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ABSTRACT A recent trend in speech processing is the use of embeddings created through machine learning
models trained on a specific task with large datasets. By leveraging the knowledge already acquired, these
models can be reused in new tasks where the amount of available data is small. This paper proposes a pipeline
to create a new model, called Mel and Wave Embeddings for Human Voice Tasks (MeWEHV), capable
of generating robust embeddings for speech processing. MeWEHV combines the embeddings generated
by a pre-trained raw audio waveform encoder model, and deep features extracted from Mel Frequency
Cepstral Coefficients (MFCCs) using Convolutional Neural Networks (CNNs).We evaluate the performance
of MeWEHV on three tasks: speaker, language, and accent identification. For the first one, we use the
VoxCeleb1, and VBHIR datasets and present YouSpeakers204, a new and publicly available dataset for
English speaker identification that contains 19607 audio clips from 204 persons speaking in six different
accents, allowing other researchers to work with a very balanced dataset, and to create new models that are
robust to multiple accents. For evaluating the language identification task, we use the VoxForge, Common
Language, and the LRE17 datasets. Finally, for accent identification, we use the Latin American Spanish
Corpora (LASC), Common Voice, and the NISP datasets. Our approach allows a significant increase in the
performance of state-of-the-art embedding generation models on all the tested datasets, with a low additional
computational cost.

INDEX TERMS Embeddings, HuBERT, speech classification, WavLM, XLSR-Wav2Vec2, YouSpeak-
ers204.

I. INTRODUCTION
Speech processing refers to analyzing human speech through
voice audio signals. Some of the most important problems in
this field, which are tackled in this paper, are language identi-
fication, accent identification, and speaker identification [1],
[2], [3].
On the one hand, language identification identifies the

spoken language present in an audio file, and accent iden-
tification determines a person’s region of origin based on the
characteristic way and tone of the language used.We consider
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that the existence of very similar languages or accents, usu-
ally languages or accents with a common origin, poses a chal-
lenge for both tasks and requires the use of powerful machine
learning models. In some speech processing tasks, there are
useful datasets publicly available [4], [5], [6], [7], [8], [9], but
the comparison of results on such datasets becomes difficult
due to the lack of a common predefined experimental setup
for training the models and the lack of previous research
results to compare with, such as the case of accent detection in
Spanish [10].
On the other hand, speaker identification consists of rec-

ognizing the identity of a person given an audio file with a
person’s voice. A problem in this field is that there is a lack of
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well-balanced English datasets, both in the number of audios
per speaker and the number of speakers per accent [4], [7],
[8], [9], [11], [12]. This can lead to the creation of models
that might not identify accents in real-world data effectively.
The availability of a dataset with these features would allow
the creation of more effective models on real-world prob-
lems and facilitate the integration and evaluation of multiple
tasks, such as speaker identification and accent identification,
simultaneously.

Most of the research focused on the three aforementioned
tasks addresses them individually, and the proposed systems
are usually evaluated for just one task [1], [2], [3], [13],
[14], [15]. However, some research addresses several of these
problems based on the same pre-training model [16], [17],
[18], [19].

A machine learning architecture capable of performing
well on multiple speech processing tasks can use the knowl-
edge acquired during training, with a large amount of data,
and exploit it in new and diverse tasks. In this way, the model
generated for a new task does not need to start from scratch,
thus requiring less training data. By freezing the trained
layers, fewer parameters would need to be trained, with a
consequent reduction in the computational power required
[16], [18], [19].

Various techniques exist for reusing these models on spe-
cific tasks other than those for which they were initially
trained. This field of research is known as transfer learning
[20]. Some models address the transfer learning problem by
creating deep representations [17], [18], [19], [21], [22], also
called embeddings. An embedding represents a position in an
abstract multidimensional space that encodes a meaningful
internal representation of externally observed events. In these
spaces, similar embeddings, or embeddings that have features
in common, are close together, while less similar items are
far apart [23]. The embeddings have been used in multiple
domains, such as text, image, and speech processing, and
can feed multiple systems for an individual task in each
one [24], [25].

