iriried applied
L sciences

Article
Collecting Vulnerable Source Code from
Open-Source Repositories for Dataset Generation

Razvan Raducu *, Gonzalo Esteban'®, Francisco J. Rodriguez Lera'> and Camino Fernandez

Grupo de Robética, Universidad de Leén. Avenida Jesuitas, s/n, 24007 Ledn, Spain; gestc@unileon.es (G.E.);
firodl@unileon.es (F]J.R.L.); cferll@unileon.es (C.E.)
* Correspondence: rrad@unileon.es

check for
Received:29 December 2019; Accepted: 7 February 2020; Published: 13 February 2020 updates

Abstract: Different Machine Learning techniques to detect software vulnerabilities have emerged
in scientific and industrial scenarios. Different actors in these scenarios aim to develop algorithms
for predicting security threats without requiring human intervention. However, these algorithms
require data-driven engines based on the processing of huge amounts of data, known as datasets.
This paper introduces the SonarCloud Vulnerable Code Prospector for C (SVCP4C). This tool aims
to collect vulnerable source code from open source repositories linked to SonarCloud, an online
tool that performs static analysis and tags the potentially vulnerable code. The tool provides a set
of tagged files suitable for extracting features and creating training datasets for Machine Learning
algorithms. This study presents a descriptive analysis of these files and overviews current status of C
vulnerabilities, specifically buffer overflow, in the reviewed public repositories.

Keywords: vulnerability; sonarcloud; bot; source code; repository; buffer overflow

1. Introduction

In November 1988 the Internet suffered what is publicly known as “the first successful buffer
overflow exploitation”. The exploit took advantage of the absence of buffer range-checking in one
of the functions implemented in the fingerd daemon [1,2]. Even though it is considered to be the
first exploited buffer overflow, different researchers had been working on buffer overflow for years.
For example, James P. Anderson, on behalf of the electronic systems division [3], documented this
topic in 1972.

In a simple search, the Common Vulnerabilities and Exposures (CVE) List presents more than
400 publicly known cybersecurity vulnerabilities associated with different types of buffer overflows
on different platforms for 2019. Buffer overflow is the most reported vulnerability with both high
and critical severity. The United States Industrial Control Systems Cyber Emergency Response Team
specified that two out of the four most reported vulnerabilities were generated by buffer overflows [4].
Besides, WatchGuard [5] clearly identifies the fact that out of all the attacks they registered, the top
four are all different occurrences of a buffer overflow.

Since Aleph One published the first step-by-step article about stack-based buffer overflow
exploitation [6] in 1996, its popularity kept rising. In 2000, buffer overflow was declared the
“vulnerability of the decade” [7]. Unsurprisingly, nowadays there is enough evidence to call it “the
most occurring vulnerability in the last quarter-century” [8]. In addition, several authors, such as
Cowan et al. [9] or Larochelle and Evans [10], proposed techniques to detect buffer overflow attacks in
an automatic manner.

There are many types of buffer overflow attacks, such as write attacks, data manipulation/
corruption attacks, and read attacks [11]. One of the possible reasons behind this plethora of overflows
is C being inherently unsafe. That is, it allows low-level data and memory manipulation but it lacks

Appl. Sci. 2020, 10, 1270; doi:10.3390/app10041270 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8938-755X
https://orcid.org/0000-0003-3645-164X
https://orcid.org/0000-0002-8400-7079
https://orcid.org/0000-0002-8705-4786
http://dx.doi.org/10.3390/app10041270
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/4/1270?type=check_update&version=2

Appl. Sci. 2020, 10, 1270 20f 14

the corresponding low-level security checks. One example of this are array and pointer references.
None of them are automatically bounds-checked, therefore relegating security to the programmer’s
skills. Besides, many of the standard C library functions such as gets(), scanf () or strcpy() are
vulnerable [12-14]. Although C is one unsafe programming language whose misuse could lead to
buffer overflows, it is not the only one. Buffer overflow vulnerabilities occur in languages that provide
no built-in protection against out of bounds memory accesses such as C++ [15]. This leaves us with
a single and clear conclusion: buffer overflow is still an ever-present vulnerability and it seriously
jeopardizes security.

Prevention and defensive mechanisms are much needed to deal with such a menace to security.
Techniques and tools, such as manual audition of code, static analyzers, compiler, and hardware
modifications or dynamic analyzers, have been proposed for years.

Manual audit of code to find vulnerabilities is a challenging, error-prone, and time-consuming
task. Besides, it relies on people trained enough to efficiently detect vulnerabilities, which is equally
demanding [16]. However, manually reviewing the code can be complemented with static analyzers,
which automatically identify potential security holes. One such static analyzer is SonarCloud (https:
/ /sonarcloud.io/about), a platform that helps developers write secure and clean code. It supports
many different languages, and it is free when the project under analysis is open source. There are
many other static analyzers, such as ITS4, a static C, and C++ source code scanner that splits the
code into lexical tokens for further application of pattern matching [17]. The MIT Lincoln Laboratory
exhaustively tested several static analyzers in order to measure their performance and accuracy
rates [18]. Their conclusion is that further work is needed toward static detection of buffer overflow.
Some static analysis tools can detect in-the-wild buffer overflows but are disappointing because false
alarm rates are high and discrimination is poor.

Another way of preventing buffer overflows is writing code in programming languages that
natively perform bounds-checking, such as Java or Pascal. These languages, however, lack low-level
manipulation. With these limitations in mind, researchers have developed “safe dialects of C” that
natively perform several security procedures such as controlled access to memory, strong object-typing,
and bounds-checking. Unfortunately, security operations like bounds-checking generate up to 100%
overhead [19]. Another approach consists of re-compiling the source code with security-aware
modified compilers. StackGuard is one example of such modifications. It prevents stack-based
buffer-overflow attacks by inserting canaries into the stack [9]. Nevertheless, when source code is not
available, the previously-mentioned techniques are useless and other approaches are needed.

