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The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the
nature of cosmic acceleration. A large class of scalar-tensor theories predicts that GWs propagate with
velocity different than the speed of light, a difference that can beOð1Þ for many models of dark energy. We
determine the conditions behind the anomalous GW speed, namely, that the scalar field spontaneously
breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions
are realized in nature, the delay between GW and electromagnetic signals from distant events will run
beyond human time scales, making it impossible to measure the speed of GWs using neutron star mergers
or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs
using eclipsing binary systems, the electromagnetic phase of which can be exquisitely determined. The
white dwarf binary J0651þ 2844 is a known example of such a system that can be used to probe deviations
in the GW speed as small as cg=c − 1≳ 2 × 10−12 when LISA comes online. This test will either eliminate
many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
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I. INTRODUCTION AND SUMMARY

The direct detection of gravitational radiation [1,2] has
initiated a new era for astronomy, astrophysics, and
fundamental physics. The observed gravitational wave
(GW) events and the ones to come will usher in novel
ways to test the nature of gravity [3]. Here, we will argue
that probing the speed of GWs will be a decisive test for
gravity and dark energy models.
The nature of the propagation of GWs is a question of

great and fundamental interest. Einstein’s General
Relativity (GR) predicts two massless tensor polarizations,
each traveling at the speed of light, c, with an amplitude
inversely proportional to the distance from the source [4].
However, major outstanding theoretical issues such as the
nature of dark energy and dark matter have led researchers
to consider the possibility that gravity differs from GR
in some regimes (see, e.g., Refs. [5,6] for reviews).
In alternative theories of gravity, additional polarizations
may propagate, each with potentially different velocities,
attenuations, and effective masses [7]. This issue has been
well studied in cosmology and has been a topic of
discussion in connection to the early [8–11] and the late

Universe [12–15]. There are fairly model-independent tests
for effects caused by additional polarizations [16], damping
[17–19], mass [20], and Lorentz symmetry violations
[21,22]. To date, the speed of GWs has been upper bounded
with the arrival timing of GW150914 between the two
LIGO detectors [23]. Also, it has been constrained at the
∼1% level from the variation of the orbital period in binary
pulsars [24]. Moreover, if cg < c, a very stringent lower
bound cg=c − 1≳ −10−15 can be obtained from the
absence of gravitational Cherenkov radiation, as probed
by ultrahigh-energy cosmic rays [25,26].
In this paper, we analyze the speed of GWs, cg, in generic

scalar-tensor theories of gravity and ask when it can differ
from the speed of light, c. Unlike previous studies, we do not
assume a specific cosmological background, instead focus-
ing on the local speed of gravity. Such anomalous propa-
gation is potentially observable if both gravitational waves
and an electromagnetic (EM) or other nongravitational
counterpart signal can be seen from the same source.
One of two scenarios will arise. The simultaneous arrival

of a GW signal with a nongravitational counterpart from a
distant source will set extremely stringent and model-
independent bounds on cg. However, a very slight difference
in propagation speed (as predicted by many models of
cosmic acceleration) would cause a delay between the
signals’ arrivals much larger than the multimessenger
observation campaign. In this case, a GW signal never gets
identified with its true EM counterpart, and other techniques
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must be used. We will discuss one such method, the phase
lag test with eclipsing binaries, based on monitoring
periodic galactic sources observable in GWs by future space
missions such as LISA [27], and in EM by other means, and
comparing the phase of the two signals.
A measurement of nontrivial cg would have profound

implications for our understanding of gravity. As we shall
see, the anomalous propagation of GWs is directly related to
fundamental properties of the underlying gravitation theo-
ries, which can hence be distinguished on this basis.
Conversely, an observation consistent with GWs traveling
at the speed of light will place much more severe constraints
than any other available test on the large class of theories
predicting an anomalous GW speed. In fact, current cos-
mological constraints on general scalar-tensor theories are
only of the order of Oð1 − 0.5Þ [28], while future forecasts
will reachOð0.1 − 0.01Þ [29]. Testing the speed ofGWswill
dramatically improve these constraints to Oð10−12–10−17Þ.

II. SCALAR FIELDS AND THE SPEED OF GWs

In the following, we are going to present a general method
to compute the speed of GWs. Let us start with an example
theory that predicts anomalous GWs propagation: a quartic
shift-symmetric Horndeski theory [30,31] S ¼ R

d4x
ffiffiffiffiffiffi−gp

L
with

L ¼ GðXÞRþ G0ðXÞðð□ϕÞ2 −∇μ∇νϕ∇μ∇νϕÞ; ð1Þ
whereX ≡ − 1

2
ð∂ϕÞ2 andG0 ≡ ∂G=∂X.We set c ¼ 1 in this

section. Expanding around a background solution,
gμν → gμν þ hμν, ϕ → ϕþ φ, yields a quadratic action for
the fluctuations