For the speech processing domain, there are models that
address speech classification for one or more tasks using
embeddings. For example, WavLM [19], presented as a uni-
versal speech encoder, was tested in tasks such as speaker
identification, and speech to text, among others. There are
also models that, although they were developed for a specific
task, are also capable of creating embeddings, so they can
be reused in new tasks. This is the case of HuBERT [18]
andWav2Vec2 [17], which are focused on English speech-to-
text conversion, and XLSR-Wav2Vec2 [21], which is based
on Wav2Vec2 but adds the possibility to work with multiple
languages.

The embedding generation models mentioned above were
trained with thousands of hours of audios recorded in mul-
tiple environments, resulting in models that can generate
robust embeddings against background noise and different
environmental conditions. This paper takes into account the
advances achieved by this class of models and leverages them

for speaker identification, accent identification, and language
identification, by means of transfer learning.

We develop and present a novel embedding enrichment
procedure, which combines the outputs of twomodels. On the
one hand, an embedding generation model from raw audios,
which we refer to, in a general way, as wave encoder. On the
other hand, the outputs of a neural network (NN) fed by
the Mel Frequency Cepstral Coefficients (MFCCs) [26] of
the raw audios, which have among its advantages the capa-
bility of error reduction and robustness to noise [27]. The
main feature of MFCC is that it focuses on extracting relevant
audio components to identify speech features, discarding,
by filtering, other features such as background noise, pitch,
loudness, and emotion, among others. Therefore, we call the
NN an MFCC encoder.

The proposed architecture complements the high level
of detail that the model exploits with the wave encoder,
being this a non-imposed representation, and the extraction
of relevant information through the MFCCs, as an imposed
representation. The information contained in the raw audio
may contain relevant information that may have been filtered
out in the MFCC, and the MFCC provide the machine learn-
ing model with information on the most relevant parts of an
audio, on which it should focus.

For the correct complementarity of both types of repre-
sentations, we designed an architecture capable of interacting
with them through a set of layers, including LSTM layers and
Soft Attention layers.

The LSTM layer is a type of recurrent neural network
layer that effectively captures long-term dependencies in
sequential data by incorporating a memory cell, allowing it
to retain and utilize information over extended sequences.
A Soft Attention layer dynamically focuses on different parts
of the input sequence, assigning varying levels of impor-
tance to each element. By combining an LSTM layer with
a Soft Attention layer, the model gains the ability to capture
long-term dependencies while selectively attending to crucial
elements.

With the proposed architecture we managed to overcome
the results obtained by other state-of-the-art embedding gen-
eration models, at the same time requiring only a small
number of trainable parameters. Fig. 1 shows a basic scheme
of the proposed architecture.

This paper provides the following main contributions:
• Proposal of the MeWEHV (Mel and Wave Embed-
dings for Human Voice Tasks) model architecture,
which efficiently handles multiple speech classifica-
tion tasks and achieves state-of-the-art performance.
It leverages frozen weights from pre-trained mod-
els and requires a relatively low number of train-
able parameters, making it suitable for resource-limited
environments.

• Introduction of a pipeline for generating rich embed-
dings by merging multiple audio representations. This
approach establishes a basis for improving large
pre-trained models and enhancing their performance.
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FIGURE 1. A basic representation of the proposed architecture. It merges two types of representations and
generates rich embeddings.

• Creation and presentation of the YouSpeakers204
dataset, a balanced speaker identification dataset with
diverse speaker accents and gender, extracted from pub-
licly available YouTube videos.

• Novel use of the Latin American Spanish Corpora for
accent identification, providing baseline results and an
experimental setup for future research in this domain.

• Application of the research to real-world scenarios,
specifically focusing on speaker information extraction
for identifying offenders and victims. This work con-
tributes to the GRACE project’s efforts in leveraging
machine learning techniques to combat child sexual
exploitation.

The remaining part of the paper is organized as follows:
In Section II, a review of the state of the art in the field
of speech processing is presented. Then, in Section III, the
information of the new YouSpeakers204 dataset is intro-
duced. In Section V, the proposed architecture is described.
In Section VI, the rest of the datasets and the experimental
setup are detailed. In Section VII, the results obtained with
each of the datasets are described. Finally, the discussion and
the conclusions obtained are given in Sections VIII and IX,
respectively.

