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Abstract

We define all implicative expansions of Kleene’s strong 3-valued ma-

trix (with both only one and two designated values) verifying Routley

and Meyer’s basic logic B. Then, the logics determined by each one of

these implicative expansions are axiomatized by using a Belnap-Dunn

‘two-valued’ semantics. This semantics is ‘overdetermined’ in the case of

two designated values, and ‘underdetermined’ when there is only one.
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1 Introduction

Since the classical paper [15] by Łukasiewicz and the definition of Kleene’s logics

in [14] thirty years later, a general interest in 3-valued logics has never ceased to

exist (cf., e.g., [22], [2], [11], [3], [14], [8] and the references in the last two items).

But recently, the interest in some particular aspects of 3-valued logics seems to

have increased. For instance, we refer to the definition of the notion of a ‘natural

conditional’ (cf., e.g., [36], [37], [38]), correspondence analysis (cf., e.g., [35], [16],

[20]), natural deduction systems (cf., e.g., [35], [21], [19]) or Hilbert-type ones

(cf., e.g., [26], [30]). The present paper joins in this trend by defining and

axiomatizing the class of all 3-valued implicative expansions of Kleene’s strong

3-valued logics containing Routley and Meyer’s basic logic B. As pointed out

in the concluding remarks to this paper, the logics in the aforementioned class

are interesting in themselves, but they may also serve two auxiliary purposes at

least. The first one is to enhance the range of application of the Routley-Meyer
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ternary semantics; the second one is to assist in the definition of implicative

expansions of Anderson and Belnap’s first degree entailment logic, FDE. Let us

briefly comment upon these two questions.

Routley and Meyer’s basic logic B is a basic De Morgan logic (cf. Defini-

tion 2.9 below) including FDE and included in all key relevant logics such as T

(ticket entailment), E (entailment) and R (relevant logic) (cf. [1], [32] and ref-

erences therein). In addition, Routley-Meyer ternary relational semantics (RM-

semantics) for T, E and R, and in fact, for any relevant logic of importance are

easily definable from the semantics for B (cf. [32], Chapter 4). Therefore, we can

extend (or restrict, depending on the point of view adopted) the RM-semantics

for B in order to try and provide an RM-semantics for the implicative expan-

sions of Kleene’s strong 3-valued logic referred to above. In case of success, our

RM-semantics for the said implicative logics would join Brady’s RM-semantics

for logics containing Aristotle’s thesis (cf. [7]) as the only RM-semantics for

propositional logics with theses not classically valid (Brady’s RM-semantics in

[7] is the only instance of an RM-semantics validating non-classical theses we

are aware of).

On the other hand, Anderson and Belnap’s FDE is the minimal logic in the

family of Anderson and Belnap-style relevant logics (cf. [1]). And, as remarked

in [18], it is a particularly interesting and useful non-classical logic. Now, the

question of expanding FDE with a full implicative connective poses itself, since,

as the name of the logic indicates, formulas of the form→  are not considered

in FDE if either  or  does contain → (cf. [1]; cf. also [33]). Well then, there

is still a lot of investigation to be done on this topic (cf. [18]), but it seems that

the logic B (or at least its negationless fragment –cf. Definition 2.9 below) can

have a central role in the implicative expansions of FDE (cf. [6], [23]). Thus,

the logics obtained in the present paper might be used to build up interesting

implicative expansions of FDE.

The paper is organized as follows. In §2, it is shown that there are exactly

14 implicative expansions of Kleene’s strong 3-valued matrix MK3 (with two

designated values) verifying Routley and Meyer’s basic logic B. By M (1 ≤  ≤
14), we refer to these 14 implicative expansions of MK3, which are defined in this

section (in section 5, we investigate implicative expansions of MK3 with only

one designated value). In §3, the logics determined by each one of the aforesaid

implicative matrices are defined. By L, we refer to the logic determined by

the matrix M (1 ≤  ≤ 14). The L-logics are defined in a general and unified
way. Then, we prove some of their properties that will be useful in the proof of

the completeness theorems. In §4, a Belnap-Dunn two-valued overdetermined

semantics is provided for each L-logic following the strategy in [6], as displayed

in [26]. Then, strong soundness and completeness of each L-logic w.r.t. its

corresponding semantics is proved. We follow the strategy set up in [32], as
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applied in [6] and particularly displayed in [26]. Thus, it will be possible to be

reasonably general about the details of the proofs that otherwise could run for

a long number of pages. In §5, we treat implicative expansions of MK3 (with

only one designated value) verifying B. We pause to comment the completeness

proof where we encounter problems not arising in the proofs in the preceding

section. Finally, in §6, the paper is ended remarking some properties of the

L-logics and some suggestions about future work on the topic.

2 3-valued implicative expansions of MK3 con-
taining the logic B

In this section, all 3-valued implicative expansions of Kleene’s strong 3-valued

matrix MK3 containing Routley and Meyer’s logic B are defined. We begin

with the definition of some basic notions as used in the paper. Then, the matrix

MK3 and the logic B are defined.

Definition 2.1 (Language) The propositional language consists of a denu-

merable set of propositional variables 0 1    and the following con-

nectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (negation). The
biconditional (↔) and the set of wffs are defined in the customary way. 

etc. are metalinguistic variables.

Definition 2.2 (Logics) A logic L is a structure (L, `L) where L is a propo-
sitional language and `L is a (proof-theoretical) consequence relation defined on
L by a set of axioms and a set of rules of derivation. The notions of ‘proof’ and
‘theorem’ are understood as it is customary in Hilbert-style axiomatic systems.