L ¼ 1

2
½hμνDμν;ρσhρσ þ hμνDμνφþ φDφ�; ð2Þ

where Dð���Þ represent differential operators depending on
the background fields gμν and ϕ and their derivatives.
Since we are interested in local propagation, we adopt

Riemannnormal coordinates around a pointP and expand the
scalar andmetric background in aTaylor series aboutP, gμν ¼
ημν − 1

3
Rμρνσxρxσ þ � � �, ϕ ¼ ϕ0 þ ϕμxμ þ 1

2
ϕμνxμxν þ � � �,

where ϕμ ¼ ∇μϕ, ϕμν ¼ ∇μ∇νϕ and the derivatives and
curvatures are all evaluated at P. This leaves freedom for a
rotation and boost around P.
We may now zoom in and obtain an effective action valid

around the point P by taking the scaling limit, λ → 0, with

xμ → λxμ; φ →
1

λ
φ; hμν →

1

λ
hμν: ð3Þ

The result is a flat space action, depending on the back-
ground field values and derivatives evaluated at P.
We will focus on the spin-2 polarizations present in GR

and neglect the additional scalar mode. Imposing the
transverse gauge condition ∂μhμν ¼ 0, the scaling-limit
action reads

L¼ 1

2
hμν½G□þG0ϕρϕσ∂ρ∂σ�hμν þ hρμG0ϕμϕν

□hνρ þ � � � ;
ð4Þ

where we omitted terms involving both the trace of the
metric and the scalar field. We then perform a standard
3þ 1 split of hμν and restrict to the transverse-traceless
(TT) part of the spatial metric components hij,

h00 ¼ 0; h0i ¼ 0; hij ¼ hTTij ; φ ¼ 0; ð5Þ
with ∂jhTTij ¼ δijhTTij ¼ 0. We will further assume that the
spatial shear of the background scalar configuration is
negligible.1 This assumption simplifies the analysis, ensur-
ing that hTTij decouple from the other perturbations and
allowing us to ignore the terms omitted in Eq. (4), which
describe the scalar polarization and nondynamical metric
elements.
If the field gradient ϕμ is timelike (as expected for a

cosmological contribution), we can rotate the coordinates
so that ϕμ ¼ ð _ϕ; 0; 0; 0Þ, for some constant _ϕ. Then, the last
term of (4) does not contribute, and

L ¼ 1

2
f½G −G0 _ϕ2�ð _hTTij Þ2 −Gð ~∇hTTij Þ2g; ð6Þ

from which we can read off the propagation speed

c2g ¼
1

1 − G0
G
_ϕ2

: ð7Þ

In particular, GR corresponds to GðXÞ ¼ const., and we
recover cg ¼ 1.
In the case of a spacelike field gradient, we can boost our

reference frame so that the time component vanishes.
Decomposing the gradient in components parallel and
perpendicular to the GW propagation, ϕi ¼ ϕ∥

i þ ϕ⊥
i , we

obtain that the velocity of propagation of GWs depends on
the direction as

c2g ¼ 1þ G0jϕ∥j2
Gþ G0jϕ⊥j2

: ð8Þ

In general, the speed is anisotropic (i.e., direction depen-
dent), and equal for both the þ and × GW polarizations.
The scaling limit (3) eliminates all the lower derivative

terms, which is the reason why the resulting GW speed is
frequency independent. This is different for other well-
studied cases, such as massive gravitons [32] (see
Refs. [33,34] for reviews) or Lorentz violations. These
other scenarios modify the waveform in a frequency-
dependent way and can thus be constrained from GW

1The precise condition is ϕii − ϕjj;ϕij ≪ G0=G for (i ≠ j).
This is satisfied in a boosted frame with ϕi ¼ 0 whenever ϕμ is
timelike.

DARIO BETTONI et al. PHYSICAL REVIEW D 95, 084029 (2017)

084029-2



observations alone [3,35,36]. For the sake of simplicity, we
have also neglected the scalar mode, which may also have
its own anomalous propagation speed [37–40].

III. CONDITIONS FOR ANOMALOUS GWs SPEED

We now study the origin of the anomalous speed of GWs
(7), (8) in more generality. The Lagrangian for the trans-
verse-traceless components (6) can be written in terms of an
effective gravitational metric,

L ∝ hTTαβ ðGμν∂μ∂νÞhαβTT; ð9Þ

determining the causal structure of GW propagation.2 The
propagation path for GWs will be given by the condition
Gμνdxμdxν ¼ 0 and will in general be different from the
light-cone condition gμνdxμdxν ¼ 0 unless the two metrics
obey a conformal relation: Gμν ¼ ΩðxÞgμν. The lack of
proportionality is found already in the simple example
theory (1), where