II. STATE OF THE ART
In the field of speech classification, multiple solutions have
been developed for a single task. Reference [13] presented
a language identification system based on conformer layers,
and a temporal pooling mechanism, which was tested on their
own dataset with 65 languages and achieved an accuracy up
to 4.27% higher than other approaches based on LSTM and
transformers.

Reference [3] proposed BERT-LID, based on a conjunc-
tion network for phoneme recognition and BERT with a
linear output layer. They evaluated their proposal on the
datasets AP20-OLR [28], TAL_ASR, and a combination of
the datasets THCHS-30 [29] and TIMIT [4], achieving up to
5% improvement in audios of more than three seconds and
18% in audios of less than one second, with respect to models
based on n-grams-SVM and x-vectors.

In speaker identification, [1] introduced CASA-GMM-
CNN model, in which they seek to clean a noisy audio

through a Computational Auditory Scene Analysis (CASA),
thenmake a classification of emotions through aGMM-CNN,
and the output of both components feed another GMM-CNN
in charge of identifying the speaker. They tested their
approach on SUSAS [30], Arabic Emirati Speech Database
[31], RAVDESS [32], and Fluent Speech Commands [33]
datasets, achieving an improvement in accuracy of up to
59.37% with respect to other state-of-the-art works.

Reference [14] presented another speaker identification
model based on capsule networks, which is composed of
two convolutional layers and one capsule layer, and it was
compared using standard CNNs, random forests, GMM-
DNNs, and SVMs as baseline models, on the Arabic Emirati
Speech Database, SUSAS, and RAVDESS datasets. This
model achieved improvements of up to 9.98%, 10.95%, and
9.81% accuracy, respectively, with respect to the best baseline
model.

In accent identification, [2] presented AISpeech-SJTU,
an accent identification system that is powered by Phone Pos-
teriorgrams and data augmented by text-to-speech synthesis
systems. They evaluated their proposal in the Interspeech-
2020 Accented English Speech Recognition Challenge [34],
achieving an average accuracy of 83.63%, the highest score
of the challenge.

Transfer learning and domain transfer have been exten-
sively studied in machine learning [35]. Recent research
related to transfer learning in audio processing has mainly
focused on methods for learning deep representations, also
known as embeddings [16]. These embeddings are generated
to store relevant information of an audio wave, through its
representation in a latent space, to be later used in the learning
of a new specific task.

Reference [15] presented an accent identification model
generated from a pre-trained speech-to-text model, to which
transfer learning was applied to be reused in their new task.
To evaluate their proposal, they used the AP20-OLR dataset,
achieving a reduction of up to 10.79% in the EER compared
to other approaches based on x-vectors and i-vectors.

One powerful model focused on the generation of embed-
dings is TRILL [16], which was trained with a subset
of the AudioSet dataset [36], and subsequently evaluated
in different domains by applying transfer learning and
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fine-tuning. The results achieved with TRILL were, in most
cases, superior to those of the state of the art, and in other
cases, close to them, being able to highlight its performance
in speaker identification, with an accuracy of 17.9% on the
VoxCeleb1 dataset [11], 94.1% for language identification
on the VoxForge dataset (5.7% improvement) [5], 91.2% for
command identification on the Speech Commands dataset
[37] (0.1% improvement), among others.

Other embedding generation models are the Wav2Vec2
[17] model, which focused on English speech-to-text conver-
sion, and XLSR-Wav2Vec2 [21] model. XLSR-Wav2Vec2 is
based on Wav2Vec2 but has been adapted for speech-to-text
conversion in 53 languages, where the use of embeddings
is useful to adapt the model to the different languages.
To train the XLSR-Wav2Vec2 model, the MLS [12], Com-
monVoice [6], and BABEL [9] datasets were used. The
XLSR-Wav2Vec2 model is fed by the raw audio waves and
was able to achieve a word error rate reduction of 72%
compared to other published results on the Common Voice
dataset, and 16% compared to the state-of-the-art results on
BABEL.

Both models are based on the transformer architecture and
are trained with self-supervised learning tasks using large
audio datasets.

The Wav2Vec2 model and the XLSR-Wav2Vec2 model
achieve outstanding performances, outperforming smaller
state-of-the-art models, and have shown to effectively capture
and model long-term dependencies in sequential speech data.