Γ `L  means that  is derivable from the set of wffs Γ in L; and `L  means

that  is a theorem of L.

Definition 2.3 (Extensions and expansions of a propositional logic L)

Let L and L0 be two propositional languages. L0 is a strengthening of L if the
set of wffs of L is a proper subset of the set of wffs of L0. Next, let L and
L0 be two logics built upon the propositional languages L and L0, respectively.
Moreover, suppose that all axioms of L are theorems of L0 and all primitive
rules of derivation of L are provable in L0. Then, L0 is an extension of L if L
and L0are the same propositional language; and L0 is an expansion of L if L0 is
an strengthening of L. An extension L0 of L is a proper extension if L is not an
extension of L0. (By EL, we refer to an extension (or an expansion, as the case
may be) of the logic L.)

Definition 2.4 (Logical matrix) A (logical) matrix is a structure (V F)

where (1) V is a (ordered) set of (truth) values; (2)  is a non-empty proper
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subset of V (the set of designated values); and (3) F is the set of -ary functions
on V such that for each -ary connective  (of the propositional language in

question), there is a function  ∈ F such that  : V → V.

Definition 2.5 (M-interpretation, M-consequence, M-validity) Let M

be a matrix for (a propositional language) L. An M-interpretation  is a func-

tion from F to V according to the functions in F. Then, for any set of wffs Γ and
wff , Γ ²M  ( is a consequence of Γ according to M) iff () ∈  whenever

(Γ) ∈  for all M-interpretations . ((Γ) = inf{() |  ∈ Γ}, so (Γ) ∈ 

iff () ∈  for each  ∈ Γ). In particular, ²M  ( is M-valid;  is valid in

the matrix M) iff () ∈  for all M-interpretations . (By ²M we shall refer

to the relation defined in M.)

Definition 2.6 (Logics determined by matrices) Let L be a propositional
language, M a matrix for L and `L a (proof theoretical) consequence relation
defined on L. Then, the logic L is determined by M iff for every set of wffs Γ

and wff , Γ `L  iff Γ ²M . In particular, the logic L (considered as the set

of its theorems) is determined by M iff for every wff , `L  iff ²M .

Kleene’s strong matrix MK3 can be defined as follows (cf. [15]).

Definition 2.7 (Kleene’s strong 3-valued matrix) The propositional lan-

guage consists of the connectives ∧∨¬. Kleene’s strong 3-valued matrix, MK3
(our label), is the structure (V F) where (1) V = {0 1 2} and it is ordered
as shown in the following lattice

(2)  = {1 2} or  = {2}; (3) F = {∧ ∨ ¬} where ∧ and ∨ are defined
as the glb (or lattice meet) and the lub (or lattice joint), respectively, and ¬ is
an involution with ¬(2) = 0 ¬(0) = 2 and ¬(1) = 1. We display the tables
for ∧, ∨ and ¬:

∧ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

∨ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

¬ 0

0 2

1 1

2 0

The notion of an MK3-interpretation is defined according to the general

Definition 2.5.
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We note the following remark.

Remark 2.8 (On the ordering of the truth-values) The elements of V
in Definition 2.7 are ordered according to the degree of truth (cf. [11], p. 797).

On the other hand, Routley and Meyer’s B is defined (cf. [32], Chapter 4).

Definition 2.9 (Routley & Meyer’s basic logic B) Routley andMeyer’s

basic propositional logic B can be defined as follows.

Axioms:

1. ( ∧)→  / ( ∧)→ 

2. → ( ∨) /  → ( ∨)
3. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
4. [(→ ) ∧ ( → )]→ [( ∨)→ ]

5. [ ∧ ( ∨)]→ [( ∧) ∨ ( ∧ )]
6. → ¬¬
7. ¬¬→ 

Rules of inference:

Adjunction (Adj):  &  ⇒  ∧
Modus Ponens (MP): →  & ⇒ 

Prefixing (Pref):  →  ⇒ (→ )→ (→ )

Suffixing (Suf): →  ⇒ ( → )→ (→ )

Contraposition (Con): →  ⇒ ¬ → ¬

Negationless B, B+, is axiomatized with 1-5, Adj, MP, Pref and Suf.

Next, we determine the class of all 3-valued implicative expansions of MK3

(with two designated values) verifying B (the case when 2 is the only designated

value is investigated in §5).

Firstly, we note the following proposition.

Proposition 2.10 (Implicative functions verifying 1, MP and Con)

Consider the following implicative table t0 ( (1 ≤  ≤ 6) ∈ {1 2}):

t0.

→ 0 1 2

0 1 2 3

1 0 4 5

2 0 0 6

Given the matrix MK3 (1 and 2 are designated values), the general table t0

contains all →-functions verifying 1, MP and Con.
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Proof. It is left to reader.

The →-functions in table t0 do not necessarily satisfy the rule Suf or the
rule Pref. In order to define the →-functions verifying both aforementioned
rules, we use the following proposition.

Proposition 2.11 (Implicative functions falsifying Pref and/or Suf)

Given MK3 and t0, we have:

1. The rule Pref is not verified by any →-function such that

(a) →(0 1) = 2 & →(0 2) = 1

(b) →(0 1) = 1 & →(0 0) = 2

(c) →(1 1) = 2 & →(1 2) = 1

2. The rule Suf is not verified by any →-function such that

(a) →(1 2) = 2 & →(0 2) = 1

(b) →(1 1) = 2 & →(0 1) = 1

(c) →(2 2) = 2 & →(1 2) = 1

(d) →(2 2) = 2 & →(0 2) = 1

Proof. It is immediate.