Regarding these approaches, many dynamic analyzers—also known as runtime solutions— have
been proposed for preventing buffer overflows. One of these solutions is presented by Fraser, Badger &
Feldman [20]. In their work, the authors defined the Generic Software Wrappers, which are protected,
non-bypassable kernel-resident software extensions for security improvement without modification of
the original software. Goldberg, Wagner, & Brewer [21] proposed Janus, a process that observes and
mediates behavior by monitoring system calls. Naccio [22] is a system architecture that transforms
programs according to predefined software policies. Something very similar to Naccio was proposed
by Erlingsson and Schneider [23]. The authors called it SASI and it is a software fault-isolation
technique that enforces security policies by modifying object code for a target system before that
system is executed. In the same vein, Prasad and Chiueh [24] proposed a mechanism for rewriting
Windows Portable Executable (PE) binaries so that they include return address protection mechanisms
to preserve the integrity of the stack.

Static and dynamic techniques, enumerated above, are widely adopted for the most part by
software engineers and are added to most Software Development Cycles. However, the use of machine
learning (ML) techniques in cybersecurity has been continuously growing [25], specifically regarding
vulnerability discovery, which has experienced a huge progress [26-28].

https://sonarcloud.io/about
https://sonarcloud.io/about

Appl. Sci. 2020, 10, 1270 30f14

ML depends heavily on which data is provided to the algorithm and how it is represented.
Therefore, it is necessary to generate datasets containing snippets of real, vulnerable code that are
suitable for a given machine learning algorithm.

The need for datasets and their generation are recurrent topics related to several research fields.
Thus, there are published works in research areas as varied as radio signal processing [29], vehicular
technology [30,31], vehicle-to-vehicle and vehicle-to-infrastructure wireless communication [32],
computer vision [33] and pattern recognition [34], cyber threat intelligence [35], host intrusion
detection [36], network intrusion detection system [37,38], smart grids [39], and software
vulnerabilities [40-45], among many others.

This research aims to offer an algorithm able to gather information about buffer overflow issues
from a trustworthy source (such as SonarCloud) to construct datasets suitable for data science
researchers. Thus, this study focuses on how to proceed with data gathering using crawlers. A crawler
is a computer program capable of requesting and persisting data interactively and automatically [46,47].
Crawlers are especially useful for data-mining processes that involve a huge number of web requests
and also parsing the corresponding responses for further analysis. Current approaches point in that
direction. For instance, Daegeon et al.’s research [35] proposes a system for collecting threat data
gathered from security reports and publicly available malware repositories.

The rest of the work starts with these two research questions.

RQ1 Which mechanisms/tools can software projects use to detect/eliminate well known software
flaws that would lead to a vulnerability?

RQ2 Which methods are used to establish a dataset generator engine on source code containing buffer
overflows?

The first question has already been answered in this section. For those software projects that are
developed with programming languages with no inbuilt bounds checking, both static and dynamic
analyzers are their main tool. Nevertheless, these tools provide long reports to programming experts
who have to review them and decide which ones are real vulnerabilities and which ones are not.
This expertise is what could be replaced using machine learning techniques, but to do that, the first
step is to provide the community with datasets to work with.

From this point, the paper presents two main contributions: the first is the SVCP4C tool
(SonarCloud Vulnerable Code Prospector For C), a program written in Python for gathering source-code
repositories available in SonarCloud. It collects files linked to open source repositories that are written
in C and tagged as vulnerable by the static analyzer. The tool is publicly available.

The second contribution is the analysis of data gathered from public repositories. Initially the
authors present a statistical overview of data dumped by the SVCP4C tool and, additionally, they
perform a naive inspection of the main vulnerabilities detected in current projects released on public
repositories and loaded in SonarCloud.

This section introduced the common problems in generating datasets ready for ML algorithms.
The next section presents the SVCP4C tool and the pipeline implemented for gathering data from
public repositories. Section 2.2 treats the technical details associated with SVCP4C. Section 3 describes
the limitations encountered during the development process, along with some future enhancements.
In addition, the authors present a descriptive overview of the data gathered with the SVCP4C tool.
In the final section, the conclusions are put forward along with the summary of this research.

2. Methodology

SVCPA4C is part of a research project called TOOBAD4ML (TOO! to Buffer overflow Analysis
and Description FOR Machine Learning). To establish a method to generate datasets with no human
intervention from real code containing buffer overflows and answer research question 2, a proof of
concept is proposed in the form of a tool. This tool will automatically parse source code, extract
different characteristics from it, and export the data to some specific file format that is adequate

Appl. Sci. 2020, 10, 1270 40f 14

for an ML algorithm to predict possible buffer overflow vulnerabilities. Formally, it is a static
vulnerability-analysis tool that, based on Abstract Syntax Trees (AST) and Control Flow Graphs (CFG)
generated by Clang, models possible present buffer-overflow vulnerabilities via source code inspection.
Clang is an LLVM front-end for the C language family [48]. The modeling of the vulnerability is
inspired by previous works such as [26,28,49-51]. TOOBAD4ML's conceptual diagram is illustrated in
Figure 1. Further discussion of TOOBAD4ML is outside this paper’s scope.

SVCP4C

Surveys

TOOBAD4AML
—— Persistsl Parses |
[
.

: {e'}
Exports Reads Predicts

Figure 1. TOOBAD4ML's conceptual diagram.

As it was previously mentioned, there is a need to gather vulnerable code to train the ML
algorithm. It is essential to have balanced data to avoid unbalancing the algorithm, overfitting, or
many other problems that may arise and affect the prediction [52]. Collecting vulnerable source
code via SonarCloud helps us to obtain samples of real, vulnerable code. Furthermore, by setting
adequate query parameters we can also obtain non-vulnerable code. According to our prior research,
only Kratkiewicz and Lippmann [49] offer a vulnerable dataset that is publicly available. The main
drawback is that it is synthetic code, which may not be valid for training or testing ML algorithms.
Real code from real applications is needed to properly train and test the ML algorithm.

