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inally interpreted with a two-valued Belnap-Dunn semantics. In the present
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1. Introduction

The logic PŁ4 is a negation expansion of the implicative fragment of clas-
sical propositional logic. It is a strong and rich paraconsistent and para-
complete 4-valued logic where necessity and possibility (among other)
operators are definable without “Łukasiewicz-type modal paradoxes” be-
ing provable [cf. 6, 7, 9]. The logic PŁ4 is defined in [8], but in [5], it is
remarked that De and Omori’s logic BD+, Zaitsev’s paraconsistent logic
FDEP and Beziau’s four-valued modal logic PM4M are logics equivalent
to PŁ4 [cf. 1, 4, 15]. The fact that the four systems just cited (PŁ4,
BD+, FDEP and PM4M) have been independently obtained from differ-
ent motivations seems to suggest that they are four versions of a strong
and rich natural logic.
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We will briefly recall only some of the properties PŁ4 enjoys (a de-
tailed account of these and other properties of PŁ4 can be consulted
in [8]).

1. The logic PŁ4 has the classical deduction theorem, since it contains
implicative intuitionistic logic and the sole rule of inference is MP.

2. PŁ4 is self-extensional in the sense that it has the replacement (of
equivalents) theorem, as the rule Contraposition is an admissible rule
in PŁ4.

3. PŁ4 is a paraconsistent logic in the sense that the rule ‘E contradic-
tione quodlibet’, Ecq, fails in PŁ4.

4. PŁ4 is a paracomplete logic in the sense that not all prime PŁ4-
theories with all PŁ4-theorems contain either A or else ¬A, for each
formula A.

5. PŁ4 has a great expressive power. For example, normal conjunction
and disjunction, necessity and possibility, along with classical, Gödel-
type and dual Gödel-type negation operators are definable in PŁ4.

6. Łukasiewicz-type modal paradoxes are not provable in PŁ4.

PŁ4 is originally interpreted with a two-valued Belnap-Dunn seman-
tics [cf. 8] and references therein). The aim of the present paper is to
provide still another perspective on PŁ4 by endowing it with both a
ternary Routley-Meyer semantics and a binary Routley semantics to-
gether with their respective restriction to the 2 set-up case.

Routley-Meyer semantics (RM-semantics), in principle designed for
interpreting relevant logics, is nowadays a semantics for non-classical
logics in general (cf. [3, 11, 13], and references in these items). Binary
Routley semantics (bR-semantics) is introduced in [10] for interpreting
expansions of positive intuitionistic logic. It is essentially distinguished
from RM-semantics by the accessibility relation defined in the set of all
points in the models, which is a binary relation instead of the ternary
one characteristic of RM-semantics. 2 set-up Routley-Meyer semantics
(2RM-semantics) is appropriate for some 3-valued and 4-valued logics.
2RM-semantics was introduced in [2], but leaving aside [12], the topic
has not been pursued, to the best of our knowledge. Finally, 2 set-up
binary Routley semantics (2bR-semantics) is going to be introduced in
the present paper when PŁ4 is given this kind of semantics.

We remark that the term “set-up” is taken from Routley et al. [cf.
13] and references therein), which they use to emphasize the fact that the
canonical interpretation of a point in RM-semantics can be an incom-



Relational semantics for the . . . 4-valued Logic PŁ4 667

plete and/or inconsistent theory. In, say, standard Kripke semantics, the
canonical interpretations of the points in the models are complete and
consistent theories, as it is known. Routley et al. use the term “set-up”
in contradistinction to “world”, the customary one in Kripke semantics
and related types of semantics.

The alternative interpretations of PŁ4 given in the following pages
will put it in connection with the wealth of logics which can currently
be understood in RM-semantics as well as with the few ones given a
2RM-semantics, while at the same time our knowledge of both relational
semantics will be improved.

The paper is organized as follows. In §2, the logic PŁ4 is recalled, and
in §3, PŁ4 is given a general RM-semantics and the soundness theorem
is proved. In §4, completeness of PŁ4 w.r.t. the semantics introduced
in §2 is proved. In §5, 2 set-up RM-semantics for PŁ4 is defined and
the soundness and completeness theorems are proved. In §6, PŁ4 is
endowed with a bR-semantics and a 2bR-semantics. Finally, in §7, we
note some remarks on possible future work to be done on the topic. We
have added an appendix presenting some of the connectives definable in
PŁ4, as well as the basic positive (i.e., negationless) logics B+ and BK+,
of some interest in the paper.

2. The logic PŁ4

In this section the logic PŁ4 defined in [8] is recalled.
The propositional language consists of a denumerable set of propo-

sitional variables p0, p1, . . . , pn, . . ., and the following connectives: →
(conditional) and ¬ (negation). The set of wffs is defined in the custom-
ary way. A, B, C, etc. are metalinguistic variables. PŁ4 is formulated
as a Hilbert-type axiomatic system, the notions of ‘theorem’ and ‘proof
from a set of premises’ being understood in the standard way.

Definition 2.1. The logic PŁ4 can be axiomatized as follows.
Axioms:

A1. A → (B → A)

A2. [A → (B → C)] → [(A → B) → (A → C)]

A3. [(A → B) → A] → A

A4. A → ¬¬A

A5. ¬¬A → A
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A6. ¬(A → B) → (¬A → C)

A7. ¬(A → B) → ¬B

A8. ¬B → [[¬A → ¬(A → B)] → ¬(A → B)]

Rule of inference:

Modus Ponens (MP). A, A → B ⇒ B (if A and A → B, then B)

Definition 2.2 (The matrix MPŁ4). The propositional language con-
sists of the connectives → and ¬. The matrix MPŁ4 is the structure
(V, D, F), where (1) V is {0, 1, 2, 3} and is partially ordered as shown in
the following lattice

3

2 1

0

(2) D = {3}; F = {f→, f¬}, where f→ and f¬ are defined according
to the following truth-tables:

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 2 3 2 3 1
2 1 1 3 3 2
3 0 1 2 3 0

In [8] it is proved that PŁ4 is determined by the degree of truth-preserv-
ing consequence relation defined on the ordered set of values of MPŁ4.

