure term: a constant potential, resembling a cosmological constant
contribution, and an exponential potential. These two choices are a good sample as all power potentials
have intermediate behaviors.

For a constant dark matter potential, the dark matter fluid behaves like the superposition of
two fluids, one standard pressureless dust plus a fluid that behaves like a cosmological term, with a
consequent suppression of the density contrast at small redshifts.

In the case of an exponential dark matter potential the effects are mostly relevant near the
time of activation of the coupling. The background density is enhanced and the linear growth is
suppressed for a limited redshift interval. In fact the pressure decays with redshift so that standard
ΛCDM evolution is recovered asymptotically.

We also provided the Euler and Poisson equations (4.8), (4.9) in a form convenient for N–body
simulations for any choice of the potential V together with explicit expressions and predictions for
the parameters Q and ζ, that characterize the deviations from ΛCDM . In particular we found that
ζ = 0, meaning that no anisotropic stresses are generated by our model, and Q < 1, after the coupling
is switched on, thus reducing the gravitational potential. Constraints on these functions has been
cast but they are rather weak and strongly model dependent [71–75] thus making necessary a direct
confrontation between our model and observations in order to cast constraints on the deviations of
our model from ΛCDM .

For both choices of the potential we have obtained a suppression in the growth of linear per-
turbations as in the figures (2) and (3). This is a good indication that this class of models may be
a viable possibility to solve some of the ΛCDM paradigm problems, like the core–cusp, the missing
satellites, high–z clusters. Of course, a non–linear analysis is required to evaluate these effects.

We have derived the general perturbation equations valid for any F (ϕ,X) and V (ϕ) (see eq.s
(4.4, 4.5, 4.7, 4.8, 4.9)) , though we have limited our specific examples to F (ϕ,X) = 1, for simplicity.
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Baryons can be included, introducing a much welcome relation between dark matter properties and
baryonic features as expected from observations [46].

We leave to follow-up studies a more realistic and quantitative description, including an environ-
ment dependent coupling with a generic F (ϕ,X); observations can be used to put constraints on the
free parameters, ε, ρ∗ and on the function F (ϕ,X).
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A Derivation of the background equations

In this appendix we give full details of the derivation of the equations reported in section (3). The
starting action is

S = SHE [g] + SDM [g, ϕ] +
ε

ρ∗

∫
d4x
√
−gXF (X,ϕ)

(
X +

1

2
V 2(ϕ)

)
. (A.1)

The variation with respect to the independent variables ϕ, λ and the metric gµν respectively gives:

λ�ϕ+∇µλ∇µϕ− λV (ϕ)Vϕ(ϕ) +
ε

ρ∗

[
�ϕ

(
F (X,ϕ)

(
2X +

1

2
V (ϕ)2

)
+ FϕX

(
X +

1

2
V 2(ϕ)

))
+

∇µϕ∇µ
(
F (X,ϕ)

(
2X +

1

2
V (ϕ)2

)
+ F (X,ϕ)XX

(
X +

1

2
V 2(ϕ)

))
+

F (X,ϕ)XV (ϕ)Vϕ(ϕ) + F (X,ϕ)XX

(
X +

1

2
V 2(ϕ)

)]
= 0, (A.2)

X − 1

2
V (ϕ)2 = 0, (A.3)

Gµν = 8πGTµν + 8πGT Intµν (A.4)

where

T Intµν =
2ε

ρ∗

{
∇µϕ∇νϕ

[
F (X,ϕ)

(
2X +

1

2
V (ϕ)2

)
+

∂F (X,ϕ)

∂X
X

(
X +

1

2
V 2(ϕ)

)]
+ gµνF (X,ϕ)X

(
X +

1

2
V (ϕ)2

)}
(A.5)

In order to simplify the notation we define the following quantity:

Lnmc(X,ϕ) ≡ 1

2
F (X,ϕ)Tµν

∇µϕ∇νϕ
ρ∗

=
F (X,ϕ)

ρ∗
X

(
X +

1

2
V (ϕ)2

)
, (A.6)

so that the stress energy tensor can be rewritten as:

Tµν = (λ+ εLnmcX )∇µϕ∇νϕ+ εLnmcgµν . (A.7)

By a direct confrontation with the shape of the perfect fluid stress energy tensor we can identify the
pressure of the field as:

p = Lnmc(X,ϕ). (A.8)
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Then, using the constraint equation (A.3) we get:

ρ = (λ+ εLnmcX )V (ϕ)2 − εLnmc, (A.9)

p = Lnmc, (A.10)

uµ = V (ϕ)−1∇µϕ. (A.11)

The constraint (A.3) can be rewritten as:

ϕ̇ = −V (ϕ), ˙≡ uµ∇µ (A.12)

while we have that:
ϑ ≡ ∇µuµ = V (ϕ)−1�ϕ+ Vϕ(ϕ) (A.13)

with this set of definitions, equations (A.2) and (A.3) can be rewritten as:

λ̇ = V −2 [V (ϕ)ρ,ϕ − (ρ+ εp)ϑ] , (A.14)

ϕ̇ = −V (ϕ), (A.15)

where we notice that the minus sign in equation (A.14) has appeared coming from the definition of
derivative (A.12) and where:

ρ,ϕ = 2λV V,ϕ + ε
[
Lnmc,XXV

3V,ϕ + Lnmc,XϕV
2 + Lnmc,X V V,ϕ − Lnmc,ϕ

]
. (A.16)

Here we have defined the various terms in the Lagrangian as follows:

Lnmc =
1

2
F (X,ϕ)

V (ϕ)4

ρ∗
, Lnmc,X =

3

2
F (X,ϕ)

V (ϕ)2

ρ∗
+

1

2
F,X(X,ϕ)

V (ϕ)4

ρ∗
, (A.17)

Lnmc,XX = 2
F (X,ϕ)

ρ∗
+

1

2
F (X,ϕ),XX

V (ϕ)4

ρ∗
+

1

2
F (X,ϕ)X

V (ϕ)2

ρ∗
, (A.18)

Lnmc,Xϕ = F (X,ϕ)
V (ϕ)

ρ∗
V,ϕ(ϕ) +

1

2
F,ϕX

V (ϕ)4

ρ∗
+

+
1

2
F (X,ϕ),XV,ϕ(ϕ)

V (ϕ)3

ρ∗
+

3

2
F (X,ϕ),ϕ

V (ϕ)2

ρ∗
, (A.19)

Lnmc,ϕ =
1

2
F (X,ϕ)

V (ϕ)3

ρ∗
V,ϕ(ϕ) +

1

2
F (X,ϕ),ϕ

V (ϕ)4

ρ∗
. (A.20)

Notice that the Klein-Gordon equation for the field ϕ is now an evolution equation for the Lagrangian
multiplier λ eq (A.14).

B Linear cosmological perturbation theory

In this appendix we derive the equations reported in section (4) following the notation of Kodama
and Sasaki [65]. Given a metric g̃µν , we perturb it around a background solution,

g̃µν = gµν + δgµν , (B.1)

where δgµν � 1. The stress energy tensor of matter is perturbed in the same way around its perfect
fluid form,

T̃µν = Tµν + δTµν (B.2)

To first order in the perturbed quantities the conservation equations ∇̃ν T̃ νµ = 0 read:

∂µδT
µ
ν + ΓµµσδT

σ
ν + δΓµµνT

σ
ν − ΓσµνδT

µ
σ − δΓσµνTµσ = 0. (B.3)

In the Newtonian gauge the previous equations give for the time component

δρ′(τ,k) + h (v(τ,k)k + 3Φ′(τ,k)) + 3H(τ)δρ(τ,k) + 3εH(τ)δp(τ,k) = 0, (B.4)
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and

h(τ)v′(τ,k) + (4H(τ)h(τ) + h′(τ)) v(τ,k)− εkδp(τ,k)− h(τ)kΨ(τ,k) +
2

3
πT (τ,k)k = 0, (B.5)

for the spatial component. Perturbing the Einstein field equations (A.4) one obtains a set of coupled
equations that relates the perturbed metric quantities to the perturbed matter sources. The (0, 0)
component describes how the perturbed matter density sources the gravitational potentials

3H(τ)2Ψ(τ,k)− 3H(τ)Φ′(τ,k)− k2Φ(τ,k) = −4πGa2δρ(τ,k), (B.6)

the (0, i) component relates gravitational potentials to the peculiar velocity of the matter,

kHΨ(τ,k)− kΦ′(τ,k) = 4πGa2h(τ)v(τ,k), (B.7)

while the trace of the (i, j) component relates gravitational potentials to the isotropic pressure,

(
2a′′ −H(τ)2

)
Ψ(τ,k) +H(τ)Ψ′(τ,k)− 1

3
k2Ψ(τ,k)− 1

3
k2Φ(τ,k)+

− 2H(τ)Φ′(τ,k)−Φ′′(τ,k) = 4πGa2εδp(τ,k). (B.8)

As usual, the sum of the gravitational potentials is related to the anisotropic stresses:

− k2 (Ψ(τ,k) + Φ(τ,k)) = 8πGa2εp(τ)πT (τ,k) (B.9)

where Ψ is the Newtonian potential. Since the stress energy tensor is diagonal and the perturbed
equations do not contain terms that mix different components, then πT = 0 and hence Φ = −Ψ.