2.1. SonarCloud Web API

SVCP4C is made to communicate with and depend on SonarCloud’s REST APIL The API
documentation can be found on SonarCloud’s official site (https://sonarcloud.io/web_api). Working
with the APl is fairly simple: HTTP GET requests are made to a certain URL with certain parameters in
order to get a JSON-formatted response from SonarCloud. The APl is publicly available and free to use.
The API offers several services with which information about the queried source code can be obtained.
We will focus exclusively on the functionality used by SVCP4C. SonarCloud’s API has several main
services and other so-called internal services. Internal services are those that must be used at one’s
own risk since they are subject to change or removal without previous notification. SVCP4C uses only
three main services:

1. /api/components/search_project
2. /api/issues/search

3. /api/sources/raw

SonarCloud also offers a Graphical User Interface (GUI) version available via their website.
It is important to mention the GUI because it runs the same API. The website sends requests to the
webservices and parses the JSON response to draw and serve what the user is requesting. Figure 2

https://sonarcloud.io/web_api

Appl. Sci. 2020, 10, 1270 50f 14

shows an example of SonarCloud GUI version reporting a vulnerability because unsafe strcpy ()
function is in use. All SonarCloud responses are GUI-oriented. This means that when requesting issues
via API's REST methods, the response will locate the vulnerable function’s name rather than its full
signature, because only function’s name would have been drawn in the GUI. Not reporting the full
function’s signature is yet another challenge TOOBAD4ML must deal with in its parsing process since
a function’s arguments are crucial.

if(sizeof(argv[1]) < sizeof(buffer)){
AS}EA[A%)X(buffer, argv[1]);

Figure 2. SonarCloud detecting use of an insecure function.
2.2. Algorithm Pipeline

The overall workflow of SVCP4C is depicted in Figure 3. The workflow is split into five phases.

In the first phase, the crawler requests information about the source code identified as vulnerable.
For this phase, several sources for gathering BufferOverflow information have been analyzed. We
initially checked the Common Weakness Enumeration (CWE) [53] and Common Vulnerability
Enumeration. CWE is a community-developed list of common software security weaknesses.
It represents the starting point for weakness identification, mitigation, and prevention from a source
code point of view. CVE presents a list of entries for publicly known cybersecurity vulnerabilities.
CWE, which focuses on software approaches, identifies software vulnerabilities such as CWE-120:
Buffer Copy without Checking Size of Input; CWE-121: Stack-based Buffer Overflow; and CWE-122:
Heap-based Buffer Overflow.

On top of them, there are formal datasources such as the National Vulnerability Database
(NVD) [54] or informal such as CVEdetails.com [55]. Although these sources are enough for some
vulnerability analysis [56], they do not present a direct link to the source code that represents the buffer
overflow, and it is necessary to crawl in-depth, looking for public repositories (if possible) to reach the
vulnerability and parse it.

Given this scenario, we decided to focus our efforts on lists that provide information about
possible buffer overflow issues that could be raised in a project. Thus, we initially had two possibilities:
(1) massively download github repositories and analyze the source code locally and (2) analyze results
of current Software As A Service tools, that provide this information in the cloud.

We analyzed current cloud solutions offering this information. Although there are several options
like Datree.io, Codescene.io, or kiuwan.com, given the REST API limitations imposed by licenses and
types of accounts, and because we had experience with SonarQube, we decided to choose SonarCloud
for our research.

In the second phase, the crawlers collect the source code files identifies in the previous phase.
We take advantage of the possibility that SonarCloud offers of retrieving the issues of a given source
code file (previous phase) and download that particular file, simplifying the process of data collection.

In the third phase, SVCP4C appends the vulnerable lines as comments to the original source code
files. This way the files are easier to handle in further analysis.

In the forth phase, the commented source code is stored in the local file system.

In the last phase, the result of the whole process is released to the public. The data is publicly
available at the repository hosted by Github. The source code of SVCP4C is released as well.

Phase 1. Request Phase 2. Collect Phase 3. Manipulate Phase 4. Store Phase 5. Release
sonarcloud & sonarcloud & Adding vulnerable lines Smfli”% the resullirgjg Releasing the data set
as comments at the end marked source code to the community
HTTP REST API HTTP REST API CiheSoies codo fie file in the local file system

Figure 3. SonarCloud detecting use of an insecure function.

Appl. Sci. 2020, 10, 1270 60f 14

The pipeline of our algorithm is illustrated in Listing 1. Some parameters that appear in the
algorithm require further contextualization:

e p. This parameter represents page number. SonarCloud responds with at most 500 results per
page. If one query generates more than 500 results, p is pre-incremented and the web service is
requested again.

e ps. This parameter represents page size. SonarCloud allows users to specify how many results
they want to see per page, in our case per HTTP response. ps is a constant equal to 500 as it is
the maximum page size allowed by SonarCloud and we want to retrieve as much information as
possible.

o remainingResults. This parameter represents how many results are left. That is, if the query
generated more than 500 results, remainingResults is checked to request again.

SVCP4C performs several HTTP requests to SonarCloud’s REST API. These requests are grouped
into three phases: phase 1, the engine requests the ids of those projects that SonarCloud tagged to
contain issues or vulnerabilities; phase 2, the engine requests information about the files that causes
the projects to be tagged; and phase 3, retrieves the unique identifier of each source code file and
downloads it.

During the first phase, performed in step 7 of Listing 1, the algorithm retrieves the ids of the
projects that meet our filtering conditions. The filtering is performed by SonarCloud’s API via URL
parameters. The requested web service is /api/components/search_projects and the parameters are:

e filter. security_rating>=2 and languages=c
e p. p=i (ith-page)
e ps. ps=500 (current page size)

As shown in Listing 1, p is the number of page, ps is page size, and security_rating > 2
implies a B security rating according to the analysis performed by SonarCloud. Different SonarCloud’s
metrics and ratings can be found in the official documentation [57]. B security rating means “at least
one Minor Vulnerability”. A security rating corresponds to non-vulnerable code and is represented
via security_rating=1 in the HTTP request. This approach must be used in order to obtain the
non-vulnerable source code according to SonarCloud. The resultant queried URL is:
https:/ /sonarcloud.io/api/components/search_projects?ps=500&p=1&filter=security_rating%3E%
3D2+and+languages%3Dc

Afterwards, phase 2 performs the HTTP request in order to obtain the unique identifier of every
vulnerable source file within each previously queried project. It is triggered at step 20 of Listing 1.
The requested web service is /api/issues/search, and the parameters are as follows.

e projects. projects=1,2,3 (a list of all project ids previously queried, comma separated).
e types. types=VULNERABILITY (SonarCloud issue category).

e languages. languages=c (a list of program languages, comma separated).

e p.p=i (ith-page).

e ps. ps=500 (current page size).