Remark 2.1. The following theorems and rule of PŁ4 will be used in the
sequel:

(T1) A → A
(T2) A → [B → ¬[(¬A → ¬B) → ¬A]
(T3) ¬B → [¬A → ¬[(A → B) → B]]
(T4) ¬[(¬(A → B) → ¬A) → ¬A] → B
(Efq2) ⊢PŁ4 A ⇒ ⊢PŁ4 ¬A → B.

(In the appendix to the paper, we have remarked some connectives de-
finable in PŁ4, as well as some of its conspicuous theorems and rules.)

Remark 2.2. PŁ4 is not a relevant logic: A1 together with T1 and
MP provides an infinity of wffs breaking the “variable-sharing property”
(VSP) (a logic L has the VSP if in all L-theorems of conditional form,
antecedent and consequent share at least a propositional variable).
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3. RM-semantics for PŁ4

In this section, PŁ4 is endowed with an RM-semantics (an RM-semantics
without a set of designated points, in particular). Firstly, models and
related notions are defined.

Definition 3.1. A PŁ4RM-model (RM-model, for short) is a structure
(K, R, ∗,�), where K is a set, R is a ternary relation on K and ∗ a
unary operation on K subject to the following definitions and semantical
postulates for all a, b, c, d ∈ K with quantifiers ranging over K:

d1. a ≤ b =df ∃xRxab

d1′. a = b =df a ≤ b & b ≤ a

d2. R2abcd =df ∃x(Rabx & Rxcd)

P1. a ≤ a

P2a. (a ≤ b & Rbcd) ⇒ Racd

P2b. (a ≤ b & b ≤ c) ⇒ a ≤ c

P2c. (d ≤ b & Rabc) ⇒ Radc

P2d. (c ≤ d & Rabc) ⇒ Rabd

P3. R2abcd ⇒ ∃x∃y(Racx & Rbcy & Rxyd)

P4. Rabc ⇒ a ≤ c

P5. Rabc ⇒ b ≤ a

P6. a ≤ b ⇒ b∗ ≤ a∗

P7. a = a∗∗

Finally, � is a (valuation) relation from K to the set of all wffs such that
the following conditions (clauses) are satisfied for every propositional
variable p, wffs A, B and a ∈ K:

(i) (a ≤ b & a � p) ⇒ b � p

(ii) a � A → B iff for all b, c ∈ K, (Rabc & b � A) ⇒ c � B

(iii) a � ¬A iff a∗
2 A

Definition 3.2 (PŁ4RM-consequence, PŁ4RM-validity). For a non-
empty set of wffs Γ and wff A, Γ �M A (A is a consequence of Γ in
the RM-model M) iff for all a ∈ K in M , a � A whenever a � Γ (a � Γ
iff a � B for all B ∈ Γ ). Then, Γ �RM A (A is a PŁ4RM-consequence 
RM-consequence, for short  of Γ ) iff Γ �M A in every RM-model M .
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In particular, if Γ = ∅, �M A (A is true in M) iff a � A for all a ∈ K
in M . And �PŁ4 A (A is PŁ4RM-valid, RM-valid, for short) iff �M A in
every RM-model M .

In the sequel, we proceed to the proof of the soundness theorem. The
two ensuing lemmas and proposition are useful.

Lemma 3.1 (Hereditary Lemma). For any RM-model, a, b ∈ K and any

wff A, (a ≤ b & a � A) ⇒ b � A.

Proof. Induction on the length of A. The conditional case is proved
with P2a and the negation case is proved with P6.

Lemma 3.2 (Entailment Lemma). For any wffs A, B, �RM A → B iff

(a � A ⇒ a � B for all a ∈ K) in all RM-models.

Proof. (⇒) By P1. (⇐) By Lemma 3.1.

Proposition 3.1. The following semantical postulates are provable in

any RM-model, for all a, b, c, d, e ∈ K:

(P8) Raaa
(P9) Rabc ⇒ b ≤ c
(P10) Rabc ⇒ Rbac
(P11) (Rabc & Ra∗de) ⇒ d ≤ b∗.

Proof. (P8) Raaa: By P1, and d1, (1) Rxaa. By 1 and P5, (2) a ≤ x.
Finally, by 1, 2 and P2a, (3) Raaa.

(P9) Rabc ⇒ b ≤ c: Suppose (1) Rabc. By P5, (2) b ≤ a. By P2a, 1
and 2. (3) Rbbc, whence by P4, (4) b ≤ c follows.

(P10) Rabc ⇒ Rbac: Suppose (1) Rabc. By P4, (2) a ≤ c. By P8, (3)
Rccc. By P2c, 2 and 3, (4) Rcac. By d2, 1 and 4, (5) R2abac, whence,
by P3, we have (6) Raad, (7) Rbae and (8) Rdec for some d, e ∈ K. By
P9 and 8, (9) e ≤ c. Finally, by P2d, 7 and 9, (10) Rbac, as desired.

(P11) (Rabc & Ra∗de) ⇒ d ≤ b∗: Suppose (1) Rabc and (2) Ra∗de.
By P5 and 1, (3) b ≤ a. By P5 and 2, (4) d ≤ a∗. By P6 and 3, (5)
a∗ ≤ b∗. Finally, by P2b, 4 and 5, (6) d ≤ b∗ follows.

Next, the soundness theorem is proved.

Theorem 3.1 (Soundness of PŁ4). For any set of wffs Γ and any wff A,

if Γ ⊢PŁ4 A, then Γ �RM A.

Proof. If A ∈ Γ , the proof is trivial, and if A has been derived by
MP, the proof is immediate by using P8. Concerning the RM-validity
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of the axioms, the proof of A4 and A5 is immediate by P7, and A1
and A2 are proved with P4 and P3, respectively [cf. 13, Chapter 4; 11,
Proposition 6.5]. So, let us prove A3, A6, A7 and A8 (we lean upon
Lemmas 3.1 and 3.2).

A3, [(A → B) → A] → A, is RM-valid: Let M be an arbitrary RM-
model where a ∈ K and A, B be wffs such that (1) a � (A → B) → A
but (2) a 2 A. By P8 (Raaa), 1 and 2, we have (3) a 2 A → B, whence
there are b, c ∈ K such that (4) Rabc, (5) b � A and (6) c 2 B. By P5
and 4, (7) b ≤ a follows, whence by 5 we get (8) a � A, contradicting 2.

