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Abstract

A new methodological approach to solve the problem of integrating
different behaviors in autonomous robots is developed in this paper. It
relies on the succesful integration of several fuzzy relational algorithms
[Zadeh 73], each one specialized in a different task. The whole system is
based on a continiously act on sensor data (reactive) approach. The prob-
lem is how to get an intelligent behavior from low level reactive controllers.
Our assumption is that we can obtain adecuate response to unkown ex-
ternal situations from the fusion of basic actions.

In this way, we present a new architecture for autonomous robots
consisting on two levels. The firs one are the basic actions, also called
instincs, that are implemented like fuzzy logic controllers specifically de-
signed to respond to a particular stimuli. For example, avoiding obstacles
or reaching a position. The fusion process is a modified fuzzy version of
the subsumption architecture [Brooks 86]. The second level is the fusion
module, which has been developed in several steps. The first one is a sim-
ple system based on crisp intervals that choose one of the behaviors. The
second one is a linear combinator system, based on the previous one, but
considering the similarity of the outputs to fusion some behaviors when it
is possible. The last one is based on a fuzzy decision module that is able
to fusion the outputs in a natural way.

This new architecture has been tuned on a simulator and then tested
on a real robot named Khepera. In the simulator it is possible to prove
each behavior separately, taking into account only the corresponding stim-
ulus to a behavior. In the real world the architecture ability to solve new
situation is tested trough the fusion of the output of the lonely behaviors.
At the end of the paper the result of each architecture in the simulator
and in the real world is presented.
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1 Introduction

The problem of building autonomous mobile robots able to carry out useful tasks
in real world has been faced since the beginning of the Artificial Intelligence Field
However, aproaches based on the classical paradigms (abstraction, planning,
heuristic search, etc.) failed and the sub-field of intelligent robotics remained in
a theorical stage till the end of the 80’s.

In these last years there has been a change, most autonomous robots are
now been built under a new paradigm: reaction, which stands by intelligence
resulting of the interaction with the environment. In this way, autonomous
robot intelligence will be a result of its interaction with the real world through
its sensors and actuators.

So, our architecture is based on two main ideas, the first one is that au-
tonomous robots must rely its base-activities on a reactive aproach. This means
that the behavior of the robot will be the result of the not optimal fusion of
diferent “behaviors” designed to continuosly act on real-time sensory data. The
second one is that it has been demostrated that fuzzy logic is a robust envi-
roment for the development of highly efficient controllers. So, the “behaviors”
refered on the previous paragraph may be constructed as groups of fuzzy rules.

The organization of the rest of this paper is as follows. Section II presents
the motivation of this research and a historical review of the problems and
solutions in this field. Section III presents the control of a simple system by a
Fuzzy Logic Control (FLC) and the basic behaviors represented by particular
FLCs. In Section IV we propose a new general methodology for the integration
of the basic behaviors presented in the previous section implemented as FLC,
although it is possible that these behaviors were built by another kind of system
such as neural networks, finite state machines, etc. Section V is devoted to
show the potentiality of our general methodology presenting an example of a
particular application consisting of two behaviors to the control of a real robot.
This section also explains all the particularities of each behavior and the various
fusion systems tested. Real experiments carried out are also examined in this
section proving the validity and evaluating the performance of this behavior-
based architecture. Section VI contains some concluding remarks.

2 Reactive robots

Since the first days of the knowledge field named Artificial Intelligence there
has been a temptation to imitate human way of thinking, more precisely the
way we think our mind works: It has been suppossed that our mind builds an
abstract model of the real world, planifies in this abstract world and decides
which actions should carry out. This idea has led Artificial Intelligence to a
top-down design, which implies the necesity of knowledge representation and
reduces intelligence to a problem of heuristic search in the abstract world.
Artificial Intelligence influence on the robotics field caused intelligent robots
were built following these ideas. So, robots were designed to construct an elab-



orated world model, to make its plans on this abstract world and to execute its
plans on the real world. One of the best know robots built according to this
ideas is Shakey the robot [Nilsson 84].

The main problem of this kind of systems was its slowness, they spent most
of its processing time creating world models and much less time in planning.
The solution to this slowness was to use highly structured worlds in which robots
could easily build its world models. So, robots built following this principle were
hardly able to move in carefully prepared laboratories, but if they were tested
on the real world, they failed.

Since the late 80’s a growing number of people have started to worry about
robots could work on the real world. These robots would have to face problems
like uncertain sensors, unpredicted environment, changing world, etc. These
requirements made people adopt a reactive approach, meaning that there is no
need for abstraction and planning [Brooks 91], when building intelligent robots.