The types-parameter is used to specify which issue we are looking for, i.e., returns the unique
identifier of source files affected only by the specified type of issue. There are four types of issues
that SonarCloud detects: CODE_SMELL, BUG, VULNERABILITY, or SECURITY_HOTSPOT [58]. The remaining
parameters have already been introduced.

Finally, phase 3, in step 36 of Listing 1, defines SVCP4C’s last query. For each of the unique source
file ids obtained in the previous phase, SonarCloud is requested to provide the corresponding source
code. The requested web service is /api/sources/raw and it is necessary to employ the key parameter
that is the unique identifier of the file whose code is about to be retrieved.

https://sonarcloud.io/api/components/search_projects?ps=500&p=1&filter=security_rating%3E%3D2+and+languages%3Dc
https://sonarcloud.io/api/components/search_projects?ps=500&p=1&filter=security_rating%3E%3D2+and+languages%3Dc

Appl. Sci. 2020, 10, 1270 7of 14

Listing 1. SVCP4C’s pseudocode.

1|CHECK user arguments AND options;
IF (path from step 1 doesn’t exist) THEN

3 Create path;
OTHERWISE
5 Abort with error;

SET p := 1 AND remainingResults := 0;

7|PROCEDURE. Request project ids():

HITP GET request (url, params);

9 RETRIEVE all HITP response payload from step 8 as JSON;
UPDATE remainingResults AND JUMP to step 12;

11| END_PROCEDURE;

IF (remainingResults > ps) THEN

13 IF (p == 20) THEN

JUMP to step 19;

15 PRE-INCREMENT p;

JUMP to step 7;

17| OTHERWISE

JUMP to step 19;

19|OBTAIN all project ids from step 9 AND set p:=1 AND remainingResults:=0;
PROCEDURE. Request files info ():

21 HTTP GET request (url, params);

RETRIEVE all HTTP response payload from step 21 as JSON;
23 WRITE results of step 22 to file;

JUMP to step 34;
25 UPDATE remainingResults AND JUMP to step 27;

END_PROCEDURE;

27| IF (remaining query results > ps) THEN

IF (p == 20) THEN

29 JUMP to step 50;

PRE-INCREMENT p;

31 JUMP to step 20;

OTHERWISE

33 JUMP to step 50;

OPEN file from step 23 AND parse its JSON formatted content;
35|FOR each (issue (key,value) from results of step 34) DO:
RETRIEVE the value of component key

37 HTIP GET request (url,params)
IF (response from step 37 contains errors) THEN
39 PRINT_MESSAGE: the file was skipped because there was an error;
OTHERWISE
41 GO TO step 42;
OBTAIN name of file to be persisted based upon the naming policy;
43 IF (file with name from step 42 does not exist) THEN

CREATE file AND append at the end the separator comment line;
45 OTHERWISE

JUMP to step 47;

47 APPEND the vulnerable line from step 35;

JUMP to step 25;

49| END_FOREACH;

END_PROGRAM.

After the source code is retrieved, for each vulnerability, a line is appended to the original source
file. The format of each appended line is “///s1,so0;el,e0”, where sl is the starting line, so is the
starting offset, el is the ending line, and eo is the ending offset.

Appl. Sci. 2020, 10, 1270 8 of 14

It is necessary to emphasize that, at this stage, SVCP4C algorithm has a hard link to SonarCloud’s
Elastic Search indexing engine; as a result, its execution may yield different results depending on
SonarCloud’s update policies.

This section has proposed a method to generate datasets from open source code with no human
intervention. The method has been applied to create a tool that using SonarCloud to detect buffer
overflows, produces datasets with annotated information about the vulnerabilities and ready to be
used by machine learning techniques.

3. Discussion

The present section details the different datasets obtained using SCVP4C, the restrictions of
SonarCloud’s API and thus limitations of SVCP4C, and SVCP4C enhancements.

3.1. Data Analysis

By executing SVCP4C several datasets have been gathered. These datasets can be inspected
and downloaded from a publicly available repository (https://github.com/uleroboticsgroup/
SVCP4CDataset). The average size of each dataset is 101,905.6 kilobytes with a standard deviation of
1373 kilobytes (when compressed, 23,576.8 kilobytes is the average with a standard deviation of 338.75
when tared and compressed in gz).

Data gathered may be used to evaluate some characteristics of current software solutions. On the
one hand, a quick overview demonstrates that most vulnerabilities present in the downloaded source
code files correspond to Standard C library functions: sprintf (46.84%); strcpy (36.38%); strcat
(15.27%); strlen (1.3%); and, to a lesser extent, (0.2%) functions such as scanf, snprintf, strchr, and
fscanf. On the other hand, the issues obtained from SonarCloud present the histogram illustrated in
Figure 4. The histogram distribution reflects the issues range, bounded from 1 to 298, with a mean of
4.82 errors (standard deviation of 11.89) but with a mode value equal to 1 (it is the most repeated value).

100_0{}%‘& T

90.00%
80.00%
B Other
70.00% (<1%%)
H Strien
60.00% (__1%)
Strcat
50.00% (15%)
40.00% " Strepy
) (3696)
30.00% W Sprintf
(46%)
20.00%
10.00%
0.00%

Figure 4. Cont.

https://github.com/uleroboticsgroup/SVCP4CDataset
https://github.com/uleroboticsgroup/SVCP4CDataset

Appl. Sci. 2020, 10, 1270 90f 14

Min: 1
Mean: 4.82 Total elements: 10331
3500 1 Mode: 1 Std_dev: 11.89
Median: 2.00 Variance: 141.47
3000 A
2500 A

Frequency
N
o
o
o

1500 A

1000 +

500
0 -Jmm”" . : : . Max298

0 50 100 150 200 250 300
Issues

Figure 4. Reports of most extended overflows and analysis of issues per file.