A6, ¬(A → B) → (¬A → C), is RM-valid: Let M be an arbitrary
RM-model where a ∈ K and A, B, C be wffs such that (1) a � ¬(A → B)
but (2) a 2 ¬A → C. By 2, there are b, c ∈ K such that (3) Rabc, (4)
b � ¬A (i.e., b∗

2 A) and (5) c 2 C. On the other hand, by 1, we have
(6) a∗

2 A → B, i.e., (7) Ra∗de, (8) d � A and (9) e 2 B for some
d, e ∈ K. But, by P11, 3 and 7, (10) d ≤ b∗ follows, whence by 8, we get
(11) b∗

� A, contradicting 4.

A7, ¬(A → B) → ¬B, is RM-valid: Let M be an arbitrary RM-
model where a ∈ K and A, B be wffs such that (1) a � ¬(A → B) but
(2) a 2 ¬B (i.e., a∗

� B). By 1, we have (3) a∗
2 A → B, whence there

are b, c ∈ K such that (4) Ra∗bc, (5) b � A and (6) c 2 B. By P4 and 4,
we get (7) a∗ ≤ c, whence by 2, we have (8) c � B, contradicting 6.

A8, ¬B → [[¬A → ¬(A → B)] → ¬(A → B), is RM-valid: Let M
be an arbitrary RM-model where a ∈ K and A, B be wffs such that (1)
a � ¬B (i.e., a∗

2 B) but (2) a 2 [¬A → ¬(A → B)] → ¬(A → B). By
2, there are b, c ∈ K such that (3) Rabc, (4) b � ¬A → ¬(A → B) and
(5) c 2 ¬(A → B). By P10 and 3 (6) Rbac follows. Hence, by 4 and
5, we have (7) a 2 ¬A (i.e., a∗

� A). On the other hand, by 5, we get
(8) c∗

� A → B; and by 3, P4 and P6, (9) c∗ ≤ a∗, whence by 8, we
have (10) a∗

� A → B. Finally, by P8 (Ra∗a∗a∗), 7 and 10, (11) a∗
� B

follows contradicting 1.

4. Completeness of PŁ4

By using a canonical model construction, we prove the completeness of
PŁ4 w.r.t. the general RM-semantics provided in the preceding section.
In the first place, we define the notion of a theory and the classes of
theories of interest in the present paper.
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Definition 4.1. A PŁ4-theory (theory, for short) is a set of wffs con-
taining all theorems of PŁ4 and closed under Modus Ponens (MP). That
is, a is a theory iff (1) if ⊢PŁ4 A, then A ∈ a; and (2) B ∈ a whenever
A → B ∈ a and A ∈ a.

Definition 4.2 (Classes of PŁ4-theories). Let a be a theory. We set (1)
a is prime iff whenever (A → B) → B ∈ a, then A ∈ a or B ∈ a; (2)
a is trivial if a contains all wffs; (3) a is a-consistent (‘consistent in an
absolute sense’) iff a is not trivial; (4) a is w-inconsistent (‘inconsistent
in a weak sense’) iff ¬A ∈ a, A being some PŁ4-theorem; (5) a is w-
consistent (‘consistent in a weak sense’) iff a is not w-inconsistent (cf.
[11] and references therein on the notion of w-consistency).

We prove a couple of useful propositions.

Proposition 4.1 (Closure under Adj and PŁ4-ent). Let a be a theory.

Then a is closed under Adjunction (Adj) and PŁ4-entailment (PŁ4-ent).
That is, (1) if A ∈ a and B ∈ a, then ¬[(¬A → ¬B) → ¬B] ∈ a; and

(2) if ⊢PŁ4 A → B and A ∈ a, then B ∈ a.

Proof. Closure under PŁ4-ent: It is immediate since a contains all
PŁ4-theorems and it is closed under MP.

Closure under Adj: Immediate by T2, A → [B → ¬[(¬A → ¬B) →
¬B]] and closure under PŁ4-ent and MP.

Proposition 4.2. For any theory a, a is w-consistent iff a is a-consistent.

Proof. Immediate by Efq2, ⊢PŁ4 A ⇒ ⊢PŁ4 ¬A → B.

Next, the canonical model is defined.

Definition 4.3 (The canonical PŁ4RM-model). Let KT be the set of
all theories and RT be defined on KT as follows: for any a, b, c ∈ KT ,
RT abc iff for any wffs A, B, (A → B ∈ a & A ∈ b) ⇒ B ∈ c. Next,
let KC be the set of all a-consistent prime theories. On the other hand,
let RC be the restriction of RT to KC and ∗Cbe defined on KC as
follows: for each a ∈ KC , a∗

C

= {A | ¬A /∈ a}. Finally, the relation
�

C is defined as follows for any wff A and a ∈ KC : a �
C A iff A ∈ a.

Then, the canonical PŁ4RM-model (canonical RM-model, for short) is
the structure (KC , RC , ∗C ,�C).

We need to show that the canonical model is indeed a model. And in
order to do this, the following facts have to be proven: (1) the set KC is
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not empty; (2) ∗C is an operation on KC ; (3) the semantical postulates
P1-P7 are canonically valid; (4) the conditions (i)-(iii) in Definition 3.1
hold canonically. Well then, in the sequel, we proceed to prove these
facts. We begin by proving the primeness lemma.

Lemma 4.1 (Extension to prime theories). Let a be a theory and A a

wff such that A /∈ a. Then, there is a prime theory x such that a ⊆ x
and A /∈ x.

Proof. Cf. [13, Chapter 4], where it is shown how to proceed in the case
of any logic including Routley and Meyer’s basic positive logic B+. In
particular, a proof in the case of PŁ4 is provided in Lemma 3.9 in [8].

Corollary 4.1 (Non-emptyness of KC). The set KC is not empty.

Proof. Immediate by Lemma 4.1, since PŁ4TH is an a-consistent theory
(PŁ4TH is the set of all theorems of PŁ4).

Lemma 4.2 (∗C is an operation on KC). Let a be an a-consistent prime

theory. Then, a∗
C

is an a-consistent prime theory as well.