Given Propositions 2.10 and 2.11, we can determine the class of all →-
functions verifying B, given the matrix MK3 (1 and 2 are designated values).

Corollary 2.12 (Implicative functions verifying B) Consider the fol-

lowing tables ( (1 ≤  ≤ 2) ∈ {1 2}):

ta.

→ 0 1 2

0 1 1 2

1 0 1 2

2 0 0 1

tb.

→ 0 1 2

0 1 2 2

1 0 2 2

2 0 0 2

tc.

→ 0 1 2

0 1 2 2

1 0 2 2

2 0 0 1

td.

→ 0 1 2

0 1 2 2

1 0 1 2

2 0 0 1

te.

→ 0 1 2

0 1 1 1

1 0 1 1

2 0 0 1

Let M be a 3-valued implicative expansion of MK3 (1 and 2 are designated

values) verifying B. Then M is built up by adding to MK3 one of the 14 im-

plicative functions contained in the 5 tables displayed above.
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Proof. (1) It immediately follows from Propositions 2.10 and 2.11 that the 14

→-functions in tables in Corollary 2.12 are the only →-functions verifying both
the rules Pref and Suf. (2) The expansions of MK3 with these 14 →-functions
also verify 1-7.

Next, we display the particular tables contained in the five tables in Corollary

2.12.

t1 0 1 2

0 1 1 2

1 0 1 2

2 0 0 2

t2 0 1 2

0 1 1 2

1 0 1 2

2 0 0 1

t3 0 1 2

0 2 2 2

1 0 2 2

2 0 0 2

t4 0 1 2

0 2 2 2

1 0 1 2

2 0 0 2

t5 0 1 2

0 1 2 2

1 0 2 2

2 0 0 2

t6 0 1 2

0 1 2 2

1 0 1 2

2 0 0 2

t7 0 1 2

0 2 2 2

1 0 2 2

2 0 0 1

t8 0 1 2

0 1 2 2

1 0 2 2

2 0 0 1

t9 0 1 2

0 2 2 2

1 0 1 2

2 0 0 1

t10 0 1 2

0 2 2 2

1 0 1 1

2 0 0 1

t11 0 1 2

0 1 2 2

1 0 1 2

2 0 0 1

t12 0 1 2

0 1 2 2

1 0 1 1

2 0 0 1

t13 0 1 2

0 1 1 2

1 0 1 1

2 0 0 1

t14 0 1 2

0 1 1 1

1 0 1 1

2 0 0 1

For any  (1 ≤  ≤ 14), by M we will refer to the implicative expansion

of MK3 built up by adding the →-function described by table t. In the next
section the logics determined by the 14 implicative expansions of MK3 defined

above are axiomatized.

3 L-logics and some of their properties

For any  (1 ≤  ≤ 14), by L we will refer to the logic determined by M. In

addition, by the term L-logic(s) we will generally refer to the logics determined

by the 14 expansions of MK3 that can be built up with the implicative functions

in Corollary 2.12.

In the sequel, the 14 L-logics are defined in a general and unified way as

extensions of a basic logic b3 (‘basic 3-valued logic contained in all 3-valued

implicative expansions of MK3 containing B’).
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Definition 3.1 (The basic logic b3) The basic logic b3 can be defined as

follows:

Axioms:

a1. ( ∧)→  / ( ∧)→ 

a2. → ( ∨) /  → ( ∨)
a3. [(→ ) ∧ (→ )]→ [→ ( ∧)]
a4. [(→ ) ∧ ( → )]→ [( ∨)→ ]

a5. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧ )]
a6. [(→ ) ∧ ( → )]→ (→ )

a7. [(→ ) ∧]→ 

a8.  ∨ (→ )

a9. ¬( ∨)↔ (¬ ∧ ¬)
a10. ¬( ∧)↔ (¬ ∨ ¬)
a11. ↔ ¬¬
a12.  ∨ ¬
a13. ¬ ∨ (→ )

a14. [(→ ) ∧ ¬]→ ¬
a15. [( ∧ ¬) ∧]→ (→ )

Rules of inference:

Adjunction (Adj):  &  ⇒  ∧
Modus Ponens (MP): →  & ⇒ 

The L-logics are axiomatized by adding to b3 some subset of the following

set of axioms.

A1.  ∨ ¬(→ )

A2.  ∨ ¬(→ )

A3. ¬ ∨ ¬(→ )

A4. (¬ ∨ ¬) ∨ ¬(→ )

A5. → [ ∨ ¬(→ )]

A6. ¬ → [¬ ∨ ¬(→ )]

A7. ( ∧ ¬)→ ¬(→ )

A8. ( ∧ ¬)→ ¬(→ )

A9. ( ∧ ¬)→ ¬(→ )
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A10. [¬(→ ) ∧ ¬]→ 

A11. [¬(→ ) ∧ ¬]→ ¬
A12. [¬(→ ) ∧ ¬]→ ( ∨)
A13. [¬(→ ) ∧]→ 

A14. [¬(→ ) ∧]→ ¬
A15. [¬(→ ) ∧]→ ( ∨ ¬)
A16. [¬(→ ) ∧ (¬ ∧)]→ 

In particular, we have:

Definition 3.2 (The L-logics) For all  (1 ≤  ≤ 14), L- is axiomatized by
adding to b3 the following set of axioms (the numerals refer to the axioms in

the list):

L1: 2, 9, 14.

L2: 2, 4, 9, 11.

L3: 5, 6, 10, 14, 16.

L4: 7, 10, 14.

L5: 2, 6, 14, 16.