Gμν ¼ GðXÞgμν þG0ðXÞϕμϕν ð10Þ

and Gμν and gμν are connected by a disformal relation [41]
for which Gμν ≠ ΩðxÞgμν. Such a relation is ubiquitous in
modern scalar-tensor theories [42–45].
Let us examine the conditions for a disformal relation to

arise in a generic theory of gravity. First, it is necessary that
the background scalar field has a nontrivial configuration
that spontaneously breaks Lorentz invariance, e.g., ϕμ ≠ 0

in Eq. (10). In addition, we note that the effective second-
order Lagrangian (2) follows from the second variation of
the action over a background and is hence equal to the first
variation of the equations of motion (EoM). The simplest
term in the EoM producing second derivatives and entering
in Eq. (9) is the Ricci curvature. When expanded to first
order, considering only the TT components,

RTT
μν ¼ −

1

2
□hTTμν and RTT ¼ 0 ð11Þ

only contribute to the conformal part in the effective
gravitational metric (9).
Further, second derivative terms are restricted by covari-

ance to originate either from the Riemann tensor or
repeated application of covariant derivatives (e.g., third
derivatives of the scalar field), with the two cases related
by ∇μ∇νϕ

α ¼ ∇ν∇μϕ
α þ Rα

λμνϕ
λ. To first order, the TT

contribution to the Riemann tensor reads

RTT
μανβ ¼ −

1

2
∂β∂αhTTμν þ 1

2
∂ν∂αhTTμβ − ðα ↔ μÞ: ð12Þ

The above expression explicitly induces disformal terms in
Eq. (9) via contractions with scalar field derivatives. In the
simple example (1), only ϕμ enters in the effective metric
(10) due to the particular nonminimal coupling to the Ricci
scalar. In more general cases, for instance, when there are
couplings to the Ricci tensor such as in quintic Horndeski,
second derivatives ϕμν could appear contracted with the
derivatives of the metric and hence in Gμν. Thus, the
effective metric would belong to the extended disformal
class [43,46]. In any case, because the Ricci tensor only
contributes to the conformal part, the contribution of Rμναβ

leading to the anomalous speed of GWs is fully captured by
the Weyl tensor (i.e., the trace-free part of the Riemann
tensor). For the simple theory (1), the Weyl tensor appears
explicitly in the equations of motion whenever G0 ≠ 0 [47].
These considerations allow us to formulate a Weyl

criterion for anomalous speed of spin-2 GWs. The effective
gravitational metric of the example theory (10) can be
generalized to

L ∝ hμνðC□þWðαβÞ∂α∂βÞhμν; ð13Þ
where C and Wμν are the contributions associated with the
Ricci and Weyl tensors, respectively. Anomalous GW
speed requires thatWαβ ≠ 0, i.e., for the background scalar
derivatives to couple to the Riemann/Weyl curvature. If the
Weyl factor is purely timelike and constant around P,
Wμν ¼ W00δμ0δ

ν
0, the speed of tensors becomes

c2g ¼
C

C −W00
: ð14Þ

In Horndeski theories, which are a general framework that
encompasses most of the current dark energy models, the
EoM are second order [30]. Therefore, the occurrence of the
Weyl tensor fully distinguishes theories in which cg ¼ c
exactly and those in which the speed of GWs is allowed to
vary. GR, kinetic gravity braiding [48], and Jordan-Brans-
Dicke theories [49] (including fðRÞ [50,51]) only contain
Ricci curvature in their equations of motion and therefore do
not modify the speed of GWs. On the other hand, covariant
Galileons [52] and the covariantization of other generaliza-
tions [53–56] will generically predict cg ≠ c [57].
Although the Weyl criterion is characteristic of Scalar-

tensor (ST) theories, theoccurrenceof a disformal relation can
be applied to more general theories such as massive gravity
[32]. In this case, the kinetic term has the Einstein-Hilbert
form and hence cg ¼ c plus corrections Oðm2

E2Þ beyond the
scaling limit (3), as expected from unbroken Lorentz invari-
ance. In the case of bigravity [58], the situation ismore subtle,
as the kinetic term of the second metric

ffiffiffiffiffiffi
−f

p
R½fμν� forces its

excitations to propagate along fμνdxμdxν ¼ 0, with fμν ≠
ΩðxÞgμν in nonflat background space-times. Althoughmatter

2We focus on the spin-2 components and assume they
decouple. Nonetheless, Eq. (9) remains valid for the propagation
eigenstates of the linearized fields (including the scalar mode and
the generalization of hTTαβ when it couples to other perturbations),
with a different GA

μν for each polarization A.
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does not couple to fμν directly, the anomalous speed may be
detectable via graviton oscillations [59,60], as well as in
doubly coupled theories [61]. Many theories that attempt to
explain away dark matter such as TeVeS also predict an
anomalous GW speed [62].