Proof. (In this proof and in the rest of the section the superscript C
is generally dropped from above ∗, R and � when there is no risk of
confusion). (a) a∗

C

is closed under MP: Suppose (1) A → B ∈ a∗ (i.e.,
¬(A → B) /∈ a), (2) A ∈ a∗ (i.e., ¬A /∈ a) but (3) B /∈ a∗ (i.e., ¬B ∈ a).
By A8, ¬B → [[¬A → ¬(A → B)] → ¬(A → B)] and 3, we have (4)
[¬A → ¬(A → B)] → ¬(A → B) ∈ a, whence, by the primeness of
a, (5) ¬(A → B) ∈ a or ¬A ∈ a follows. But 1 and 2 contradict 5.

(b) a∗
C

contains all PŁ4-theorems: Suppose A /∈ a∗, A being a PŁ4-
theorem. Then, we have ¬A ∈ a, contradicting the w-consistency of
a (cf. Proposition 4.2). (c) a∗

C

is a-consistent: Suppose ¬A ∈ a∗, A
being a PŁ4-theorem. Then we have ¬¬A /∈ a, whence by A4, A /∈ a
follows, contradicting the fact that a contains all PŁ4-theorems. (d) a∗

C

is prime: Immediate by T3, ¬B → [¬A → ¬[(A → B) → B]].

In order to show that the semantical postulates and the clauses hold
canonically, we need to prove some preliminary facts. We begin by
defining an alternative concept of a PŁ4-theory equivalent to the one
in Definition 4.1. This alternative but equivalent notion of a PŁ4-theory
is convenient for using some known results on RM-semantics.
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Definition 4.4 (PŁ4-theory 2). A PŁ4-theory 2 (theory 2, for short)
is a set of wffs containing all PŁ4-theorems and closed under Adj and
PŁ4-ent (cf. Proposition 4.1).

Proposition 4.3 (Closure under MP). Let a be a theory 2. Then, a is

closed under MP.

Proof. Suppose (1) A → B ∈ a and (2) A ∈ a. As a is closed under
Adj, (3) ¬[[¬(A → B) → ¬A] → ¬A] ∈ a (cf. Proposition 4.1). Then,
B ∈ a follows by T4, ¬[[¬(A → B) → ¬A] → ¬A] → B.

The next proposition states that the two notions of a PŁ4-theory are
equivalent. Indeed, immediate by Definitions 4.1, 4.4 and Propositions
4.1, 4.3. we obtain:

Proposition 4.4. For any set a of wffs, a is a theory iff a is a theory 2.

In the sequel, we lean upon some results in [11], where some facts
about logics including the basic positive logic BK+ are proven (BK+ is
defined in the appendix).

Let L be a logic including BK+, an L-theory be a non-empty set of
wffs closed under Adj and L-ent (cf. Definition 4.4), and KT and RT be
defined similarly as in Definition 4.3. Moreover, let KP be the set of all
prime L-theories containing all L-theorems and RP be the restriction of
RT to KP . We have (cf. [11, §3.2]; a is prime if A ∈ a or B ∈ a whenever
A ∨ B ∈ a):

Proposition 4.5. The following are some facts about L:

1. Let a, b ∈ KP , c ∈ KT and RT abc. Then, there is some x ∈ KP such

that c ⊆ x and RP abx.

2. Let a, b ∈ KT , c ∈ KP and RT abc. Then, there are x, y ∈ KP such

that a ⊆ x, b ⊆ y and RP xyc.

3. Let a, b ∈ KP . Then, a ≤P b iff a ⊆ b (a ≤P b =df ∃x ∈ KP RP xab).

On the other hand, we prove:

Proposition 4.6 (a-consistency in RT abc). Let a, b be PŁ4-theories,

c an a-consistent prime PŁ4-theory and RT abc. Then a and b are a-

consistent as well.

Proof. (Cf. Proposition 4.2.) (a) a is a-consistent: Suppose (1) RT abc
but (2) ¬A ∈ a, A being a PŁ4-theorem. In addition, let (3) C be a
PŁ4-theorem as well and (4) B ∈ b. By Efq2, we have (5) ⊢PŁ4 ¬A →
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(B → ¬C), whence by 2, we have (6) B → ¬C ∈ a and hence by 1 and
4, we get (7) ¬C ∈ c, contradicting the a-consistency of c.

(b) b is a-consistent: Suppose (1) RT abc but (2) ¬A ∈ b, A being a
PŁ4-theorem. By T1, we have (3) ¬A → ¬A ∈ a, whence by 1 and 2,
we get (4) ¬A ∈ c, contradicting the a-consistency of c.

Given Propositions 4.5 and 4.6, we have the following corollary on
PŁ4-theories (cf. Definition 4.3).

Corollary 4.2. The following are some facts about the canonical RM-

model:

1. If a, b ∈ KC , c ∈ KT and RT abc, then there is an x ∈ KC such that

c ⊆ x and RCabx.

2. If a, b ∈ KT , c ∈ KC and RT abc, then there are x, y ∈ KC such that

a ⊆ x, b ⊆ y and RCxyc.

3. For any a, b ∈ KC , a ≤C b iff a ⊆ b (where a ≤C b =df ∃x ∈ KC

RCxab).

Now we can prove the canonical validity of the semantical postulates
and the clauses in Definition 3.1.

Lemma 4.3. The semantical postulates P1, P2a, P2b, P2c, P2d, P3, P4,
P5, P6 and P7 are satisfied by the canonical RM-model.

Proof. By using Corollary 4.2, the proof of P1, P2a, P2b, P2c, P2d and
P6 is trivial, while that of P7 is immediate (by A4 and A5). Moreover,
the same corollary can be applied to greatly simplify the proofs of P3, P4
and P5. In particular, P3, P4 and P5 are proved in [11, Proposition 6.5],
if we bear in mind that a PŁ4-theory can be understood as stated in
Definition 4.4 (Proposition 6.5 in [11] can be proved for any logic L
including BK+, provided L has A2 (resp. A1, A3) in order to show the
canonical validity of P3 (resp. P4, P5). L-theories are understood as
non-empty sets of wffs closed under Adj and L-ent).

Lemma 4.4. The conditions (clauses) (i)–(iii) in Definition 3.1 are sat-

isfied by the canonical RM-model.