L6: 2, 7, 13, 14.

L7: 3, 5, 10, 16.

L8: 2, 3, 16.

L9: 3, 7, 10, 11.

L10: 3, 8, 10.

L11: 2, 3, 7, 11, 13.

L12: 2, 3, 8, 16.

L13: 2, 3, 8, 9, 15.

L14: 1, 3, 8.

We prove some properties of the L-logics that will be useful in order to

prove the completeness theorems.

Let L be an Eb31-logic (cf. Definition 2.3). An L-theory  is a set of wffs

closed under Adj and MP. In addition,  is regular iff it contains all L-theorems;

 is trivial iff it contains all wffs;  is prime if it has the disjunction property,

and, finally,  is complete if for each wff , it has either  or ¬. We have:
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Proposition 3.3 (Some properties of prime, regular Eb3-theories) Let

L be an Eb3-logic and  be a prime and regular L-theory. Then, for any wffs

, (1)  ∧ ∈  iff  ∈  and  ∈ ; (2) ¬( ∧) ∈  iff ¬ ∈  or ¬ ∈ ;

(3)  ∨  ∈  iff  ∈  or  ∈ ; (4) ¬( ∨ ) ∈  iff ¬ ∈  and ¬ ∈ ; (5)

 ∈  iff ¬¬ ∈ ; (6)  ∈  or ¬ ∈ .

Proof. Immediate by using the properties of : (1)-(4), by the De Morgan laws
(a9-a10); (5) by the double negation axioms (a11), and (6) by the principle of

excluded middle (a12). (Notice that regularity is needed only in the last case,

case (6).)

Concerning the conditional, we prove Propositions 3.4 and 3.5.

Proposition 3.4 (The conditional in prime, regular Eb3-theories) Let

L be an Eb3-logic and  a prime, regular L-theory. Then,  →  ∈  iff  ∈ 

or ¬ ∈  or ( ∈  & ¬ ∈  &  ∈ ).

Proof. (a) (⇒) Suppose (1)  →  ∈  and, for reductio, (2)  ∈ , ¬ ∈ 

and ¬ ∈  or (3)  ∈ , ¬ ∈  or  ∈ . But 2 and 3 are impossible by a7

and a14. (b) (⇐) If  ∈  or ¬ ∈  or ( ∈  and ¬ ∈  and  ∈ ), then

→  ∈  follows by a8, a13 and a15, respectively.

Proposition 3.5 (Negated conditionals in Eb3-logics) Let L be an EL-

logic where L (1 ≤  ≤ 14) will refer in each case to one of the extensions of
b3 displayed in Definition 3.2. And let  be a prime, regular and non-trivial

L-theory. We have: ¬(→ ) ∈  iff

• EL1-logics:  ∈  or ( ∈  & ¬ ∈ ).

• EL2-logics:  ∈  or ( ∈  & ¬ ∈ ) or (¬ ∈  & ¬ ∈ ).

• EL3-logics: ( ∈  &  ∈ ) or (¬ ∈  & ¬ ∈ ).

• EL4-logics:  ∈  & ¬ ∈ .

• EL5-logics:  ∈  or (¬ ∈  & ¬ ∈ ).

• EL6-logics:  ∈  or ( ∈  & ¬ ∈ ).

• EL7-logics: ¬ ∈  or ( ∈  &  ∈ ).

• EL8-logics: ¬ ∈  or  ∈ .

• EL9-logics: ¬ ∈  or ( ∈  & ¬ ∈ ).

• EL10-logics: ¬ ∈  or ( ∈  & ¬ ∈ ).

10



• EL11-logics: ¬ ∈  or  ∈  or ( ∈  & ¬ ∈ ).

• EL12-logics: ¬ ∈  or  ∈  or ( ∈  & ¬ ∈ ).

• EL13-logics: ¬ ∈  or  ∈  or ( ∈  & ¬ ∈ ) or ( ∈  & ¬ ∈ ).

• EL14-logics:  ∈  or ¬ ∈  or ( ∈  & ¬ ∈ ).

Proof. It is similar to the proof of Proposition 3.4. So, it will suffice to prove
one case, say case 2-

Case 2. EL2-logics:

(a) (⇒) Suppose (1) ¬(→ ) ∈  and, for reductio, (2)  ∈  &  ∈  &

¬ ∈ ; (3)  ∈  &  ∈  & ¬ ∈ ; (4)  ∈  & ¬ ∈  & ¬ ∈  and

(5)  ∈  & ¬ ∈  & ¬ ∈ . But 2, 3, and 5 are impossible since each one

of them contains a contradiction. Then 4 follows by [¬( → ) ∧ ¬] → ¬
(A11): By A11, 1 and 4, ¬ ∈  follows, contradicting ¬ ∈ .

(b) (⇐) Suppose (1)  ∈  or (2)  ∈  & ¬ ∈  or (3) ¬ ∈  &

¬ ∈ . Then, ¬( → ) ∈  follows from 1, 2 and 3 by  ∨ ¬( → ) (A2),

( ∧¬)→ ¬(→ ) (A9) and (¬∨¬)∨¬(→ ) (A4), respectively.

Finally, we prove the primeness lemma.

Lemma 3.6 (Primeness) Let L be an L-logic,  an L-theory and  a wff such

that  ∈ . Then, there is a prime L-theory T such that  ⊆ T and  ∈ T .

Proof. By using Kurakowski-Zorn’s Lemma, for example,  is extended to a
maximal theory T such that  ∈ T . Then, it is easy to show that T is prime

(cf., for instance, the proof of Lemma 5.13 in [26] and notice that closure under

MP is provably guaranteed by the modus ponens axiom a7).