3.2. Constraints Related to SonarCloud’s Web API

One of the most important restrictions to face when querying SonarCloud’s web API is the one
commonly known as the 10,000 issue limit. This constraint implies that every single request made to
/api/issues/search will be responded to only with the first 10,000 results. As SonarCloud’s prior,
and now deprecated, documentation page states: “If the number of issues is greater than 10,000,
only the first 10,000 ones are returned by the web service” [59]. Even though the quoted sentence
comes from older documentation, the limit still applies nowadays, despite being undocumented.
There are many questions in different forums, from users just like us, asking about this very same limit.
The response is always the same: there is no way around it.

Another drawback SonarCloud presents is the lack of vulnerability-type filtering. That is,
the ability to retrieve only source code files that are tagged as vulnerable to a given vulnerability
(stack-based buffer overflow, format string, integer overflow...). Although filtering by issue type
(VULNERABILITY, HOTSPOT...) is possible, filtering based on vulnerability type is a much needed
feature to gather specific source code. From TOOBAD4ML's perspective, such a feature would ease
the parsing job. Currently, the datasets gathered by SVCP4C include all kinds of vulnerabilities, not
only buffer overflow.

Up to this point during development, we faced some problems whose solution(s) can be directly
seen in Listing 1. For example, we found out that we cannot just append every result of the queries
asking for vulnerabilities into one single file because the result is a mal-formatted JSON. This is because
SonarCloud sends JSON objects as responses and, as such, these include the opening and closing
square brackets. A JSON file, to be well-formatted, must include a single JSON object, that is, a single
pair of square opening and closing brackets. The solution we adopted is requesting the first 500 results
(page 1) and write them to a file. Immediately after, we parse the file and request the corresponding
source code. When we get it, we request the next 500 (page 2) vulnerabilities, write (not append) them
to a file and, once again, request the source code. This loop goes on until we reach the 10,000-results
limit imposed by SonarCloud. This is reflected in steps 23 and 34 of Listing 1.

Another characteristic behavior of SonarCloud’s web API is that each vulnerable code line
within the same source code file is treated as a different issue. That is, a source file with 13 different
vulnerabilities is translated into 13 different issues when querying SonarCloud. At the moment of
retrieving the corresponding source file, the same file would be downloaded 13 times, whereas only
the tagged line would be different. The solution implemented in SVCP4C is to compile all vulnerable
lines that refer to the same file, download the file, and append the lines as a comment at the end of the
file (step 47 in Listing 1).

Appl. Sci. 2020, 10, 1270 10 of 14

Finally, additional checks are required when requesting source files because SonarCloud references
missing files. That is, it maintains the list of issues even though the file those issues arise from does
not exist anymore. When attempting to download a missing source file the result is a file whose sole
content is a JSON list called “errors” containing “msg” keys. The solution implemented in SVCP4C is
rather straightforward, the content that is about to be written out is first inspected and, if it contains
any “errors” JSON list, we skip it. Step 39 of Listing 1 shows the check.

3.3. Future Enhancements

The performance of SVCP4C could be improved in several aspects. First, SVCP4C does not
parallelize HTTP requests. There are several existing solutions for parallelizing HTTP requests in
Python, and implementing one of them is crucial to reduce download time. However, with parallel
requests several difficulties may arise, for example, with parallel requests come parallel responses;
therefore, persistence becomes a critical operation which shall involve synchronization mechanisms.
Moreover, asynchronous requests imply receiving responses in no particular order.

Regarding the 10,000 query result limit, the restriction itself cannot be eliminated because that is
the way SonarCloud’s web APIis implemented. We could, however, surpass it. To do so, and assuming
no project has more than 10,000 issues, the issues must be requested on a per-project basis. As of right
now, SVCPA4C retrieves all project ids that meet our filtering criteria and requests the issues of all the
ids altogether. This change would affect the performance as SVCP4C would go from a single HTTP
GET request specifying N project ids to an HTTP GET request per project id (N HTTP GET requests).

Complementing the detection with dictionaries of vulnerable functions could improve the
accuracy ratio when tagging a specific code line as vulnerable. This improvement would greatly
reduce the number of vulnerabilities unreported by SonarCloud. To illustrate a case where SonarCloud
fails to detect the vulnerability, imagine a buffer 16 bytes long. If the programmer uses the scanf
function to fill it up, SonarCloud successfully detects the possible buffer overflow by reporting the
use of unsafe functions. As a fix, SonarCloud wisely recommends the use of a width specifier for the
corresponding placeholder. It is also stated in the Common Weakness Enumeration [60]. However,
as soon as the developer places the width specifier, SonarCloud assumes it is a correct one. We consider
this assumption both critical and harmful as a self-induced buffer overflow may arise. The programmer
could use a width specifier bigger than the actual buffer to which the data will be copied to. Assuming
the previous 16-byt buffer, a program could fill it with up to 30 bytes of data if the programmer used
the "%30s" width specifier for the function scanf. In this case, the difference in size is evident but
a more subtle off-by-one buffer overflow could remain undetected. With the help of dictionaries,
functions could be specified in order to flag them and always check their parameters.

As SonarCloud’s responses consist of starting and ending line and starting and ending offset
(column) of the vulnerability, highlighting the piece of code if the request is made using GUI, future
research should consider expanding this information. From TOOBAD4ML's perspective, it is much
more useful to retrieve the start and end positions of full vulnerable function signature instead of
simply its invocation keyword (Figure 2) or a single parameter . A function may have a variable number
of arguments or spread across multiple lines, among others, which complicates its static analysis.
Knowing beforehand its starting and finishing positions eases its parsing and thus its analysis.