IV. PHASE LAG TEST WITH
ECLIPSING BINARIES

Most of the present bounds on cg can be significantly
strengthened by comparing GWs with other signals.
In theories in which matter is universally coupled to
the metric, electromagnetic signals and ultrarelativistic
particles propagate at the speed of light. This produces a
delay between GW and electromagnetic signals,

Δt ¼ r

�
1

cg
−
1

c

�
≡ r

c
εg ≈ 1014s

r
Mpc

εg; ð15Þ

where we define the differential delay parameter εg ≡
c∂Δt=∂r (in general space-times, r is the proper distance,
and one has to correct for time dilation at emission [16]).
The detection of violent, multimessenger events at cosmo-
logical distances bears the promise of phenomenal con-
straints, even in the presence of considerable astrophysical
uncertainties. LIGO expects to perform such measurements
using violent events such as binary compact object mergers
involving neutron stars [63].
However, no distant GW-EM event will possibly be

observed if cg is modified significantly, since the delay
between both signals will be much larger than the mon-
itoring time around the GW detection. This is the case of
cosmic acceleration models without a cosmological con-
stant such as covariant Galileons [52,64], for which jcg=c −
1j ∼ 10–100% (see Ref. [57] and Fig. 1 of Ref. [65]). If
such a model is responsible for cosmic acceleration, the
arrival times of both signals will differ by millions or even
billions of years. Clearly, an alternative test for the speed of
GWs would be needed in this situation. In the following,
we discuss how observations of sources with periodic
signals can help to test whether cg ¼ c. In particular, we
propose a phase lag test with eclipsing binaries that
overcomes this limitation.
The anomalous speed of GWs can be tested by monitor-

ing periodic sources with both GW and EM emission
[66,67]. This ensures that both signals can be observed
continuously and allows for a long observation period.
A suitable source is a binary system in the band of space-
based interferometers [68], including verification binaries
[69–71]: systems expected to be resolvable by LISA and
that have already been identified and characterized using
electromagnetic observations (see Ref. [71] for an updated
list). An extraordinarily clean binary system is WDS
J0651þ 2844: a binary, detached white dwarf system
∼1 kpc away from the Sun and of which orbital plane is

approximately aligned with the Solar System, allowing the
observation of periodic eclipses [72]. Its short orbital period
∼12.75 min falls within the LISA band and makes it a loud
GW source, in which the effect of GWemission has already
been observed by the period variation [73].
Let us model WDS J0651þ 2844 as a binary orbit

coplanar with the observer and at a distance r from it,
cf. Fig. 1. Because of symmetry, the gravitational radiation
emitted in the observer’s direction will be predominantly in
the þ polarization hij ¼ hþðtÞðx̂ x̂−ŷ ŷÞ.3 Assuming GR
(i.e., cg ¼ c), the hþ polarization will be in phase with Δx,
the distance between the objects transverse to the line
of sight as observed electromagnetically. Therefore,
although the components of the binary will not be resolv-
able, Δx ¼ 0 coincides with the eclipses and can be timed
with extraordinary precision [66].
In theories other than GR, the EM and GW observables

will evolve as periodic functions of different retarded times,
i.e., Δx ∝ cosð2ωðt − r=cÞÞ and hþ ∝ cosð2ωðt − r=cgÞÞ.
The difference in propagation speed accumulated over the
propagation distance r produces a phase lag between the
GW and the EM signals,4

ΔΦðtÞ ¼ 2ω
rðtÞ
c

�
c
cg

− 1

�
¼ 2ω

rðtÞ
c

εg; ð16Þ

where the distance between the source and detector

FIG. 1. The phase lag test for the speed of gravity. A compact
binary system such as WDS J0651þ 2844 is monitored both
electromagnetically and using GWs. For this geometry (top), only
the þ GW polarization is emitted in the observer’s direction.
Its amplitude hþ is initially correlated with the object transverse
separation Δx, but a phase lag (16) accumulates on the propa-
gation if cg ≠ c (bottom and right).

3The orbital inclination is ι ¼ 86:9þ1.6
−1.0 deg [72], making h×

suppressed by cosðιÞ ≈ 0.05 in amplitude and shifted π=2 in
phase relative to the þ component.

4We have neglected the delay from the atmospheric
or interstellar refractive index, which can be shown to be
unimportant [66].
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rðtÞ ¼ r0 þ vreltþ rorbðtÞ ð17Þ
includes the initial separation, relative velocity, and detec-
tor’s orbit. We will focus on the effect of r0; vrel, as the
effect of rorb has been considered [74].
For eclipsing binaries, we can neglect the error in EM

measurements in constructing the relative phase (16)
ΔΦðtÞ≡ 2ωðτ0 þ β̂tÞ. The precision will be then limited
by our knowledge of the GW signal. We can obtain an
estimate of the 1 − σ uncertainties using the Fisher matrix
formalism [75] for the quantities

τ0 ≡ εg
r0
c
; Δτ0 ¼

1ffiffiffi
2

p
ωΣ

≈ 0.2s

�
2π=ω
765s

��
T
5y

�
; ð18Þ

β̂≡ εg
vrel
c

; Δβ̂ ¼
ffiffiffiffiffiffiffiffi
3=2

p
ωTΣ

≈ 10−8
�
2π=ω
765s

��
T
5y

�
; ð19Þ

where T is the observation time and Σ denotes the total
signal-to-noise ratio of the GW detection (see the
Appendix). The expected detection significance of
verification binaries with LISA is Σ ∼ 100ð T

1yÞ [74].
A nonzero measurement of either Eq. (18) or Eq. (19)

represents a smoking gun for cg ≠ c:
(i) τ0: The relative phase of the signals can detect an

anomalous propagation speed in the range jεgj≳
2 × 10−12ðkpcr0 Þð

Δτ0
0.2sÞ. The false-negative case in

which 2r0εgω=ðcπÞ equals an integer within the
measurement error is very unlikely (probability ≈
Σ−1 ∼ 0.2%) and can be excluded by observing
multiple systems or measuring the frequency shift β̂.