4 Belnap-Dunn semantics for the L-logics

Let  represent truth and  represent falsity. Belnap-Dunn semantics (BD-

semantics) is characterized by the possibility of assigning  ,  , both  and 

or neither  nor  to the formulas of a given logical language (cf. [4], [5], [9],

[10]). There are two variants of BD-semantics: overdetermined BD-semantics

(o-semantics) and underdetermined BD-semantics (u-semantics). Formulas can

be assigned  ,  or both  and  in the former;  ,  or neither  nor 

in the latter (cf. [26], [30]). U-semantics is especially adequate to 3-valued

logics determined by matrices with only one designated value; o-semantics, for

those determined by matrices where only one value is not designated. Never-

theless, some 3-valued logics with only one designated value can be given both
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u-semantics and o-semantics which are equivalent to each other (cf. [25]). How-

ever, in the present paper, 3-valued logics determined by matrices with two

designated values are given an o-semantics, while those determined by matrices

with only one designated value are endowed with a u-semantics.

Given an implicative expansion of MK3, M, with 2 as the only designated

value, the idea for defining an equivalent u-semantics, Mu, to the matrix seman-

tics based upon M is simple: a wff  is assigned neither  nor  in Mu iff it

is assigned 1 in M. Then  is assigned  (resp.,  ) in Mu iff it is assigned 2

(resp., 0) in M. On the other hand, if M has both 1 and 2 as designated values,

then an equivalent o-semantics, Mo, to the matrix semantics based upon M is

defined as follows.  is assigned both  and  in Mo iff  is assigned 1 in M.

Next,  is assigned  (resp.,  ) in Mo iff it is not assigned 0 (resp., 2) in M.

(Notice that in u-semantics formulas can be assigned neither  nor  but not

both  and  , while interpretation of formulas cannot be empty in o-semantics

—i.e. formulas can be assigned both  and  .)

The o-semantics equivalent to the matrix semantics based upon each one of

the 14 matrices introduced below, as well as the u-semantics referred to in §5,

have been built up by translating the matrix semantics based upon the matrices

in question into a u-semantics (or an o-semantics, as the case may be), according

to the simple intuitive ideas just exposed.

In the sequel, the notion of an L-model and the accompanying notions of

L-consequence and L-validity are defined. For each  (1 ≤  ≤ 14), the L-
models and the said annexed notions is an o-semantics equivalent to the matrix

semantics defined upon the matrix M in the sense explained above.

Definition 4.1 (L-models) For all  (1 ≤  ≤ 14), an L-model is the struc-
ture ( ) where (i)  = {{} {} { }}, and (ii)  is an L-interpretation
from the set of all wffs to , according to the following conditions (clauses) for

each propositional variable  and wffs , : (1) () ∈ ; (2a)  ∈ (¬) iff
 ∈ (); (2b)  ∈ (¬) iff  ∈ (); (3a)  ∈ (∧) iff  ∈ () &  ∈
(); (3b)  ∈ (∧) iff  ∈ () or  ∈ (); (4a)  ∈ (∨) iff  ∈ ()

or  ∈ (); (4b)  ∈ (∨) iff  ∈ () &  ∈ (); (5a)  ∈ (→ )

iff  ∈ () or  ∈ () or ( ∈ () &  ∈ () &  ∈ ()). The clause
for assigning {} to conditionals is different for each L-model. Thus, we have
the following 14 conditions:  ∈ (→ ) iff

• (5b1)  ∈ () or [ ∈ () &  ∈ ()].

• (5b2)  ∈ () or [ ∈ () &  ∈ ()] or [ ∈ () &  ∈ ()].

• (5b3) [ ∈ () &  ∈ ()] or [ ∈ () &  ∈ ()].
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• (5b4)  ∈ () &  ∈ ().

• (5b5)  ∈ () or [ ∈ () &  ∈ ()].

• (5b6)  ∈ () or [ ∈ () &  ∈ ()].

• (5b7)  ∈ () or [ ∈ () &  ∈ ()].

• (5b8)  ∈ () or  ∈ ().

• (5b9)  ∈ () or [ ∈ () &  ∈ ()].

• (5b10)  ∈ () or [ ∈ () &  ∈ ()].

• (5b11)  ∈ () or  ∈ () or [ ∈ () &  ∈ ()].

• (5b12)  ∈ () or  ∈ () or [ ∈ () &  ∈ ()].

• (5b13)  ∈ () or  ∈ () or [ ∈ () &  ∈ ()] or [ ∈ () &

 ∈ ()].

• (5b14)  ∈ () or  ∈ () or [ ∈ () &  ∈ ()].

Definition 4.2 (L-consequence, L-validity) Let M be an L-model (1 ≤
 ≤ 14). For any set of wffs Γ and wff , Γ ²M  ( is a consequence of Γ in

the L-model M) iff  ∈ () whenever  ∈ (Γ) [ ∈ (Γ) iff ∀ ∈ Γ( ∈
()); ∈ (Γ) iff ∃ ∈ Γ( ∈ ())]. Then, Γ ²L  ( is a consequence of

Γ in L-semantics) iff Γ ²M  for each L-model M. In particular, ²L  ( is

valid in L-semantics) iff ²M  for each L-model M (i.e., iff  ∈ () for each

L-model M). (By ²L we shall refer to the relation just defined.)

Now, given Definitions 2.4, 2.5, 4.1 and 4.2 and Corollary 2.12, we easily

have:

Proposition 4.3 (Coextensiveness of ²M and ²L) For any  (1 ≤  ≤
14), set of wffs Γ and wff , Γ ²M  iff Γ ²L . In particular, ²M  iff ²L .