Proof. Clause (i) is immediate by Corollary 4.2(3) and clause (iii) is
trivial by Definition 4.3. Then, clause (ii) is proved in [11, Lemma 3.20]
using Corollary 4.2(1,2) and the fact that a PŁ4-theory can be under-
stood as a set of wffs closed under Adj and PŁ4-ent, and containing all
PŁ4-theorems (cf. Definition 4.4).
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Immediate by Corollary 4.1 and Lemmas 4.2, 4.3 and 4.4 we have:

Corollary 4.3. The canonical RM-model is indeed an RM-model.

Finally, the completeness theorem is proved. We lean on the standard
notion of ‘the set of consequences of a set of wffs’.

Definition 4.5 (The set CnΓ [PŁ4]). The set of consequences in PŁ4 of
a set of wffs Γ (in symbols, CnΓ [PŁ4]) is defined as follows. CnΓ [PŁ4] =
{A | Γ ⊢PŁ4 A}.

Remark 4.1. For any set of wffs Γ , CnΓ [PŁ4] is a PŁ4-theory.

Theorem 4.1 (Completeness of PŁ4). For any set of wffs Γ and wff A,

if Γ �RM A, then Γ ⊢PŁ4 A.

Proof. Suppose Γ 0PŁ4 A. Then A /∈ CnΓ [PŁ4]. By Lemma 4.1, there
is a prime theory T such that Γ ⊆ CnΓ [PŁ4] ⊆ T and A /∈ T . Given
that T ∈ KC and that the canonical RM-model is an RM-model, we
have Γ 2

C A, since T �
C Γ but T 2

C A. Then, Γ 2RM A follows by
Definition 3.2.

If Γ is empty, the proof is similar, since PŁ4TH is an a-consistent
theory (PŁ4TH is the set of all PŁ4-theorems).

5. 2 set-up RM-semantics for PŁ4

In [2], 2 set-up RM-semantics (2RM-semantics, for short) is introduced
and the logics BN4, RM3 and Łukasiewicz’s 3-valued logic Ł3 are inter-
preted with this type of semantics. In [12], the logic E4 is also given a
2RM-semantics. The aim of this section is to add PŁ4 to this limited
group of logics by endowing it with a 2RM-semantics, greatly simplifying
the general RM-semantics. We begin by defining the concept of a model
and related notions.

Definition 5.1 (PŁ42RM-models). Let ∗ be an involutive operation
defined on the set K, that is, for any a ∈ K, a = a∗∗, and let K be the
two-element set {0, 0∗}. A PŁ42RM-model (2RM-model, for short), i.e.,
a 2 set-up Routley-Meyer PŁ4-model, is a structure (K, R, ∗,�), where:

(I) R is a ternary relation on K subject to the following definition and
semantical postulates for all a, b, c ∈ K: (d1) a ≤ b =df ∃x ∈ KRxab;
(I1) (a ≤ b & Rbcd) ⇒ Racd; (I2) Raaa. (I3) Rabc ⇒ Rbac;
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(II) � is a (valuation) relation such that conditions (i), (ii) and (iii)
are as in Definition 3.1.

Finally, the notions of PŁ42RM-consequence (2RM-consequence, for
short) and PŁ42RM-validity (2RM-validity, for short) are defined in a
similar way to which RM-consequence and RM-validity are defined in
Definition 3.2.

Then, P1, P2b, P2c, P3, P4, P5 and P6 (cf. Definition 3.1) are
easily provable, while P2d, although not necessary in the completeness
proof, can safely be added since it is trivially proved when canonically
interpreted. Next, the Hereditary and Entailment lemmas are proved
similarly as in RM-semantics (§2). On the other hand, we have the
following useful proposition.

Proposition 5.1. For any 2RM-model, clause (ii) can be simplified to

the following clause (ii′): For any a ∈ K and wffs A, B, a � A → B iff

a 2 A or a � B.

Proof. Let M be an arbitrary 2RM-model where a ∈ K (⇒) Suppose
(1) a � A → B and (2) a � A. By I2, we have (3) Raaa. By 1, 2 and 3,
we get (4) a � B. (⇐) Suppose (1) a 2 A or a � B and for any b, c ∈ K,
(2) Rabc and (3) b � A. We need to prove c � B. By P5, P4 and 2 we
have (4) b ≤ a and (5) a ≤ c, respectively. By 3 and 4, we get (6) a � A,
whence (7) a � B follows by 1. Finally, we have, by 5 and 7, (8) c � B,
as required.

Now, we can prove the soundness theorem.

Theorem 5.1 (Soundness of PŁ4 w.r.t. 2RM-semantics). For any set of

wffs Γ and wff A, if Γ ⊢PŁ4 A, then Γ �2RM A.

Proof. Similar to (but simpler than) that of Theorem 3.1. Let us, for
example, prove the 2RM-validity of A8 (we use Proposition 5.1).

A8, ¬B → [[¬A → ¬(A → B)] → ¬(A → B)], is 2RM-valid. Let M
be an arbitrary 2RM-model where a ∈ K and A, B wffs such that (1)
a � ¬B (i.e., a∗

2 B) but (2) a 2 [¬A → ¬(A → B)] → ¬(A → B). By
2, we have (3) a � ¬A → ¬(A → B) and (4) a 2 ¬(A → B). By 3 and
4, we get (5) a 2 ¬A (i.e., a∗

� A); and by 4, we obtain (6) a∗
� A → B,

whence by 1, we have (7) a∗
2 A, contradicting 5.

Turning to completeness, we suppose that Γ is a set of wffs and A is
wff such that Γ 0PŁ4 A and then we prove Γ 22RM A.
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Suppose then Γ 0PŁ4 A. Proceeding similarly as in Theorem 4.1, it
is shown that there is a prime theory T such that Γ ⊆ T and A /∈ T .

The canonical PŁ42RM-model (2RM-model, for short) is defined as

the structure (KC , RC , ∗C ,�C) where KC = {T , T ∗
C

}, T being the
theory just built up and RC , ∗C and �

C being defined similarly as in the
canonical RM-model (Definition 4.3).