4. Conclusions

Buffer overflow has been one of the most investigated vulnerabilities for decades, and the
prevention and defense mechanisms against it is a cornerstone for any cybersecurity researcher.
Auditing code, static analyzers, and ML are among the techniques used today to counteract buffer
overflows. Furthermore, academic literature shows that many efforts are being carried out towards the
detection of software vulnerabilities with ML.

Detecting and eliminating vulnerabilities in software projects is a hard task developed by
programming experts with the help of static and dynamic code analyzers. As long as that is an activity

Appl. Sci. 2020, 10, 1270 11 of 14

that involves human expertise, machine learning could be used to improve the process. The first step
for machine learning to be applied is to provide the community with annotated datasets. This work
has proposed a method to generate datasets from open source code with no human intervention.
The technical pipeline of a crawler-like tool called SonarCloud Vulnerable Code Prospector For C
(SVCP4C) has been described. The tool tags those lines identified by SonarCloud as vulnerable.

In addition, this study has reviewed the findings generated by the use of SVCP4C for enumerating
existing Buffer overflow vulnerabilities in more than 10k source code files.

SVCPA4C is a valuable tool that simplifies the process of dataset generation for its use by data
science researchers. This tool gathers data from open-source repositories available through SonarCloud,
which already defines vulnerable code. This is significantly important in light of the increase of Machine
Learning approaches for detecting buffer overflows in a software solution.

SVCP4C source code is released in the group’s GitHub repository (https://github.com/
uleroboticsgroup/SVCP4C) along with the datasets generated in this study (https://github.com/
uleroboticsgroup /SVCP4CDataset). The datasets are also published on SciCrunch, a place for sharing
access to scientific resources with other researchers and enhancing their visibility, under resource ID:
RRID:SCR_018011.

Author Contributions: Conceptualization, R.R.; methodology, R.R.; validation, R.R., G.E., E].R.L., and C.E;
investigation, R.R. and G.E.; data curation, R.R. and G.E.; writing—original draft preparation, RR., G.E., F].R.L.,
and C.F. supervision, C.F. and G.E.; project administration, C.F. and G.E.; funding acquisition, C.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research has been partially funded by the “Universidad de Leén-Instituto Nacional de
Ciberseguridad (INCIBE) Convention Framework about «Detection of new threats and unknown patterns»”
(Spain), by the “Consejeria de Educacion de la Junta de Castilla y Le6n” (Spain) under grant LE028P17 and by the
“Ministerio de Ciencia, Innovacién y Universidades” (Spain) under grant RTI2018-100683-B-100.

Acknowledgments: This work has been partially funded by the Addendum no. 4 to the Universidad de
Leén-Instituto Nacional de Ciberseguridad (INCIBE) Convention Framework on the “Detection of new threats
and unknown patterns”, by the Consejeria de Educacién de la Junta de Castilla y Leén through the Project
LE028P17 on the “Development of reusable software components based on machine learning for the cybersecurity
of autonomous robots” and by the Ministerio de Ciencia, Innovacién y Universidades through the Project
RTI2018-100683-B-100.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning

References

1. Eichin, M.; Rochlis, J. With microscope and tweezers: an analysis of the Internet virus of November 1988.
In Proceedings of the IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 11-14 May 2003;
pp- 326-343.

2. Spafford, E.H. The internet worm program: an analysis. ACM SIGCOMM Comput. Commun. Rev. 2004,
19, 17-57. [CrossRef]

3. Anderson,].P. Computer Security Technology Planning Study; Technical Report, ESD-TR-73-51; ESD: Bedford,
MA, USA, October 1972.

4. Industrial Control Systems Cyber Emergency Response Team. ICS-CERT Annual Vulnerability Coordination
Report; Technical Report; NCCIC: Washington, DC, USA, 2016.

5. Internet Security Report; Technical Report; WatchGuard: Seattle, WA, USA, 2017.

6. One, A. Smashing the stack for fun and profit. Phrack Mag. 1996, 7, 14-16.

7. Cowan, C.; Wagle, P; Pu, C.; Beattie, S.; Walpole, J. Buffer overflows: Attacks and defenses for the
vulnerability of the decade. In Proceedings of the DARPA Information Survivability Conference and
Exposition, DISCEX'00, Hilton Head, SC, USA, 25-27 January 2000; pp. 119-129.

https://github.com/uleroboticsgroup/SVCP4C
https://github.com/uleroboticsgroup/SVCP4C
https://github.com/uleroboticsgroup/SVCP4CDataset
https://github.com/uleroboticsgroup/SVCP4CDataset
http://dx.doi.org/10.1145/66093.66095

Appl. Sci. 2020, 10, 1270 12 of 14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Younan, Y. 25 Years of Vulnerabilities: 1988—2012; Technical Report; Sourcefire Vulnerability Research Team:
Columbia, MA, USA, 2013.

Cowan, C.; Pu, C.; Maier, D.; Walpole, J.; Bakke, P.; Beattie, S.; Grier, A.; Wagle, P.; Zhang, Q.; Hinton, H.
Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the
USENIX Security Symposium, San Antonio, TX, USA, 26-29 January 1998; Volume 98, pp. 63-78.
Larochelle, D.; Evans, D. Statically detecting likely buffer overflow vulnerabilities. In Proceedings of the
10th USENIX Security Symposium, Washington, DC, USA, 13-17 August 2001.

Tuck, N.; Calder, B.; Varghese, G. Hardware and binary modification support for code pointer protection
from buffer overflow. In Proceedings of the 37th Annual International Symposium on Microarchitecture,
MICRO, Portland, OR, USA, 4-8 December 2004; pp. 209-220.

Wagner, D.; Foster,].S.; Brewer, E.A.; Aiken, A. A First Step Towards Automated Detection of Buffer Overrun
Vulnerabilities. In Proceedings of the Network and Distributed System Security Symposium, San Diego,
CA,USA, 3-4 February 2000; pp. 3-17.

Seacord, R.C. Secure Coding in C and C++; Pearson Education: Upper Saddle River, NJ, USA, 2005.

JTC 1/SC 22/WG 14. ISO/IEC 9899:1999: Programming Languages—C; Technical Report; International
Organization for Standards: Geneva, Switzerland, 1999.