Reference [18] presented a new self-supervised approach
for embedding generation based on BERT, called HuBERT.
HuBERT uses an offline clustering step to provide aligned
target labels for a BERT-like prediction loss. The HuBERT
model matches or improves the performance ofWav2Vec2 on
Librispeech [7] and Libri-Light [8] datasets, achieving WER
improvement of up to 19%.

In the experimental results of [18], HuBERT showed bet-
ter results than Wav2Vec2 in low resource setups, although
the size of both models is similar (318.42M in the case
of Wav2Vec2-large, and 314.65 in the case of HuBERT-
large). However, unlike XLSR-Wav2Vec2, HuBERT does not
present a specific configuration for multiple languages.

Reference [19] presented the WavLMmodel extending the
HuBERT framework for speech-to-text and denoising mod-
eling, which enables pre-trained WavLM models to perform
well on both speech-to-text and non-speech-to-text tasks.
To achieve this, some WavLM inputs are noisy/overlapping
speech simulations and the expected outputs are the original
speech labels. In addition, they optimized the model structure
and training data of HuBERT andWav2Vec2. The model was
tested in the SUPERB Challenge [38] achieving an overall
score 3.16% higher than HuBERT and 4.95% higher than
Wav2Vec2.

Although the large version of the WavLM model is rela-
tively large (317.66 M parameters) and requires large com-
putational resources for training, the authors proposed among

their future lines of research the enlargement of their models
as a method to increase the performance achieved by them.

For the correct democratization of the most powerful deep
learning models, we consider that it is crucial to explore
alternative methods for enhancing their performance with-
out solely relying on increasing model size. This approach
should involve the utilization of a limited number of trainable
parameters, enabling researchers to adapt these large models
to their needs, even when large computational cluster may not
be available.

Apart from the models focused on speech processing,
there are also models for general audio processing, such as
the PANN model. The PANN model [39] was trained on
the AudioSet dataset and evaluated using transfer learning
and fine-tuning, in general content audio classification tasks.
For environmental sound classification and audio taggings,
PANN yielded accuracies of 94.7% and 96.0% on the ESC-50
[40] and the MSoS [41] datasets, respectively, surpassing the
state-of-the-art results.

For acoustic scene classification, PANN was evaluated
on the datasets DCASE-2019 [42] and DCASE-2018 [43],
obtaining an accuracy of up to 76.4%, and 95.4%, respec-
tively, in both cases lower than the state of the art. Whereas
for music genre classification, PANN achieved an accuracy
of 91.5% on the dataset GTZAN [44], lower than the state of
the art. In all cases, the accuracy reported is higher than or
close to the state-of-the-art results.

Approaches based on embedding generation have demon-
strated competitive performance in multiple audio processing
tasks using transfer learning. However, all of them are based
on a single representation of the original audio. Therefore,
enrichment of the deep representations by another represen-
tation could improve the performance of such models.

Research on audio processing has been focused signifi-
cantly on the use of a single representation of the audio.
Among the most common representations are the use of
spectrograms [45], [46], [47], and MFCCs [48], [49], which
can be competitive depending on the task and the dataset used,
and, in general, both can obtain similar results [50].

Different representations and features extracted from an
audio can be used at the same time to feed a model. One
example is FuzzyGCP [51], which is a model fed by eight
types of representations generated from the original audios
and which are joined into a single two-dimensional image.
FuzzyGCP was evaluated for language identification on the
datasets IIITHyderabad [52], IITMadras [53], VoxForge, and
MaSS [54], obtaining accuracies of 95%, 81.5%, 68%, and
98.7%, respectively. These results exceeded the ones obtained
by other state-of-the-art approaches, such as PPRLM [55],
i-vector [56] and x-vector [57].

The combination of representations makes possible to
extract complementary information from the original audios,
in a format easily processed by a machine learning model.
This allows these models to achieve better results than those
obtained by being fed by a single representation.
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FuzzyGCP explores the combination of different audio
representations and demonstrates superiority over classical
approaches. However, it does not include raw audio repre-
sentation as a possible input, thus not making use of the most
recent developments in the field of speech processing.