Proof. Cf., e.g., the proof of Proposition 7.4 in [26].

The proof of Proposition 4.3 is a mere formalization of the intuitive transla-

tion (commented upon above) of a given matrix semantics into its corresponding

o-semantics. But it greatly simplifies the soundness and completeness proofs

since we can focus on the relation ²M in the former case, while restricting our

attention to the relation ²L in the latter one. Thus, we have:

Theorem 4.4 (Soundness of the L-logics w.r.t. ²M) For any  (1 ≤
 ≤ 14), set of wffs Γ and wff , if Γ `L  then (1) Γ ²M  and (2) Γ ²L .
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Proof. (1) Given a particular logic L, it is easy to check that the rules Adj
and MP preserve M-validity, whereas the axioms of L are assigned either 1 or

2 by any M-interpretation . Consequently, if Γ `L , then Γ ²M . Then

(2) is immediate by (1) and Proposition 4.3. Finally, if Γ is the empty set, the

proof is similar (in case a tester is needed the reader can use that in [12]).

Turning to the completeness theorem, completeness of L w.r.t. ²L is proved
by means of a canonical model construction. Then, completeness w.r.t. ²M is

immediate by coextensiveness of the two consequence relations (Proposition

4.3).

A canonical L-model is a structure ( T ) where  is defined as in Defi-

nition 4.1, T is a T -interpretation built upon a prime, regular and non-trivial
L-theory T (cf. the preceding section on the notion of an L-theory and the

classes of L-theories of interest in the present paper). A T -interpretation is
a function such that for each propositional variable , we have  ∈ T () iff
 ∈ T , and  ∈ T () iff ¬ ∈ T , while complex wffs are assigned a member of
 according to conditions 2, 3, 4 and 5 in Definition 4.1.

It is clear that any canonical L-model is an L-model. Therefore, complete-

ness actually depends on the possibility of extending the canonical interpreta-

tion of propositional variables to all wffs. That is, given the facts proven so far,

completeness depends on the following proposition.

Proposition 4.5 (T -interpreting the set of all wffs) Let L be an L-
logic and  be a T -interpretation defined on the L-theory T . For each wff ,

we have: (1)  ∈ () iff  ∈ T ; (2)  ∈ () iff ¬ ∈ T .

Proof. By induction on the length of . It is easy by using Propositions 3.3,
3.4, 3.5 and 3.6 (cf., e.g., the proof of Proposition 8.5 in [26]).

Once Proposition 4.5 is at our disposal, completeness is proved as follows.

Let L be an L-logic. Suppose that Γ is a set of wffs and  is a wff such that

Γ 0L . Then  is not included in the set of consequences derivable in L from

Γ (in symbols,  ∈ Γ[L]). Now, given that for any set of wffs Γ, Γ[L] is

clearly a regular L-theory, by using the primeness lemma (Lemma 3.6), it can

be extended to a prime, regular and non-trivial L-theory T such that  ∈ T .
Then T generates a canonical model M with a T -interpretation T such that

 ∈ T (Γ) (since  ∈ T (Γ[L])) but  ∈ T (), whence Γ 2M  and finally,

Γ 2L .

Based upon the argumentation just developed, we state the ensuing theorem.

Theorem 4.6 (Completeness of the extensions of b3) Let L be any of

the extensions of b3 in Definition 3.2. For any set of wffs Γ and wff , (1) if

Γ ²L , then Γ `L ; (2) if Γ ²M , then Γ `L .
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5 Implicative expansions of MK3 verifying the
logic B (2 is the only one designated value)

In this section, we investigate all implicative expansions of MK3 (with only 2

as designated value) verifying the logic B.

Reasoning similarly as in the case of 1 and 2 as designated values (cf. section

2), we are left with the following possibilities ( (1 ≤  ≤ 3) ∈ {0 1}).

t00

→ 0 1 2

0 2 2 2

1 1 2 2

2 2 3 2

That is, we have the following particular tables:

t15 0 1 2

0 2 2 2

1 1 2 2

2 1 0 2

t16 0 1 2

0 2 2 2

1 1 2 2

2 1 1 2

t17 0 1 2

0 2 2 2

1 0 2 2

2 1 0 2

t18 0 1 2

0 2 2 2

1 0 2 2

2 1 1 2

t19 0 1 2

0 2 2 2

1 0 2 2

2 0 0 2

t20 0 1 2

0 2 2 2

1 1 2 2

2 0 1 2

t21 0 1 2

0 2 2 2

1 0 2 2

2 0 1 2

t22 0 1 2

0 2 2 2

1 1 2 2

2 0 0 2

As in section 3, let L (15 ≤  ≤ 22) refer to the logic determined by the ma-
trix M built up by adding the →-function described in table t to MK3. Now,
L19, L20, L21 and L22 are investigated in [30] along with the logics determined

by addition to MK3 of one of the two following implicative tables:

t23 0 1 2

0 2 2 2

1 2 2 2

2 0 1 2

t24 0 1 2

0 2 2 2

1 2 2 2

2 0 0 2

Concerning the six logics just mentioned, we remark that M23 and M24

do not verify B (they lack the rule Con) and that L19, L20, L21 and L22 are

S53 (the 3-valued extension of positive fragment of Lewis’ S5 as axiomatized by

Hacking in [13]), Łukasiewicz’s 3-valued logic Ł3, and Gödelian 3-valued logic

G3, respectively (cf. [30] and references therein). On the other hand, L17 and

L18 lack the rule Suf, while the rule Pref does not hold in L15. Consequently,
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we are left with L16. Anyway, L15, L17 and L18 are interesting, as noted in

point 4e of the concluding remarks to the paper. Thus, we will investigate

L15, L17 and L18 along with L16. Well then, we begin by defining the required

BD-semantics.