(ii) β̂: The relative velocity of the system induces a
frequency shift, sensitive to anomalous GW speeds
in the range jεgj ≳ 10−4ð30 km=s

vrel
Þð Δβ

10−8
Þ. Despite the

ðωTÞ−1 gain when observing over many cycles, this
test is less competitive due to the nonrelativistic
factor.

Note that both the measurement of the relative phase and
the velocity can be used as a test of εg ≠ 0 and as a
measurement of cg. The latter application requires a
measurement of either r0 or vrel, which will almost certainly
dominate the error. Nevertheless, clean systems such as
WDS J0651þ 2844will be able to confirm deviations from
cg ¼ c at the level of few parts in a trillion.

V. CONCLUSIONS

Many well-studied models of dark energy and modified
gravity theories predict an anomalous local speed of gravity
around nontrivial backgrounds. The Weyl criterion provides
a clear-cut way to distinguish two classes of gravitational
theories, those for which the speed of GWs is exactly equal
to the speed of light and those in which it can vary depending
on the theory parameters and the background configuration
of the scalar field. Future multimessenger GW observations

will probe this effect to exquisite precision: if the prediction
of GR is satisfied, this will place such a stringent constraint
on theories allowing variations in the speed of GWs,
Oð10−17Þ, that they will become uninteresting for any
low-energy application, including cosmic acceleration. On
the other hand, a confirmation of an anomalous propagation
of GWs by extragalactic and galactic sources would be able
to rule out GR and all other theories with simple kinetic
terms, which would significantly impact our understanding
of gravity. This could be achieved applying the proposed
phase lag test for eclipsing binaries to the already identified
white dwarf binary WDS J0651þ 2844. Either of these two
scenarios shows that the speed of GWs will be by far one of
the most powerful tools to constrain gravity and dark energy
models.
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APPENDIX: SIGNAL-TO-NOISE ESTIMATES

The signal-to-noise ratio Σ for a GW detection is given by

Σ2 ¼ 1

σ2f

Z
T

0

~R2ðtÞdt≡ ϱ: ðA1Þ

Here, ~R is the response of the detector to the signal, and σ2f is
the noise power at the GW frequency. We assume the GW to
be monochromatic and follow Ref. [74] (see Ref. [75] for
further details and cautionary notes). For a given detector, the
response function depends on the GW polarizations as
~RðtÞ ¼ AþðtÞhþ þ A×ðtÞh×, where Ai contain information
about the antenna pattern of the detector and its orientation
as a function of time. However, as discussed in the text, we
will consider the situation in which only one polarization is
received and assume that the errors in the electromagnetic
signal are negligible. Therefore, we can reconstruct the
relative phase [Eq. (16) in the main text] directly,

~RðtÞ ¼ ϒ cosðϖtþ ψÞ; ðA2Þ

where the signal has an overall amplitude ϒ, which will not
directly affect the reconstruction of ψ and ω.
The Fisher matrix is then given as the derivative of

Eq. (A1) with respect to the model parameters

Fij ¼
2

σ2f

Z
T

0

∂ ~R
∂θi

∂ ~R
∂θj dt; ðA3Þ
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where θi ¼ ðϒ;ϖ;ψÞ collectively denotes the unknown
parameters of the signal. The error in the parameter θi
assuming the other ones are perfectly known is ðFiiÞ−1=2,
while the error in a parameter marginalized over the rest
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

p
.

The Fisher matrix elements read

Fϒϒ ¼ 2

σ2f

Z
cos2ðϖtþ ψÞdt ¼ 2ϱ=ϒ2;

Fϒϖ ¼ 2

σ2f

Z
−t sinðϖtþ ψÞϒ cosðϖtþ ψÞdt ∼ osc:;

Fϒψ ¼ 2

σ2f

Z
−ϒ cosðϖtþ ψÞ sinðϖtþ ψÞdt ∼ osc:;

Fϖϖ ¼ 2

σ2f

Z
ϒ2t2sin2ðϖtþ ψÞdt ¼ 2ϱ

t2

3
þ osc:;

Fϖψ ¼ 2

σ2f

Z
ϒ2tsin2ðϖtþ ψÞdt ¼ ϱtþ osc:;

Fψψ ¼ 2

σ2f

Z
ϒ2sin2ðϖtþ ψÞdt ¼ 2ϱþ osc:;

where osc. denotes oscillatory terms that become negligible
for T ≫ ϖ−1 and we have used ϱ ¼ ϒ2