FuzzyGCP does not make public the experimental setup
with the training and test audios used, which makes it diffi-
cult to compare the obtained results. However, in our paper,
we use, among the evaluation datasets, a subset of the Vox-
Forge dataset, which was created based on the general data
provided in the paper.

Another model based on the combination of representa-
tions is the model proposed by [58], in which they combined
three types of audio representations, which fed two models,
one trained for acoustic scene classification and the other for
general audio tagging. They use the DCASE 2018 Challenge
dataset,1 achieving a mAP@3 of 93.3% in the acoustic scene
classification task and an accuracy of 72.48% in the acoustic
scene classification task, outperforming the results of other
state-of-the-art methods based on a single representation.

In this case, the combination of representations is done as
ensemble models, where each individual model was trained
autonomously with a different representation. The fusion of
information is done in the output layer of the model through
an information aggregation unit.

Merging models into model outputs has a limitation given
that the information that can be shared in this way is limited,
compared to the information that could be obtained if deep
representation were connected.

Reference [59] proposed a novel architecture fed by three
types of representations, these representations fed two con-
secutive NN. One network is responsible for identifying and
filtering erroneously labeled training data so that they do
not affect the training of the other network, thus avoiding
data errors that may adversely affect the performance of the
model. They tested their architecture in audio tagging with
the FSDKaggle20182 and FSDKaggle20193 datasets, each
one evaluated with a different metric, achieving a mAP@3
of 95.59%, and a label-weighted label-ranking average pre-
cision (lwlrap) of 0.7195 respectively, being, in both cases,
competitive with the state-of-the-art methods.

This approach proved to be especially valuable in cases
where the training data are not properly filtered, which can
affect the performance of models that, in particular, are
trained with relatively small datasets. In our case, we take
as reference embedding generation models that have been
trained with large amounts of data makes the resulting
pre-trained model highly robust and resistant to possible
errors in the training set.

In our paper, we address the combination of representations
from a novel approach, taking advantage of the proven capa-
bilities of embedding generation models and improving those

1http://dcase.community/challenge2018
2https://zenodo.org/record/2552860
3https://zenodo.org/record/3612637

capabilities by means of a new architecture that complements
the information generated by them. Unlike other approaches,
our method requires a single end-to-end robust model. Con-
sidering the described works, it can be noted that one of the
major limitations in embedding generation models is the fact
that retraining these models is computationally expensive and
requires a large amount of data. For this reason, the embed-
dings generated by these models are usually reused through
the application of transfer learning, enabling the utilization of
the knowledge already acquired during their initial training
process to address new tasks.

We propose the MeWEHV architecture that enriches the
embeddings generated by a pre-trained wave encoder model
by combining it with embeddings extracted from MFCC
representations through specialized neural layers in the archi-
tecture. Using the combination of both types of embeddings
we are able to surpass the state-of-the-art results in multiple
speech processing tasks, taking advantage of the benefits of
embedding generation models and combination of represen-
tations.

The MeWEHV architecture allows to improve the results
obtained with transfer learning, through the enrichment of
embeddings. In this way, competitive results can be achieved,
without the need to retrain the complete models.

In addition, MeWEHV opens the door to future research
that seeks to adapt large speech processingmodels by improv-
ing the use of available speech data, without requiring a
significant increase in the number of parameters.

III. YouSpeakers204 DATASET
We introduce a new dataset for speaker identification, called
YouTube Speakers 204 (YouSpeakers204), which contains
19607 audio clips of 204 speakers with 6 different accents
extracted from YouTube videos. We selected YouTube chan-
nels in which the information of the country of origin and
gender of the speaker was stated and looked for native English
speakers with a wide range of ages, ethnicities, and profes-
sions. Their respective YouTube channels contain different
topics. All speakers are native English speakers, grouped
by region of origin. The 6 labeled regions are the United
States, Canada, Scotland, England, Ireland, and Australia.
The dataset is gender-balanced, with 50% male speakers and
50% female speakers. The audios included in this dataset
come from varied recording environments, including indoor
studios, outdoor recordings, professional recordings, and
recordings with background noise.

The presented dataset is intended to facilitate research in
the field of automatic speaker classification, and can also be
used in related studies combining speaker identification with
accent identification.