One classical instance of this kind or architectures is the subsumption archi-
tecture [Brooks 86], where the key idea is to use the world as its best model.
The willing of this architecture is to build autonomous robots that co-exist with
humans, but instead of using a central system, with sensor modules as inputs
and actuators modules as outputs, it uses a descomposition by activity aproach.
So, each activity or behavior connects sensing to action. This means that these
layers must decide when to act for themselves, they are not just subrutines to
be invoked by a central planner.

The subsumption architecture uses finite state machines to implement the
behaviors. We propose a different approach based on fuzzy logic reasoning. The
original architecture has been modified in two ways. In first place we design the
behaviors in a fuzzy way, this is due to the fact that fuzzy rules are nearer
to human language than state finite machines. In the second place, we have
developed a method to fusion the outputs instead of choosing one of them.

3 Fuzzy Reasoning

Therefore, the first step should be to select adequate descriptions of the in-
formation returned by the robot sensors, “analogous” to those formulated by
humans when they describe perceived objects. The fuzzy representation scheme
provides a convenient conceptual framework to deal with this kind of knowl-
edge. Thus, a generic input can be represented as a set, defined as an abstract
symbolic structure with slots (f1, fs,--., fn), which are features characterizing
the information from a sensor. For example, a sensor is able to return two kinds
of information, the angle and the distance from a object, there were two slots
f1 (angle) and f, (distance).

Each f; € F;, where Fj is the feature space that defines the possible numerical
values range of f; . In this example we have to features: anglef; € © and the
distance d; € D. O is the angular space and its range is rg, = 6; € [0 — 27]. D
is the metric espace, its range is rq, = d; € [0 — o0].

To face the intrinsic uncertainty that underlies the appearance of perceptual
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Figure 1: Fuzzy Logic Controller

features (distorted after the sensor acquisition process), the numerical values of
the input could be mapped into qualitative symbolic labels, through a fuzzifi-
cation process [Zadeh 73], transforming the features of an input into linguistic
variables. In our example, we could define the two inputs (angle and distance)
and the two outputs (linear and angular velocity) linguistic variables.

A linguistic variable [Zadeh 73] is a variable whose values are sentences in
a natural or artificial language, that is, a concatenation of atomic terms: labels
(adjectives), hedges (modifiers such as very, much, slightly, etc), the negation
and markers (parentheses). The meaning of a linguistic variable is defined as
the fuzzy subset for which the value of the linguistic variable serves as a label.
A fuzzy subset A of a universe of discourse U is characterized by a membership
function p4 : U — [0,1] which associates with each element y € U, a number
pa(y) which represents the degree of membership of y € A. The operation of
fuzzification (application dependent) has the effect of transforming a nonfuzzy
set or quantity into a fuzzy set. It is worth noting at this point, that the value
of, for example, the linguistic variable color (a natural label such as green) rep-
resents a much less precise meaning than the numerical value of the wavelength
of the green color.

Using these concepts, for each f;, for instance the distance d;, a linguistic
variable Lf;, in the example could be “distance from the robot to the nearest
object”, is introduced with its set of values {If;1,1f;2,...,1f;mi}, whose cardi-
nality is mi. Each term [f;j in the set, labels a fuzzy subset in the universe of
discourse Fj, with membership function gy, ;(f;). Values of membership func-
tion of a label are related to the difficulty of attributing this label to a particular
input of a sensor. The fuzzification operation adopted, affecting the numerical
input f;, will result in its transformation into a fuzzy singleton, fuzzy subset
whose support is a single point in F;, with membership function equal to one.

A Fuzzy Relational Algorithm (FRA) will store the knowledge required to
obtain the global parameters of movement through a fuzzy reasoning process,
based on the linguistic features provided by a sensor. The FRA will be com-
posed of a finite set of fuzzy conditional statements whose form is I F(Lf; is L f;j)
THEN(LVEL is lvy), where the antecedent are conjunctions and/or a disjunc-
tions of fuzzy statements about the linguistic variables Lf;, and the consequents
are fuzzy statements about LVEL, linguistic global linear or angular velocity,
whose value set is {lvq, (v, ..., lv, }. The Mamdani implication has been chosen
to assign a meaning to these fuzzy conditional statements: the fuzzy subset of



ordered pairs (f;,v), with f; € F; and v € VEL, of the Cartesian product of
Lfij x lug with a degree of membership given by min(uuy;, (f1), v, (v)). v is the
defuzzification of LVEL and VEL represents its numerical domain (universe of
discourse of LVEL).