2σ2f
T. Since Fϒϖ; Fϒψ

do not build up with time, the amplitude is uncorrelated
with the frequency and the phase. However, ϖ and ψ are
correlated with one another. The Fisher matrix and its
inverse for the ðϖ;ψÞ subspace are

F̂ ¼ ϱ

� 2
3
T2 T

T 2

�
;

F̂−1 ¼ 1

ϱ

� 6
T2 − 3

T

− 3
T 2

�
; ðA4Þ

from which we read the errors in the phase and frequency,

Δψ ¼
ffiffiffi
2

p

Σ
;

Δϖ ¼
ffiffiffi
6

p

T · Σ
; ðA5Þ

which translate straightforwardly into the results [Eqs. (18)
and (19) in the main text].

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (Virgo and LIGO Scientific Collabora-
tions), Phys. Rev. Lett. 116, 221101 (2016).

[4] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(MacMillan London, 1973).

[5] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Phys. Rep. 513, 1 (2012).

[6] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep.
568, 1 (2015).

[7] M. Clifford, Theory and Experiment in Gravitational
Physics (Cambridge University Press, Cambridge, England,
1981).

[8] L. Amendola, G. Ballesteros, and V. Pettorino, Phys. Rev. D
90, 043009 (2014).

[9] M. Raveri, C. Baccigalupi, A. Silvestri, and S.-Y. Zhou,
Phys. Rev. D 91, 061501 (2015).

[10] P. Creminelli, J. Gleyzes, J. Noreña, and F. Vernizzi,
Phys. Rev. Lett. 113, 231301 (2014).

[11] A. De Felice and S. Tsujikawa, Phys. Rev. D 91, 103506
(2015).

[12] E. Bellini and I. Sawicki, J. Cosmol. Astropart. Phys. 07
(2014) 050.

[13] I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz,
Phys. Rev. Lett. 113, 191101 (2014).

[14] L. Lombriser and A. Taylor, J. Cosmol. Astropart. Phys. 03
(2016) 031.

[15] M. Zumalacárregui, E. Bellini, I. Sawicki, and J.
Lesgourgues, arXiv:1605.06102.

[16] C. M. Will, Living Rev. Relativ. 17, 4 (2014).
[17] C. Deffayet and K. Menou, Astrophys. J. 668, L143

(2007).
[18] E. Calabrese, N. Battaglia, and D. N. Spergel, Classical

Quantum Gravity 33, 165004 (2016).
[19] J. García-Bellido, S. Nesseris, and M. Trashorras,

J. Cosmol. Astropart. Phys. 07 (2016) 021.
[20] C. de Rham, J. T. Deskins, A. J. Tolley, and S.-Y. Zhou,

arXiv:1606.08462.
[21] K. Yagi, D. Blas, N. Yunes, and E. Barausse, Phys. Rev.

Lett. 112, 161101 (2014).
[22] L. Shao, R. N. Caballero, M. Kramer, N. Wex, D. J.

Champion, and A. Jessner, Classical Quantum Gravity
30, 165019 (2013).

[23] D. Blas, M. M. Ivanov, I. Sawicki, and S. Sibiryakov,
JETP Lett. 103, 624 (2016).

[24] J. Beltrán Jiménez, F. Piazza, and H. Velten, Phys. Rev. Lett.
116, 061101 (2016).

[25] C. M. Caves, Ann. Phys. (N.Y.) 125, 35 (1980).
[26] G. D. Moore and A. E. Nelson, J. High Energy Phys. 09

(2001) 023.
[27] P. Amaro-Seoane et al., arXiv:1201.3621.
[28] E. Bellini, A. J. Cuesta, R. Jimenez, and L. Verde,

J. Cosmol. Astropart. Phys. 02 (2016) 053; 06 (2016) E01.
[29] D. Alonso, E. Bellini, P. G. Ferreira, andM. Zumalacarregui,

Phys. Rev. D 95, 063502 (2017).
[30] G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).

DARIO BETTONI et al. PHYSICAL REVIEW D 95, 084029 (2017)