Then, in order to show that the canonical 2RM-model is a 2RM-
model, we need to show: (1) Postulates I1, I2 and I3 hold canonically.
(2) ∗C is an involutive operation on KC . (3) Conditions (i), (ii) and
(iii) in Definition 5.1 hold in the canonical 2RM-model. Now, (1) is
proved similarly as in Lemma 4.3 by using Corollary 4.2(3); and (2)
follows by Lemma 4.2 and A4, A5. Concerning (3), (i) is trivial and (iii)
is directly derivable from the definition of the canonical 2RM-model.
Finally, (ii) is proved as follows (cf. Proposition 5.1). (a) (⇒) Suppose
that A and B are wffs such that A → B ∈ T and A ∈ T . Then,
B ∈ T is immediate by closure of T under MP. (a) (⇐) Suppose that
A and B are wffs such that (1) A → B /∈ T . We have to prove A ∈ T
and B /∈ T . For reductio, assume (2) A /∈ T or (3) B ∈ T . By A3,
[(A → B) → A] → A, and the primeness of T , we have (4) either
A → B ∈ T or A ∈ T . But 1 and 2 contradict 4. On the other hand,
given 3 and A1, B → (A → B), we get (5) A → B ∈ T , contradicting
1. Thus, A ∈ T and B /∈ T , as was to be proved. (b) (⇒) Suppose that
A and B are wffs such that (1) A → B ∈ T ∗ (i.e., ¬(A → B) /∈ T ) and
(2) A ∈ T ∗ (i.e., ¬A /∈ T ) and, for reductio, (3) B /∈ T ∗ (i.e., ¬B ∈ T ).
By A8, ¬B → [[¬A → ¬(A → B)] → ¬(A → B)] and 3, we have (4)
[¬A → ¬(A → B)] → ¬(A → B) ∈ T , whence by the primeness of T ,
we get (5) either ¬(A → B) ∈ a or ¬A ∈ a. But 1 and 2 contradict 5.
(b) (⇐) Suppose that A and B are wffs such that (1) A → B /∈ T ∗ (i.e.,
¬(A → B) ∈ T ). We have to prove A ∈ T ∗ (i.e., ¬A /∈ T ) and B /∈ T ∗

(i.e., ¬B ∈ T ). By A7, ¬(A → B) → ¬B and 1, we have (2) ¬B ∈ T .
On the other hand, for reductio, suppose (3) A /∈ T ∗ (i.e., ¬A ∈ T ).
By A6, ¬(A → B) → (¬A → C), and 3, we get C ∈ T for any wff C,
contradicting the a-consistency of T . Thus, A ∈ T ∗ and B /∈ T ∗, as was
to be proved.

With the canonical 2RM-model having been shown a 2RM-model,
the completeness of PŁ4 w.r.t. the 2RM-semantics is proved similarly as
in Theorem 4.1.
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6. Binary Routley semantics and 2 set-up

binary Routley semantics for PŁ4

In this section, PŁ4 is given both a binary Routley semantics (bR-
semantics) and a 2 set-up binary Routley semantics (2bR-semantics).
Firstly, the bR-semantics is developed.

Definition 6.1 (PŁ4bR-models). A PŁ4bR-model (bR-model for short)
is a structure (K, R, ∗,�) where K is a non-empty set, R is a binary
relation on K and ∗ a unary operation on K subject to the following
postulates for all a, b ∈ K:

P1. Raa

P2. (Rab & Rbc) ⇒ Rac

P3. Rab ⇒ Rba

P4. Rab ⇒ Rb∗a∗

P5. Raa∗∗

P6. Ra∗∗a

Finally, � is a (valuation) relation from K to the set of all wffs such that
the following conditions (clauses) are satisfied for every propositional
variable p, wffs A, B and a ∈ K:

(i) (Rab & a � p) ⇒ b � p

(ii) a � A → B iff for all b ∈ K, (Rab & b � A) ⇒ b � B

(iii) a � ¬A iff a∗
2 A

Once PŁ4bR-consequence (bR-consequence) and PŁ4bR-validity
(bR-validity) are defined similarly as PŁ4RM-consequence and PŁ4RM-
validity in Definition 3.2, the soundness proof mirrors that in Section 3.
We have:

Lemma 6.1 (Hereditary condition). For any bR-model, a, b ∈ K and

any wff A, (Rab & a � A) ⇒ b � A.

Proof. Induction on the structure of A. The conditional case is proved
by P2 and the negation case, by P4.

Trivial, by P1, we obtain:

Lemma 6.2 (Entailment). For any wffs A, B, �bR A → B iff (a � A ⇒
a � B for all a ∈ K) in all models.
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Proposition 6.1. The following semantical postulate P7 is provable in

any bR-model, for all a, b, c ∈ K: (P7) (Ra∗c & Rab) ⇒ Rc∗b.

Proof. Suppose (1) Ra∗c and (2) Rab. By P4 and 1, we have (3)
Rc∗a∗∗. By P2, P6 and 3, (4) Rc∗a. Finally, we have (5) Rc∗b (by P2,
2 and 4), as desired.

Next, the soundness theorem is proved.

Theorem 6.1 (Soundness of PŁ4). For any set of wffs Γ and wff A, if

Γ ⊢PŁ4 A, then Γ �bR A.

Proof. If A ∈ Γ , the proof is trivial, and if A has been derived by
MP, the proof is immediate by using P1. Regarding the bR-validity of
the axioms, A1, A2, A3, A4 and A5 are immediate: A1, by Lemma 6.2;
A2, by P1 and P2; A3, by P3 and Lemma 6.1; and A4 (resp., A5) by
P5 (resp., P6). So, let us prove A6, A7 and A8 (we use Lemmas 6.1
and 6.2).

A6, ¬(A → B) → (¬A → C), is bR-valid: Let M be an arbitrary bR-
model where a ∈ K and let A, B, C be wffs such that (1) a � ¬(A → B)
but (2) a 2 ¬A → C. By 2, we have for some b ∈ K (3) Rab, (4) b � ¬A
(i.e., b∗

2 A) and (5) b 2 C. On the other hand, by 1, we have (6)
a∗

2 A → B, i.e., for some c ∈ K (7) Ra∗c, (8) c � A and (9) c 2 B.
But, by P7, 3 and 7, (10) Rcb∗ follows, whence by 8, we get (11) b∗

� A,
contradicting 4.

A7, ¬(A → B) → ¬B, is bR-valid: Let M be an arbitrary bR-model
where a ∈ K and A, B are wffs such that (1) a � ¬(A → B) but (2)
a 2 ¬B (i.e., a∗

� B). By 1, we have (3) a∗
2 A → B, whence there is

b ∈ K such that (4) Ra∗b, (5) b � A and (6) b 2 B. But by 2 and 4, we
have (7) b � B, contradicting 6.