Definition 5.1 (BD-models for L15, L16, L17 and L18) For all  (15 ≤
 ≤ 18), an L-model is the structure ( ) where (i) = {{} {} ∅}, and (ii)
 is an L-interpretation from the set of all wffs to , according to the following

conditions: (1), (2a), (2b), (3a), (3b), (4a) and (4b) are defined as in Definition

4.1. (5a)  ∈ (→ ) iff  ∈ () or  ∈ () or [ ∈ () &  ∈ ()].

The clause for assigning {} to conditionals is different for each L-model. Thus,
we have the following 4 conditions:  ∈ (→ ) iff

• (5b15)  ∈ () &  ∈ () &  ∈ ().

• (5b16)  ∈ () &  ∈ ().

• (5b17) [ ∈ () &  ∈ () &  ∈ ()] or [ ∈ () &  ∈
() &  ∈ ()].

• (5b18)  ∈ () &  ∈ () &  ∈ ().

The notions of L-consequence and L-validity are defined similarly as in

Definition 4.2.

On the other hand, L15, L16, L17 and L18 can be axiomatized as follows.

The basic logic b30 is formulated with a1-a5, a9-a11 of b3 (cf. Definition 3.1)
and the following axioms:

¬→ [ ∨ (→ )]

 → [¬ ∨ (→ )]

( ∨ ¬) ∨ (→ )]

The rules are Adj, MP, disjunctive Modus Ponens (dMP), disjunctive Tran-

sitivity (dTrans), disjunctive Modus Tollens (dMT) and disjunctive ‘E contra-

dictione quodlibet’ (dEcq).

(dMP):  ∨ (→ ) &  ∨⇒  ∨
(dTrans):  ∨ [(→ ) ∧ ( → )]⇒  ∨ (→ )

(dMT):  ∨ (→ ) &  ∨ ¬ ⇒  ∨ ¬
(dECQ):  ∨ ( ∧ ¬)⇒  ∨

The reason why the disjunctive rules are needed is explained below.
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The particular axioms of each one of the four logics are chosen from the

following list:

b1. ¬(→ )→ 

b2. [¬(→ ) ∧]→ ¬
b3. → [( ∨ ¬) ∨ ¬(→ )]

b4. [¬(→ ) ∧ ¬]→ [(¬ ∨) ∨ (→ )]

b5. ¬(→ )→ (→ )

b6. [¬(→ ) ∧ ¬]→ 

b7. ¬ → [( ∨ ¬) ∨ ¬(→ )]

b8. [¬(→ ) ∧ ( ∧ ¬)]→ [(¬ ∨) ∨ (→ )]

b9. ¬(→ )→ ¬
b10. [¬(→ ) ∧]→ [(¬ ∨) ∨ (→ )]

We have:

L15: b1, b2, b3, b4.

L16: b5.

L17: b2, b3, b6, b7, b8.

L18: b6, b7, b9, b10.

Now, soundness of L15-L18 can be proved similarly as the soundness of the

14 logics (in Definition 3.2) was proved in section 4 (or as the soundness of

L19-L24 was proved in [30]). But concerning completeness of L15-L18, there is

a problem not encountered in section 4. Let us explain it.

As pointed out in the introduction to the paper, we prove completeness by

following the strategy developed in [32], (Chapter 4), as applied in [6] and dis-

played in particular in [26] and [30]. The key notion in the method is that of

‘canonical interpretation’. As shown in the preceding section, canonical inter-

pretations are functions built upon prime, regular and non-trivial L-theories.

But we face a problem for applying the method in the case of some logics.

Suppose, for instance, that L is a logic closed under a rule r but lacking the cor-

responding axiom. As a way of an example, suppose that L is closed under the

rule Suffixing (Suf) →  ⇒ ( → ) → (→ ), but lacks the axiom Suf-

fixing (→ )→ [( → )→ (→ )]. Then, following the aforementioned

strategy, it is not possible to build prime L-theories closed under Suf, in general.

Nevertheless, in the items quoted above, it has been shown that, despite the ab-

sence of the axiom corresponding to the rule r, prime L-theories are available if

in addition to being closed under r, L is also closed under the disjunctive version
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of r. For instance, if in addition to being closed under Suf, L is also closed under

disjunctive Suf (i.e.,  ∨ (→ )⇒  ∨ [( → )→ (→ )]).

In this sense, it has to be noted that the modus ponens axiom [( →
) ∧ ] →  fails in L15, L16, L17 and L18 (in all cases, it suffices to take

an assignment  on the set V = {0 1 2} such that, for distinct propositional
variables  and , () = 2 and () = 0. Then, ([(→ ) ∧ ]→ ) = 1 (L15,

L16) or ([(→ ) ∧ ]→ ) = 0 (L17, L18)). A similar problem arises in L15,

L16, L17 and L18 with the modus tollens axiom, [( → ) ∧ ¬] → ¬, and
the ‘E contradictione quodlibet’ (Ecq) axiom (∧¬)→ . Or in L15, L17 and