The final aspect that has to be considered is the inference strategy to ma-
nipulate the knowledge contained in the FRA, in order to achieve a global
movement of the robot. The compositional rule of inference (CRI), proposed
by Zadeh[Zadeh 73], (approximate extension of the familiar rule of modus po-
nens), serves us as inference mechanism to obtain the fuzzy subset induced in
VEL by a fuzzy statement with the form Lf; is [ f;r, through each conditional
statement of the FRA. That is the fuzzy subset of VEL whose membership func-
tion is obtained after max-min product of discretized versions of yy,,(di) and
Hifii X Pawe (fiy 8), represented as (relational) matrices [Zadeh 73]. As there can
be several conditional statements forming the FRA, the meaning of LVEL will
be the intersection of the intermediate meanings resulting from each application
of the CRI (min of all the induced consequent membership functions). Finally,
the adopted defuzzification process on LSIM will be a modified version of the
Centre of Gravity procedure, this method treats the rules separately. Each rule
produces a level of activation in the output labels, A; . Let {Ciux} be the nu-
merical representatives of each label, {lv;} (e.g. the centres of gravity ). Then,

the output is taken as a type of weighted sum:

. . " (AixCrvi
linear velocity = %

i=1

4 Multilevel Fuzzy Reasoning

The goal of this research is to show that intelligent behavior of a robot can
emerge from simple behaviors implemented as sets of fuzzy rules. Our archi-
tecture have n basic actions represented by fuzzy systems, FLC (Fuzzy Logic
Control) and a decission-making unit. For a world configuration, each FLC ob-
tains a reaction depending on its behavior. The decission module obtains one
output from these reactions.

The decision-making module, in a primary architecture, it chooses one be-
havior (one output) from all the FLC. This selection is critical and the inputs for
the decision have not a perfect matematical descripcion, using a fuzzy decisor
we want to model the human decision-making behavior. In summary, we have
two fuzzy aspects in our architecture, one are the fuzzy behaviors and the other
is the fuzzy decision-maker.

For the construction of the whole system, the first step is to design each
single FLC to be able of controlling a autonomous robot in a predetermined
way. In this way, to design a FLC we need to :

e Define input and output variables, that is, determine which phenomenous
will be observed and which control action have to be considered,

e Define the way in which the observations of the world are expressed as



Numerical Inputs A Numerical Outputs A
FLC Numerical  Outputs

A > of the choosen
behavior

Numerical Inputs B Numerical Outputs B
FLC

Numerical Inputs N Numerica Outputs N
FLC
: N : -

Numerical Inputs for decission

Figure 2: 0/1 System

fuzzy sets,
e Design the rule base,

e Determine the way to which fuzzy outputs can be transformed into nu-
merical control actions.

The system inputs are perceptions of the world but not the same ones for
all the FLC. One behavior is based on a particular world vision, for example a
behavior as “avoid obstacles” needs to have consciousness about the distance to
the obstacles around the robot, another behavior as “classify an object” need
to recognize a shape and to matching from all the forms stored in the robot.

To finish this first step, we prove each FLC in a environment prepared to
transmit a single stimulus, so the robot only needs one behavior to act. Through
these experiments it is necessary to fine the FLC for a right performance. In
this phase, it is possible to modify the inputs, the membership functions of the
input and the rule base.

The second step is to built a system able to find a good output for a deter-
mined robot situation in the world. In a previous phase we try with a system
that chooses only a behavior, and because that, the output from the choosen
behavior. This decission module is named as “0/1 SYSTEM”.

This system is not able to obtain a behavior, whose output corresponds to an
intermediate state from all the FL.Cs, when they have similar outputs. To mix
several outputs it is possible to do a linear combination of the outputs. Then, if
each FLC has a v; output and the decision-making module is able to realize that
all the FLCs want the robot to go to the same direction, but the decision-making
module is not able which behaviors is chosen for that situation the system can
obtain one output using a matematical formula as v;otal = 3", (a; X v;).

A problem of this system is the definition of the inputs and a matematical
description of these inputs, to decide which behaviors have to be stimulated.Next



Numerical Inputs A Numerical Outputs A
FLC

A | >
Fuzzy
Numerical Inputs B Numerical Oﬂ,—> Fusion —_—
FLC :
: i > : Module Mixed

Output

Numerical Inputs for decision

Numerical Inputs N Numerical Outputs N
FLC

Figure 3: Fuzzy Fusion Process

problem to solve is the inputs and its matematical descripcions. We present in
this work a fuzzy module that permits a not exactly definition of the input, and
it is possible to make the decision in a way analogous to the human thinking.