A8, ¬B → [[¬A → ¬(A → B)] → ¬(A → B)], is bR-valid: Let M
be an arbitrary bR-model where a ∈ K and A, B are wffs such that (1)
a � ¬B (i.e., a∗

2 B) but (2) a 2 [¬A → ¬(A → B)] → ¬(A → B). By
(2), there is b ∈ K such that (3) Rab, (4) b � ¬A → ¬(A → B) and (5)
b 2 ¬(A → B) (i.e., b∗

� A → B). By P4 and 3, we have (6) Rb∗a∗; and
by 1, 5 and 6, (7) a∗

2 A (i.e., a � ¬A). Moreover, by P3 and 3, we get
(8) Rba. Then, by 4, 7 and 8, (9) a � ¬(A → B) follows, whence by 3,
we have (10) b � ¬(A → B), contradicting 5.

Turning to completeness, the proof is based on a canonical model
construction, just as done in Section 4. The canonical PŁ4bR-model
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(canonical bR-model, for short) is a structure (KC , RC , ∗C ,�C), where
KC , RC , ∗C ,�C are defined as in Definition 4.3, except for the relation
RT that now reads as follows: for any a, b ∈ KT and wffs A, B, RT ab
iff (A → B ∈ a & A ∈ b) ⇒ B ∈ b. On the other hand, it is clear the
we have at our disposal the facts proved in Section 4: closure of theories
under Adj and PŁ4-entailment (Proposition 4.1), coextensiveness of a-
consistent and w-consistent theories (Proposition 4.2), extension of a-
consistent theories to prime theories (Lemma 4.1), non-emptiness of KC

(Corollary 4.1), ∗C is an operation on KC (Lemma 4.2). Thus, it remains
to prove: (1) the semantical postulates P1-P6 are canonically valid, and
(2) conditions (i)-(iii) in Definition 6.1 hold canonically.

In order to prove that the semantical postulates hold canonically,
the following alternative way of interpreting the canonical relation RC

proves to be useful.

Proposition 6.2. For all a, b ∈ KC , RCab iff a ⊆ b.

Proof. (⇒) Suppose (1) RCab, (2) A ∈ a and let (3) B ∈ b. We prove
A ∈ b. By A1, (4) A → (B → A) is a theorem, whence by 2, we get (5)
B → A ∈ a. Finally, by 1, 3 and 5, (6) A ∈ b follows.

(⇐) Suppose (1) a ⊆ b, (2) A → B ∈ a and (3) A ∈ b. We prove
B ∈ b. By 1 and 2, we have (4) A → B ∈ b, and by closure under
Adj, 3 and 4, (5) ¬[[¬(A → B) → ¬A] → ¬A] ∈ b, whence by T4,
¬[[¬(A → B) → ¬A] → ¬A] → B, (6) B ∈ b follows, as desired.

Lemma 6.3. The semantical postulates P1–P6 are satisfied by the canon-

ical bR-model.

Proof. We use Proposition 6.2. P1 and P2 are trivial by Proposition
6.2; and P5 and P6 are immediate by A4 and A5, respectively. So, let
us prove P3 and P4.

P3, RCab ⇒ RCba, holds in the canonical bR-model: Let a, b ∈ KC

and suppose (1) RCab and (2) A ∈ b but (3) A /∈ a. By A3, we have (4)
[(A → B) → A] → A ∈ a for an arbitrary wff B; and by the primeness
of a, (5) either A → B ∈ a or A ∈ a. Thus, (6) A → B ∈ a follows by 3.
Then, by 1, 2 and 6, we have (7) B ∈ b, contradicting the a-consistency
of b.

P4, RCab ⇒ RCb∗a∗, holds in the canonical bR-model: Let a, b ∈ KC

and suppose (1) RCab and (2) A ∈ b∗ (i.e., ¬A /∈ b). Then, (3) ¬A /∈ a
by 1 and 2, whence (4) A ∈ a∗, as required.
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Lemma 6.4. The conditions (clauses) (i)–(iii) in Definition 6.1 are sat-

isfied by the canonical bR-model.

Proof. Clause (i) is immediate by Proposition 6.2, and clause (iii) and
clause (ii) (from left to right) are also immediate, now by the definition of
the canonical bR-model. So let us prove clause (ii) from right to left. Let
a ∈ KC and A, B be wffs such that (1) a 2

C A → B (i.e., A → B /∈ a).
We prove that there is some b ∈ KC such that RCab, b �

C A (i.e., A ∈ b)
and b 2

C B (i.e., B /∈ b). So, consider the set x = {C | A → C ∈ a}. By
using A1, it is easy to show that x is a theory (i.e., x is closed under MP
and contains all PŁ4-theorems) such that RT ax and B /∈ x. Then, by
the primeness lemma, x is extended to a prime theory b such that RCab,
A ∈ b and B /∈ b, as was required.

With the canonical bR-model proven to be a bR-model, the com-
pleteness proof proceeds similary as the completeness of PŁ4 w.r.t. RM-
semantics in Section 4.

In the sequel, we introduce the notion of a 2 set-up Routley semantics
(2bR-semantics) and give PŁ4 this type of semantics. 2RM-semantics
and 2bR-semantics are essentially distinguished by the relation R defined
on the set K of all points, which is ternary in the former and binary in
the latter. Thus, PŁ42bR-models (2bR-models, for short) are defined
similarly as 2RM-models in Definition 5.1, except that now R is defined
as follows: R is a binary relation on K such that, for all a, b ∈ K, (I1)
Raaa; (I2) Rab ⇒ Rba. The notions of PŁ42bR-consequence (2bR-
consequence, for short) and PŁ42bR-validity (2bR-validity, for short)
are defined similarly as in Definition 3.2.