084029-6

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1103/PhysRevD.90.043009
https://doi.org/10.1103/PhysRevD.90.043009
https://doi.org/10.1103/PhysRevD.91.061501
https://doi.org/10.1103/PhysRevLett.113.231301
https://doi.org/10.1103/PhysRevD.91.103506
https://doi.org/10.1103/PhysRevD.91.103506
https://doi.org/10.1088/1475-7516/2014/07/050
https://doi.org/10.1088/1475-7516/2014/07/050
https://doi.org/10.1103/PhysRevLett.113.191101
https://doi.org/10.1088/1475-7516/2016/03/031
https://doi.org/10.1088/1475-7516/2016/03/031
http://arXiv.org/abs/1605.06102
https://doi.org/10.12942/lrr-2014-4
https://doi.org/10.1086/522931
https://doi.org/10.1086/522931
https://doi.org/10.1088/0264-9381/33/16/165004
https://doi.org/10.1088/0264-9381/33/16/165004
https://doi.org/10.1088/1475-7516/2016/07/021
http://arXiv.org/abs/1606.08462
https://doi.org/10.1103/PhysRevLett.112.161101
https://doi.org/10.1103/PhysRevLett.112.161101
https://doi.org/10.1088/0264-9381/30/16/165019
https://doi.org/10.1088/0264-9381/30/16/165019
https://doi.org/10.1134/S0021364016100040
https://doi.org/10.1103/PhysRevLett.116.061101
https://doi.org/10.1103/PhysRevLett.116.061101
https://doi.org/10.1016/0003-4916(80)90117-7
https://doi.org/10.1088/1126-6708/2001/09/023
https://doi.org/10.1088/1126-6708/2001/09/023
http://arXiv.org/abs/1201.3621
https://doi.org/10.1088/1475-7516/2016/02/053
https://doi.org/10.1088/1475-7516/2016/06/E01
https://doi.org/10.1103/PhysRevD.95.063502
https://doi.org/10.1007/BF01807638


[31] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade,
Phys. Rev. D 84, 064039 (2011).

[32] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev.
Lett. 106, 231101 (2011).

[33] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).
[34] C. de Rham, Living Rev. Relativ. 17, 7 (2014).
[35] N. Yunes and F. Pretorius, Phys. Rev. D 80, 122003 (2009).
[36] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D 94,

084002 (2016).
[37] E. Babichev, V. Mukhanov, and A. Vikman, J. High Energy

Phys. 02 (2008) 101.
[38] I. Sawicki and E. Bellini, Phys. Rev. D 92, 084061 (2015).
[39] J. Ø. Lindroos, C. Llinares, and D. F. Mota, Phys. Rev. D 93,

044050 (2016).
[40] R. Hagala, C. Llinares, and D. F. Mota, Phys. Rev. Lett. 118,

101301 (2017).
[41] J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993).
[42] D. Bettoni and S. Liberati, Phys. Rev. D 88, 084020 (2013).
[43] M. Zumalacárregui and J. García-Bellido, Phys. Rev. D 89,

064046 (2014).
[44] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi,

J. Cosmol. Astropart. Phys. 02 (2015) 018.
[45] G. D’Amico, Z. Huang, M. Mancarella, and F. Vernizzi,

arXiv:1609.01272.
[46] J. M. Ezquiaga, J. García-Bellido, and M. Zumalacárregui,

arXiv:1701.05476.
[47] D. Bettoni and M. Zumalacárregui, Phys. Rev. D 91, 104009

(2015).
[48] C. Deffayet, O. Pujolas, I. Sawicki, and A. Vikman,

J. Cosmol. Astropart. Phys. 10 (2010) 026.
[49] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[50] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[51] A. De Felice and S. Tsujikawa, Living Rev. Relativ. 13, 3

(2010).
[52] C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys. Rev.

D 79, 084003 (2009).
[53] K. Hinterbichler, M. Trodden, and D. Wesley, Phys. Rev. D

82, 124018 (2010).
[54] G. Goon, K. Hinterbichler, and M. Trodden, J. Cosmol.

Astropart. Phys. 07 (2011) 017.

[55] G. Goon, K. Hinterbichler, and M. Trodden, Phys. Rev. Lett.
106, 231102 (2011).

[56] M. Trodden and K. Hinterbichler, Classical Quantum
Gravity 28, 204003 (2011).

[57] P. Brax, C. Burrage, and A.-C. Davis, J. Cosmol. Astropart.
Phys. 03 (2016) 004.

[58] S. F. Hassan and R. A. Rosen, J. High Energy Phys. 02
(2012) 126.

[59] T. Narikawa, K. Ueno, H. Tagoshi, T. Tanaka, N. Kanda,
and T. Nakamura, Phys. Rev. D 91, 062007 (2015).

[60] K. Max, M. Platscher, and J. Smirnov, arXiv:1703.07785.
[61] P. Brax, A.-C. Davis, and J. Noller, arXiv:1703.08016.
[62] S. Desai, E. O. Kahya, and R. P. Woodard, Phys. Rev. D 77,

124041 (2008).
[63] B. P. Abbott (LIGO Scientific and VIRGO Collaborations),

Living Rev. Relativ. 19, 1 (2016).
[64] A. Barreira, B. Li, C. Baugh, and S. Pascoli, J. Cosmol.

Astropart. Phys. 08 (2014) 059.
[65] J. Renk, M. Zumalacarregui, and F. Montanari, J. Cosmol.

Astropart. Phys. 07 (2016) 040.
[66] S. L. Larson and W. A. Hiscock, Phys. Rev. D 61, 104008

(2000).
[67] C. Cutler, W. A. Hiscock, and S. L. Larson, Phys. Rev. D 67,

024015 (2003).
[68] J. R. Gair, M. Vallisneri, S. L. Larson, and J. G. Baker,

Living Rev. Relativ. 16, 7 (2013).
[69] A. Stroeer and A. Vecchio, Classical Quantum Gravity 23,

S809 (2006).
[70] P. Amaro-Seoane et al., Classical Quantum Gravity 29,

124016 (2012).
[71] G. Nelemans, LISA verification binaries, www.astro.ru

.nl/~nelemans/dokuwiki/doku.php?id=verification_binaries:
intro.