Berger, E.D.; Zorn, B.G. DieHard: probabilistic memory safety for unsafe languages. ACM Sigplan Not. 2006,
41, 158-168. [CrossRef]

Cowan, C. Software security for open-source systems. IEEE Secur. Priv. 2003, 1, 38—45. [CrossRef]

Viega, J.; Bloch, J.T.; Kohno, Y.; Mcgraw, G. ITS4: A static vulnerability scanner for C and C++ code.
In Proceedings of the 16th Annual Computer Security Applications Conference (ACSAC’00), New Orleans,
LA, USA, 11-15 December 2000; pp. 257-267.

Zitser, M.; Lippmann, R.; Leek, T. Testing Static Analysis Tools using Exploitable Buffer Overflows from
Open Source Code. In Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, Newport Beach, CA, USA, 31 October-6 November 2005; pp. 97-106.

Jim, T.; Morrisett, J.G.; Grossman, D.; Hicks, M.W.; Cheney, J.; Wang, Y. Cyclone: A Safe Dialect of C.
In Proceedings of the USENIX Annual Technical Conference, General Track, Monterey, CA, USA,10-15 June
2002; pp. 275-288.

Fraser, T.; Badger, L.; Feldman, M. Hardening COTS software with generic software wrappers. In Proceedings
of the DARPA Information Survivability Conference and Exposition, DISCEX’00, Hilton Head, SC, USA,
25-27 January 2000; Volume 2, pp. 323-337.

Goldberg, I.; Wagner, D.; Brewer, E.A. A Secure Environment for Untrusted Helper Applications Con ning
the Wily Hacker 2 Motivation 1 Introduction. In Proceedings of the 6th Conference on USENIX Security
Symposium, Focusing on Applications of Cryptography, San Jose, CA, USA, 22-25 July 1996.

Evans, D.; Twyman, A. Flexible policy-directed code safety. In Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, USA, 14 May 1999; pp. 32—45.

Erlingsson, U.; Schneider, FB. SASI enforcement of security policies. In Proceedings of the DARPA
Information Survivability Conference and Exposition, DISCEX’00, Hilton Head, SC, USA, 25-27 January
2000; pp. 287-295.

Prasad, M.; Chiueh, T.C. A binary rewriting defense against stack based buffer overflow attacks.
In Proceedings of the USENIX Annual Technical Conference, General Track, San Antonio, TX, USA, 9-14
June 2003; pp. 211-224.

Fraley, J.B.; Cannady, J. The promise of machine learning in cybersecurity. In Proceedings of the IEEE
SoutheastCon 2017, Charlotte, NC, USA, 30 March-2 April 2017; pp. 1-6.

Durdes, J.; Madeira, H. A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities
in Executable Software Without Source-Code. In Lecture Notes in Computer Science (Dependable Computing);
Springer: Berlin/Heidelberg, Germany, 25 October 2005; Volume 3747, pp. 20-34.

Grieco, G.; Dinaburg, A. Toward Smarter Vulnerability Discovery Using Machine Learning. In Proceedings
of the 11th ACM Workshop on Artificial Intelligence and Security, Nanjing, China, 15 January 2018; pp.
48-56.

Meng, Q.; Feng, C.; Zhang, B.; Tang, C. Assisting in Auditing of Buffer Overflow Vulnerabilities via Machine
Learning. Math. Probl. Eng. 2017, 2017, 1-13. [CrossRef]

http://dx.doi.org/10.1145/1133255.1134000
http://dx.doi.org/10.1109/MSECP.2003.1176994
http://dx.doi.org/10.1155/2017/5452396

Appl. Sci. 2020, 10, 1270 13 of 14

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

O’shea, T.J.; West, N. Radio machine learning dataset generation with gnu radio. In Proceedings of the GNU
Radio Conference, Boulder, CO, USA, 12-16 September 2016; Volume 1.

Kong, X.; Xia, F; Ning, Z.; Rahim, A.; Cai, Y,; Gao, Z.; Ma,]. Mobility dataset generation for vehicular social
networks based on floating car data. IEEE Trans. Veh. Technol. 2018, 67, 3874-3886. [CrossRef]

Uppoor, S.; Trullols-Cruces, O.; Fiore, M.; Barcelo-Ordinas,]. M. Generation and analysis of a large-scale
urban vehicular mobility dataset. IEEE Trans. Mob. Comput. 2013, 1061-1075. [CrossRef]

Belenko, V.; Krundyshev, V.; Kalinin, M. Synthetic datasets generation for intrusion detection in VANET.
In Proceedings of the 11th International Conference on Security of Information and Networks, Cardiff , UK,
10-12 September 2018; pp. 1-6.

Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16-20 June 2019; pp. 4401-4410.

Rachkovskij, D.A.; Kussul, EM. DataGen: a generator of datasets for evaluation of classification algorithms.
Pattern Recognit. Lett. 1998, 19, 537-544. [CrossRef]

Kim, D.; Kim, HK. Automated Dataset Generation System for Collaborative Research of Cyber Threat
Analysis. Secur. Commun. Netw. 2019. [CrossRef]

Pendleton, M.; Xu, S. A dataset generator for next generation system call host intrusion detection systems. In
Proceedings of the MILCOM 2017—2017 IEEE Military Communications Conference (MILCOM), Baltimore,
MA, USA, 23-25 October 2017; pp. 231-236.

Moustafa, N.; Slay,]. UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In Proceedings of the IEEE 2015 Military Communications and Information
Systems Conference (MilCIS), Canberra, Australia, 10-12 November 2015; pp. 1-6.

Gogoi, P.,; Bhuyan, M.H.; Bhattacharyya, D.; Kalita,].K. Packet and flow based network intrusion dataset.
In International Conference on Contemporary Computing; Springer: Cham, Switzerland, 6 August 2012; pp.
322-334.

Biswas, PP; Tan, H.C.; Zhu, Q.; Li, Y.; Mashima, D.; Chen, B. A Synthesized Dataset for Cybersecurity Study
of IEC 61850 based Substation. In Proceedings of the 2019 IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21-23 October,
2019; pp- 1-7.