The problem of which inputs are neccesary to generate a right response de-
pends on each robot, its objetive, and the number of implemented behaviors.
In particular, for a robot that wants “to pursue an object” and “to avoid obsta-
cles” the inputs of the decision module is the descripcion of the environment to
permit a reaction for in order not to crash with obstacles. In the next section
we present a real case and all details to better understand the fuzzy decision
module.

(Comentar el dibujo y especificar que fusionamos tenemos que discutirlo: -
Decidimos una salida con un modulo fuzzy - Hacemos una combinaci’on linel
con un sistema fuzzy - Hacemos algo maravilloso con un sistema fuzzy lo que
decidamos aqu’i hay que llevarlo al abstract)

5 A real two-level architecture

The teorical architectured presented in the previous section has been developed
on a simulator and tested on a real robot. We have used a simulator of this
robot, named SRA [Nuria 94], which has been developed at Universidad Car-
los III. This simulator lets us to design a simple environment to test several
implementations of a behavior before proving some of the best in the real robot.

The robot used in our experiments is the mini-robot named KHEPERA
[Mondada 93], developed at LAMI 4. Khepera is a mini-robot, 5.5 ¢m diam-
eter, designed as technological demostrator. It owns eight infra-red proximity
sensors, two motors with encoders, and the possibility of working autonomously
or connected to a computer via a serial cable.

We describe the whole system in two steps. In the first one each behavior
is implemented (subsection 5.1). In the second one different decision-making



Figure 4: The mini-robot Khepera

modules are presented, beginning with a 1/0 SYSTEM, and proving lately with
a linear combination to finish with a fuzzy decision proccess (subsection 5.2).

5.1 The ”alone” behaviors

In a first experiment we have implemented a simple behavior named “Avoid”.
This group of fuzzy rules makes the robot wander through the world without
crashing with any obstacle. The set of rules was first tested on a the Khepera
simulator. The system inputs are distances returned from the infrared sensors in
particular it is possible use only three of these sensors. The outputs are the new
robot speeds for each motor wheel. The rules that implement the behavior are
shown in the figure 7. Once the rules seemed to work properly in the simulator,
the same set of rules was tested on the real robot.

Then, we have developed another behavior named “Follow” which makes
the robot follow a mobile object. (I'OJO!M!)To implement this instinct on the
simulator we have simulated two sensors that do not exist on the real robot.
These sensors return the distance and the angle towards the movile object.

Using these sensors the set of rules of the figure 7?7 have been tested ....

5.2 Fusion of behaviors

With the two behaviors developed, it is neccesary to make a decision module
integrating the two responses. One of the FLC has three distances as inputs,
which is a limited vision of the surronding world. The other FLC uses the
distance and the angle to the object that the robot pursues as inputs. The
two outputs are the speeds of each wheels. From this point, it is possible to
make a 0/1 SYSTEM that chooses between the two outputs, the best one for
a determined situation. As we want that robot to follow the object, provided
that it avoids the obstacles found in its way, the inputs are the same as in
the “avoid” behavior. In the moment that a obstacle is very near and there is
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danger of colission the system is controlling for the FLC avoid. To know that,
it is sufficient with the three distances. The system is representing in the figure
29

The rules of the system are...

The result are...

(Como vamos a hacer la combinacion lineal )

(Como vamos a hacer el sistema fuzzy)

6 Conclusions and Future Work

A new methodology, based on fuzzy logic concepts and a subsumption architec-
ture, has been introduced to integrate a different behaviors. Moving from the
use of quantified variables towards the use of the type of linguistic description
employed by humans, we acquire the capability to deal with the robot control,
which may be considered too much complex to be susceptible to analysis in
convencional mathematical terms.

In this work a theorical architecture is presented and it is implemented on
a real robot in a real world. The system capability is then tested and its result
proves a better performance than a system with no fuzzy information about the
behaviors and about the decision-making module.

Future works may include, on one side, the possibility of having more sensors.
With a superior perception of the environment the robot has more information
and it will be able to take a better solution. This is very complex using a
matematical decision module, but with a fuzzy system it would be easy, as long
as adding more inputs does not implies a exponential growing of the complexity.

On the other side, the possibility of making a cooperating system can be
considered. In this case, our system should be integrated as part of a complex
architecture including communication and high level reasoning. Our aim is to
study the ability of robots to solve problems in a cooperative way.
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