Following [63] we can add another equation to the system, perturbing the constraint equation
(A.3). This is not independent as it turns out to be the equation for the velocity potential v =
V (ϕ)−1k/aδϕ. The constraint equation is

ϕ̃′ = g̃00ũ0∂0ϕ̃ , (B.10)

where the tilde indicates the physical quantity containing also the perturbations. When perturbed in
Newtonian gauge this gives:

δϕ′ = a [Vϕ(ϕ)δϕ+ ΨV (ϕ)] . (B.11)

Hence the system of equations to be solved is the following:

δϕ′ = a (Vϕ(ϕ)δϕ+ ΨV (ϕ)) (B.12)

δρ′ + h (kv − 3Ψ′) + 3H (δρ+ εδp) = 0 (B.13)

v′ +

(
H+

ε

2

p′

ρ

)
v − kΨ = εk

δp

ρ
(B.14)

k2Ψ + 3H (Ψ′ +HΨ) = 4πGa2δρ (B.15)

k (Ψ′ +HΨ) = 4πGa2hv (B.16)

Ψ′′ +HΨ′ +
(
2H′ +H2

)
Ψ = 4πGa2εδp. (B.17)

This set of equations is formally equivalent to the standard one apart from the first equation, derived
from the perturbed constraint given by eq. (A.3). However in the class of models under consideration
extra relations exist that link together some of the variables. We have:

v = V (ϕ)−1kδϕ,

δp = pϕδϕ. (B.18)

Notice that the system (B.12)-(B.17) is redundant as we have 6 equations and 5 unknown variables.
In what follows we rewrite Poisson and Euler equations (B.14),(B.15), in such a way that the modifi-
cations due to the non–minimal coupling are manifest.
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We are interested in the dynamics at scales well inside the horizon, λ ≡ H/k � 1 and such that
the characteristic evolution time for the potential Ψ is of the order of H−1. The system of equations
governing the evolution of the perturbations in this limit reads:

δϕ′ = a (Vϕ(ϕ)δϕ+ ΨV (ϕ)) (B.19)

δρ′ + hkv + 3H (δρ+ εpϕδϕ) = 0 (B.20)

v′ +

(
H+ ε

p′

ρ

)
v − kΨ = εk

δp

ρ
(B.21)

k2Ψ = 4πGa2δρ (B.22)

Ψ′ +HΨ = 4πGa2hv/k (B.23)

Ψ′′ +HΨ′ + (2H′ +H2)Ψ = 4πGa2εδp. (B.24)

Let’s consider now Euler equation (B.21). Using (B.18) the two terms proportional to ε cancel
giving formally the same expression as in the standard case:

v′(k, τ) +H(τ)v(k, τ)− kΨ(k, τ) = 0. (B.25)

However here H is the modified Hubble expansion rate obtained by solving equation (4.1). Eq. (B.25)
is therefore actually non standard both in the friction term and in the gravitational potential that
feeds it, which, from eq. (B.22), can be rewritten as:

k2Ψ(k, τ) = 4πGa2Q(k, τ)ρ(τ)δ(k, τ), (B.26)

where the Q function measures deviation form the ΛCDM model which has Q = 1 and where δ is the
dimensionless density contrast δ ≡ δρ/ρ. Explicit shapes for this function are given in section (5).

The continuity equation is usually rewritten in terms of the dimensionless density contrast δ.
This gives:

δ′(k, τ) + 3εH(τ)

(
δp(k, τ)

δρ(k, τ)
− w(τ)

)
δ(k, τ) + (1 + εw(τ)) kv(k, τ) = 0 (B.27)

where w = p/ρ. The full analysis of these equations is carried out in section (3) and (4).
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[64] D. Sáez-Gómez, Scalar–tensor theory with Lagrange multipliers: a way of understanding the
cosmological constant problem and future singularities, arXiv:1110.6033v1 [hep-th]

[65] H. Kodama and M. Sasaki, Cosmological perturbation theory,Progr. Theor. Physics Supplement
78(1984)

[66] L. Amendola and S. Tsujikawa, Dark Energy, Theory and onservations, Cambridge University Press,
2010, Cambridge, UK, pp. 333-335

[67] B. M. Poggianti, G. De Lucia, J. Varela, A. Aragon-Salamanca, R. Finn, V. Desai, A. von der Linden
and S. D. M. White, The evolution of the density of galaxy clusters and groups: denser environments at
higher redshifts, Mon. Not. R. Astron. Soc. 405(2010)995

[68] M. J. Jee, P. Rosati, H. C. Ford, K. S. Dawson, C. Lidman, S. Perlmutter, R. Demarco, V. Strazzullo,
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