Grieco, G.; Grinblat, G.L.; Uzal, L.; Rawat, S.; Feist, J.; Mounier, L. Toward large-scale vulnerability discovery
using machine learning. In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, New Orleans, LA, USA, 9-11 March 2016; pp. 85-96.

Alves, H.; Fonseca, B.; Antunes, N. Software metrics and security vulnerabilities: dataset and exploratory
study. In Proceedings of the IEEE 2016 12th European Dependable Computing Conference (EDCC),
Gothenburg, Sweden, 5-9 September 2016; pp. 37—44.

Shar, L.K.; Briand, L.C.; Tan, H.B.K. Web application vulnerability prediction using hybrid program analysis
and machine learning. IEEE Trans. Dependable Secur. Comput. 2014, 12, 688-707. [CrossRef]

Allodi, L.; Massacci, F. A preliminary analysis of vulnerability scores for attacks in wild: The ekits and
sym datasets. In Proceedings of the 2012 ACM Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, Raleigh North, CA, USA, 15 October 2012; pp. 17-24.

Ghaffarian, S.M.; Shahriari, H.R. Software vulnerability analysis and discovery using machine-learning and
data-mining techniques: A survey. ACM Comput. Surv. (CSUR) 2017, 50, 1-36. [CrossRef]

Alves, H.; Fonseca, B.; Antunes, N. Experimenting machine learning techniques to predict vulnerabilities.
In Proceedings of the IEEE 2016 Seventh Latin-American Symposium on Dependable Computing (LADC),
Cali, CO, USA, 19-21 October 2016; pp. 151-156.

Edwards, J.; McCurley, K.; Tomlin, J. An adaptive model for optimizing performance of an incremental web
crawler. In Proceedings of the International World Wide Web Conference, Chicago, IL, USA, 1 April 2001.
[CrossRef]

Thelwall, M. A web crawler design for data mining. J. Inf. Sci. 2001, 27, 319-325. [CrossRef]

Clang C Language Family Frontend for LLVM. 2019. Available online: https://clang.llvm.org (accessed on
2 December 2019).

http://dx.doi.org/10.1109/TVT.2017.2788441
http://dx.doi.org/10.1109/TMC.2013.27
http://dx.doi.org/10.1016/S0167-8655(98)00053-1
http://dx.doi.org/10.1155/2019/6268476
http://dx.doi.org/10.1109/TDSC.2014.2373377
http://dx.doi.org/10.1145/3092566
http://dx.doi.org/10.1145/371920.371960
http://dx.doi.org/10.1177/016555150102700503
https://clang.llvm.org

Appl. Sci. 2020, 10, 1270 14 of 14

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

Kratkiewicz, K.; Lippmann, R. Using a Diagnostic Corpus of C Programs to Evaluate Buffer Overflow
Detection by Static Analysis Tools. In Proceedings of the Workshop on the Evaluation of Software Defect
Detection Tools, Chicago, IL, USA, 12 June 2005; p. 19.

Padmanabhuni, B.M.; Tan, H.B.K. Predicting Buffer Overflow Vulnerabilities through Mining Light-Weight
Static Code Attributes. In Proceedings of the 2014 IEEE International Symposium on Software Reliability
Engineering Workshops, Naples, Italy, 3-6 November 2014; pp. 317-322.

Bishop, M.; Engle, S.; Howard, D.; Whalen, S. A Taxonomy of Buffer Overflow Characteristics. IEEE Trans.
Dependable Secur. Comput. 2012, 9, 305-317. [CrossRef]

Batista, G.E.A.P.A.; Prati, R.C.; Monard, M.C. A Study of the Behavior of Several Methods for Balancing
Machine Learning Training Data. ACM SIGKDD Explor. Newsl. 2004, 6, 20-29. [CrossRef]

Martin, B.; Brown, M.; Paller, A.; Kirby, D.; Christey, S. CWE. SANS Top 2011, 25.

Booth, H.; Rike, D.; Witte, G. The National Vulnerability Database (NVD): Overview; Technical Report; National
Institute of Standards and Technology: Gaithersburg, MD, USA, 2013.

Ozkan, S. Cove Details; 2017. Available online: https:/ /www.cvedetails.com/ (accessed on 2 December 2019).
Zhang, S.; Caragea, D.; Ou, X. An empirical study on using the national vulnerability database to predict
software vulnerabilities. In International Conference on Database and Expert Systems Applications; Springer:
Heidelberg/Berlin, Germany, 29 August 2011; pp. 217-231.

SonarSource. Metric Definitions | SonarCloud Docs. 2019. Available online: https://sonarcloud.io/
documentation/user-guide /metric-definitions/ (accessed on 2 December 2019).

SonarSource. SonarCloud Web API—/api/issues. 2019. Available online: https://sonarcloud.io/web_api/
api/issues (accessed on 2 December 2019).

SonarSource. SonarQube Docs—/api/issues. 2014. Available online: https://docs.sonarqube.org/pages/
viewpage.action?pageld=239218 (accessed on 2 December 2019).

CWE. CWE—CWE-120: Buffer Copy without Checking Size of Input (“Classic Buffer Overflow”) (3.2). 2019.
Available online: https://cwe.mitre.org/data/definitions /120 (accessed on 2 December 2019).

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TDSC.2012.10
http://dx.doi.org/10.1145/1007730.1007735
https://www.cvedetails.com/
https://sonarcloud.io/documentation/user-guide/metric-definitions/
https://sonarcloud.io/documentation/user-guide/metric-definitions/
https://sonarcloud.io/web_api/api/issues
https://sonarcloud.io/web_api/api/issues
https://docs.sonarqube.org/pages/viewpage.action?pageId=239218
https://docs.sonarqube.org/pages/viewpage.action?pageId=239218
https://cwe.mitre.org/data/definitions/120
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	SonarCloud Web API
	Algorithm Pipeline

	Discussion
	Data Analysis
	Constraints Related to SonarCloud's Web API
	Future Enhancements

	Conclusions
	References