Proceeding to the soundness and completeness proofs, we firstly note
that P2 and P4 (cf. Definition 6.1) are easily proved and that the Hered-
itary and Entailment Lemmas are proved similarly as in bR-semantics;
then that the simplification of clause (ii) to (ii′) (cf. Proposition 5.1)
is easily adapted to 2bR-models from 2RM-models (cf. Proposition 5.1)
and the soundness theorem can be proved similarly as in the case of
2RM-models (cf. Theorem 5.1). As regards completeness, we only need
to prove that I1 and I2 hold canonically, since the clauses (i) and (ii′)
are proved similarly as in 2RM-semantics (Section 5). But the canonical
validity of the postulates is proved following the pattern set up in the
case of 2RM-semantics by adjusting it now to the proof given for the
general case of 2bR-semantics (Section 6).
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7. Concluding remarks

In the present paper, PŁ4 is given both a Routley-Meyer ternary se-
mantics and a binary Routley semantics of the kind established in [10],
and also a 2 set-up ternary Routley-Meyer semantics and a 2 set-up
binary Routley semantics. The latter kind of semantics is introduced
in the present paper, PŁ4 being the first logic endowed with this type
of semantics, to the best of our knowledge. It has to be noted that
the relational semantics PŁ4 has been interpreted with in the present
paper are simpler than the ones preceding them in the literature (cf. the
introduction to the paper), given that PŁ4 is a strong logic. In this way,
we hope to have shed new light on a logic already interpretable from
more than one viewpoint, as remarked in the introduction to the paper.

Regarding future work on the topic, we note two suggestions, one
on the logic PŁ4, the other one on 2 set-up binary Routley semantics.
(1) The expansion of PŁ4 with necessity and possibility connectives de-
fined by a binary accessibility relation introduced in 2bR-models, instead
of defining said connectives with → and ¬ as shown in the appendix (sim-
ilar to a corresponding expansion of the logic E4 as carried on in [12]).
(2) There are essentially two ways of extending the relation R character-
istic of 2bR-models: we can require R00∗ or else R0∗0 (addition of both
conditions would cause the collapse into classical propositional logic). It
would be interesting to investigate which logics are characterized by each
one of these extensions of 2bR-semantics.

A. Appendix

The conjunction (∧), disjunction (∨), necessity (L) and possibility (M)
connectives given by the following tables:

∧ 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

L

0 0
1 0
2 0
3 3

M

0 0
1 3
2 3
3 3

are definable in MPŁ4 by putting, for any wffs A, B: A ∨ B =df (A →
B) → B; A ∧ B =df ¬(¬A ∨ ¬B); LA =df ¬(A → ¬A); MA =df ¬L¬A.

Next, we list some theorems and rules of PŁ4. Firstly, notice that
any theorem of negationless classical propositional logic is a theorem of
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PŁ4, since the following wffs are provable in PŁ4: (t1) A → (A ∨ B);
(t2) B → (A ∨ B); (t3) (A → C) → [(B → C) → [(A ∨ B) → C)]; (t4)
(A ∧ B) → A; (t5) (A ∧ B) → B; (t6) A → [B → (A ∧ B)]. But A1–
A3 (cf. §2) and t1–t6 axiomatize (together with MP) the negationless
fragment of classical propositional logic. In addition, the following are
also theorems and rules of PŁ4:

Con 1. ⊢PŁ4 A → B ⇒ ⊢PŁ4 ¬B → ¬A

Con 2. ⊢PŁ4 A → ¬B ⇒ ⊢PŁ4 B → ¬A

Con 3. ⊢PŁ4 ¬A → B ⇒ ⊢PŁ4 ¬B → A

Con 4. ⊢PŁ4 ¬A → ¬B ⇒ ⊢PŁ4 B → A

Efq1. ⊢PŁ4 ¬A ⇒ ⊢PŁ4 A → B

Efq2. ⊢PŁ4 A ⇒ ⊢PŁ4 ¬A → B

t7. ¬(A ∨ B) ↔ (¬A ∧ ¬B)

t8. ¬(A ∧ B) ↔ (¬A ∨ ¬B)

t9. (A ∨ B) ↔ ¬(¬A ∧ ¬B)

t10. (A ∧ B) ↔ ¬(¬A ∨ ¬B)

t11. LA ↔ ¬M¬A

t12. MA ↔ ¬L¬A

t13. LA → A

t14. A → MA

t15. LA → LLA

t16. MA → LMA

t17. MLA → LA

t18. L(A → B) → (LA → LB)

t19. L(A ∧ B) ↔ (LA ∧ LB)

t20. M(A ∨ B) ↔ (MA ∨ MB)

t21. M(A → B) ↔ (LA → MB)

t22. (MA → LB) → L(A → B)

t23. (MA → MB) → M(A → B)

t24. (LA ∨ LB) → L(A ∨ B)

t25. (MA ∧ MB) → M(A ∧ B)

t26. L(A ∨ B) → (LA ∨ MB)
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t27. (MA ∧ LB) → M(A ∧ B)

t28. A ∨ ¬LA

t29. (LA ∧ ¬A) → B

t30. A → (¬A ∨ LA)

Nec. ⊢PŁ4 A ⇒ ⊢PŁ4 LA

RT. ⊢PŁ4 A ↔ B ⇒ ⊢PŁ4 C[A] ↔ C[A/B]

DT. Γ, A ⊢PŁ4 B ⇒ Γ ⊢PŁ4 A → B

(The biconditional (↔) is defined in the customary way: A ↔ B =df

(A → B) ∧ (B → A). Con abbreviates Contraposition. Efq abbreviates
‘E falso quodlibet’  Any proposition is implied by a false proposition.
Nec abbreviates ‘Necessitation’ rule. RT abbreviates ‘Replacement the-
orem’: C[A] is a wff where A appears; C[A/B] is the result of changing
one or more occurrences of A in C[A] for corresponding occurrences of
B. Finally, DT means ‘Deduction Theorem’.)

Definition A.1 (The logic B+). Routley and Meyer’s basic positive
logic B+ can be axiomatized as follows [cf. 13].

Axioms:

A1. A → A

A2. (A ∧ B) → A / (A ∧ B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]]

A4. A → (A ∨ B) / B → (A ∨ B)

A5. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]]

A6. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

Rules of inference:

Adjunction (Adj): A & B ⇒ A ∧ B

Modus Ponens (MP): A → B & A ⇒ B

Prefixing (Pref): B → C ⇒ (A → B) → (A → C)

Suffixing (Suf): A → B ⇒ (B → C) → (A → C)

Definition A.2. The positive logic BK+ is the result of adding the rule
K (or rule Veq) to B+ [cf. 11] and references therein): A ⇒ B → A (Veq
abbreviates ‘Verum e quodlibet’  ‘A true proposition follows from any
proposition’).
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