L18 with the axiom Transitivity [(→ )∧( → )]→ (→ ). Fortunately,

the rules disjunctive Modus Ponens (dMP),  ∨ (→ ) &  ∨ ⇒  ∨,
disjuntive Transitivity (dTrans),  ∨ [( → ) ∧ ( → )] ⇒  ∨ ( → ),

disjunctive Modus Tollens (dMT)  ∨ (→ ) &  ∨¬ ⇒  ∨¬, and dis-
junctive Ecq (dEcq), ∨(∧¬)⇒ ∨, preserve validity in M15, M16, M17
and M18. Consequently, the required prime L-theories can be built as shown in

[32] (Chapter 4; cf. also [6], [26], [30]) and then completeness of extensions of

L15, L16, L17 and L18 can be carried out similarly as the completeness of L19,

L20, L21, L22, L23 and L24 is proven in [30]. Actually, once the building of

prime L-theories is possible, by leaning upon disjunctive rules, the proof of the

completeness of L15, L16, L17 and L18 proceeds in all main respects similarly

as in that of the 14 logics in Definition 3.2 developed in section 4.

However, there is an important difference between proofs of completeness in

L-logics (1 ≤  ≤ 14) and L-logics (15 ≤  ≤ 24) that is worth mentioning.
Prime L-theories are not complete in general in the case of the latter logics,

since they lack the principle of excluded middle (Pem) axiom  ∨ ¬, but
are, in return, consistent since Ecq,  ∧ ¬ ⇒ , holds in them. Therefore,

T -interpretations are now based upon prime, regular and consistent, but not

necessarily complete, L-theories, which was to be expected, since in u-semantics

interpretation of wffs can be empty but not inconsistent (cf. [30]).

6 Concluding remarks

In what follows, we use the term L-logics for generally referring to the log-

ics investigated in the present paper. The term L1-logics and L2-logics will

particularly refer to the logics defined in sections 3 and 5, respectively. We have:

1. In [16] (resp., [35]), all binary expansions of MK3 with two designated val-

ues (resp., only one designated value) are generally defined by using nat-

ural deduction systems. In particular, the logics L3, L4 and L19 through

L24 have been studied in [38], [19], [26], [30] and [35]. In [38], they are
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defined. In [19], they are formulated with natural deduction systems; in

[26] and [30], with Hilbert-type ones. L15 through L22 are given a natural

deduction system in [35]. The rest of the logics investigated in the paper

have not been particularly studied before in the literature, to the best of

our knowledge.

2. All L1-logics are paraconsistent, since the rule Ecq,  ∧ ¬ ⇒ , does

not hold in any of them. However, none of the L2 logics is paraconsistent

as the said rule is present in the eight L2-logics.

3. None of the L1-logics has the variable-sharing property (vsp): (∧¬)→
(∨¬) is provable in each one of them. Nevertheless, the ‘quasi variable-
sharing property’ (qsvp) is a property of the 10 L1-logics, the determining

matrix of which has →(1 1) = 1. (The proof of this fact is similar to the
one provided in Appendix III of [27]. The qsvp reads: if  →  is

provable, then either (i)  and  share a propositional variable or (ii)

both ¬ and  are provable. Cf. [1], p. 417.) Consequently, these L1-

logics are quasi-relevant logics in the same sense that the logic R-Mingle

(cf. [1], §29).

4. We have axiomatized the L-logics in the most possible general way. But

most of them can be given more conspicuous and economic axiomatizations

(cf., for instance, the suggestions in the concluding remarks of [26] and

[30]).

5. Consider the following general tables T1, T2 and T3 ( (1 ≤  ≤ 6) ∈
{0 1 2};  (1 ≤  ≤ 2) ∈ {0 2}).

T1.

→ 0 1 2

0 1 1 2

1 3 2 4

2 0 5 6

T2.

→ 0 1 2

0 1 1 2

1 2 2 3

2 0 4 1

T3.

→ 0 1 2

0 1 2 2

1 3 2 4

2 0 5 6

In [28] (resp. [29]), it is shown that any implicative expansion of MK3

built up by adding any of the 1053 →functions in T1 and T2 (resp.,
the 729 in T3) is functionally complete for the set of the 3 truth-values

THREE (resp., functionally include Łukasiewicz’s 3-valued logic Ł3). Con-

sequently, we have:

(a) L5, L7 and L8 are complete for THREE.

(b) In addition to L5, L7 and L8, L3, L19, L20, L21 and L22 functionally

include Ł3 (actually, all these logics are functionally equivalent to Ł3

–cf. [27], [34]).
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(c) L4 is functionally included in Ł3 but does not include it (cf. [34]).

The rest of the L1-logics do not functionally include Ł3 nor are

included in it (notice that ∧(1 1) = ∨(1 1) = →(1 1) = ¬(1) = 1;
and →(0 0) = 1 and/or →(2 2) = 1 and/or →(2 0) = 1).

(d) L16 defines Słupecki’s T-functor (cf. [34], [28]) but the question

whether it functionally includes Ł3 is left open.

(e) Following the suggestions in the concluding remarks of [28], it can be

proved that L15, L17 and L18 are complete for THREE.

6. Further work on the topic could focus on the following two items:

(a) In [24], L3, L4, L19, L20, L21 and L22 are given reduced Routley-

Meyer semantics; in [6], L4, L20 and the 4-valued logic BN4 are

endowed with 2-set-up Routley-Meyer semantics; in [31], the logic

E4 is given the same type of semantics. It is worth studying it if

these results can be extended to the rest of the L-logics, given that

Routley-Meyer’s basic logic B is included in all of them.

(b) It would be interesting to extend the study in the implicative expan-

sions of MK3 verifying B to all the implicative expansions of MK3

verifying Anderson and Belnap’s First degree entailment logic FDE.
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