[72] W. R. Brown, M. Kilic, J. J. Hermes, C. Allende Prieto, S. J.
Kenyon, and D. E. Winget, Astrophys. J. 737, L23 (2011).

[73] J. J. Hermes, M. Kilic, W. R. Brown, D. E. Winget, C.
Allende Prieto, A. Gianninas, A. S. Mukadam, A. Cabrera-
Lavers, and S. J. Kenyon, Astrophys. J. 757, L21 (2012).

[74] L. S. Finn and J. D. Romano, Phys. Rev. D 88, 022001
(2013).

[75] M. Vallisneri, Phys. Rev. D 77, 042001 (2008).

SPEED OF GRAVITATIONAL WAVES AND THE FATE OF … PHYSICAL REVIEW D 95, 084029 (2017)

084029-7

https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.1103/PhysRevD.80.122003
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1103/PhysRevD.94.084002
https://doi.org/10.1088/1126-6708/2008/02/101
https://doi.org/10.1088/1126-6708/2008/02/101
https://doi.org/10.1103/PhysRevD.92.084061
https://doi.org/10.1103/PhysRevD.93.044050
https://doi.org/10.1103/PhysRevD.93.044050
https://doi.org/10.1103/PhysRevLett.118.101301
https://doi.org/10.1103/PhysRevLett.118.101301
https://doi.org/10.1103/PhysRevD.48.3641
https://doi.org/10.1103/PhysRevD.88.084020
https://doi.org/10.1103/PhysRevD.89.064046
https://doi.org/10.1103/PhysRevD.89.064046
https://doi.org/10.1088/1475-7516/2015/02/018
http://arXiv.org/abs/1609.01272
http://arXiv.org/abs/1701.05476
https://doi.org/10.1103/PhysRevD.91.104009
https://doi.org/10.1103/PhysRevD.91.104009
https://doi.org/10.1088/1475-7516/2010/10/026
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1103/PhysRevD.82.124018
https://doi.org/10.1103/PhysRevD.82.124018
https://doi.org/10.1088/1475-7516/2011/07/017
https://doi.org/10.1088/1475-7516/2011/07/017
https://doi.org/10.1103/PhysRevLett.106.231102
https://doi.org/10.1103/PhysRevLett.106.231102
https://doi.org/10.1088/0264-9381/28/20/204003
https://doi.org/10.1088/0264-9381/28/20/204003
https://doi.org/10.1088/1475-7516/2016/03/004
https://doi.org/10.1088/1475-7516/2016/03/004
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1007/JHEP02(2012)126
https://doi.org/10.1103/PhysRevD.91.062007
http://arXiv.org/abs/1703.07785
http://arXiv.org/abs/1703.08016
https://doi.org/10.1103/PhysRevD.77.124041
https://doi.org/10.1103/PhysRevD.77.124041
https://doi.org/10.1007/lrr-2016-1
https://doi.org/10.1088/1475-7516/2014/08/059
https://doi.org/10.1088/1475-7516/2014/08/059
https://doi.org/10.1088/1475-7516/2016/07/040
https://doi.org/10.1088/1475-7516/2016/07/040
https://doi.org/10.1103/PhysRevD.61.104008
https://doi.org/10.1103/PhysRevD.61.104008
https://doi.org/10.1103/PhysRevD.67.024015
https://doi.org/10.1103/PhysRevD.67.024015
https://doi.org/10.12942/lrr-2013-7
https://doi.org/10.1088/0264-9381/23/19/S19
https://doi.org/10.1088/0264-9381/23/19/S19
https://doi.org/10.1088/0264-9381/29/12/124016
https://doi.org/10.1088/0264-9381/29/12/124016
www.astro.ru.nl/%7Enelemans/dokuwiki/doku.php?id=verification_binaries:intro
www.astro.ru.nl/%7Enelemans/dokuwiki/doku.php?id=verification_binaries:intro
www.astro.ru.nl/%7Enelemans/dokuwiki/doku.php?id=verification_binaries:intro
www.astro.ru.nl/%7Enelemans/dokuwiki/doku.php?id=verification_binaries:intro
www.astro.ru.nl/%7Enelemans/dokuwiki/doku.php?id=verification_binaries:intro
www.astro.ru.nl/%7Enelemans/dokuwiki/doku.php?id=verification_binaries:intro
https://doi.org/10.1088/2041-8205/737/1/L23
https://doi.org/10.1088/2041-8205/757/2/L21
https://doi.org/10.1103/PhysRevD.88.022001
https://doi.org/10.1103/PhysRevD.88.022001
https://doi.org/10.1103/PhysRevD.77.042001