YouSpeakers204 contains data recorded in noisy envi-
ronments under a wide variety of real conditions, such as
the recording microphone used, background noise, record-
ing environment, audio volume, speaker gender, and accent,
which makes the dataset a challenge to test the robustness of
new machine learning models.
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TABLE 1. YouSpeakers204 dataset statistics.

FIGURE 2. Distribution of clip duration in seconds in the YouSpeakers204
dataset. The audios are between 3.5 seconds and 12 seconds in length.

The general statistics of the dataset are presented in
Table 1, while Fig. 2 includes the length distribution of the
audio clips.

For the creation of YouSpeakers204, we defined a proce-
dure, which consists of the following stages: listing candidate
speakers, selecting and downloading videos, and audio pro-
cessing.

A. LISTING CANDIDATE SPEAKERS
The list of speakers was extracted from the Socialblade4

database by selecting the most famous YouTubers for each
region among the 6 accent classes. In the case of Scotland and
England, it was necessary to perform a manual search within
YouTube to find people who, in their public information,
claim to be from those regions, because Socialblade divides
YouTubers by countries and not by regions. Subsequently,
a verification of the place of birth of each speaker was carried
out, by a search in Wikipedia.5 The collected list contains a
total of 204 speakers, 34 per accent of which 17 are men and
17 are women ((17+17)×6 = 204). All speakers have been
assigned a unique identifier (id) and their real identity is not
provided in the dataset.

4https://socialblade.com
5https://www.wikipedia.org

B. SELECTING AND DOWNLOADING VIDEOS
To create a diverse dataset, 19607 clips were extracted from
a large number of videos (1055 videos in total). In this
way, models created using YouSpeakers204 dataset can be
robust to the different environments and contexts in which
the audios had been recorded. Each speaker has an average
of 5.17 videos from which their clips were extracted, an aver-
age of 96.11 clips, and each clip has an average length of
6.19 seconds.

After selecting the videos, the entire videowas downloaded
and the audio clips were extracted.

C. AUDIO PROCESSING
The complete audios were processed manually, by a team of
taggers, separating the original audios into segments of short
duration and storing the resulting audios together with their
respective information. The process consisted of defining
a decibel split threshold for each audio, all generated sec-
tions with a decibel level below the threshold are considered
silences (see Fig. 3). All segments are obtained by extracting
the sections that are between every two contiguous silences.
Due to the particularities of each audio, it is not possible to
define a unique threshold that allows to label the silences of
all the audios in a correct way. Therefore, applying a visual
analysis of the audio waves the threshold of each file was
defined manually.

The segmentation of the audios generates multiple clips of
variable size, of which only the clips with a duration between
3.5 and 12 seconds are kept. A manual check of the content
of each clip is then performed to discard all clips containing
voices other than the target YouTuber, and clips containing
no voice.

Finally, the resulting clips are renamed and stored, the
names of the files contain an anonymized speaker id,
anonymized id of the video from which each clip originates,
the gender of the speaker, and the region of the speaker, which
represents the accent.

IV. THEORETICAL FRAMEWORK
A. PRETRAINED EMBEDDINGS GENERATION MODELS
The embeddings generation models used in this paper
are large deep learning models developed for learning
self-supervised representations of speech data, known as
embeddings. These models are trained on large unlabeled
datasets to learn to generate embeddings, without the need
for explicit phonetic or linguistic annotations.

In this paper, these pre-trained models are used in the wave
encoder block of the MeWEHV architecture, and the embed-
dings generated by them are enriched using the pipeline of
the proposed architecture. Thus, multiple models based on
theMeWEHV architecture were evaluated, one for each wave
encoder analyzed.

The layers of the embeddings generation models can be
grouped into two categories, according to their functionality.
On the one hand, the encoder layers take as input a raw
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FIGURE 3. Example of an audio cut-off in ‘‘silence’’ regions, i.e. regions where the decibels are below a certain threshold.
The audio waveform is shown in green and the cut-off regions are in red.

audio, divide it into fixed size sections (usually 20-30 ms)
S = S1, S2, . . . , SN and generate a set of embeddings E =

E1,E2, . . . ,EN , one per section. Each embedding Ei, where
1 ≤ i ≤ N represents the relevant features of a section
Si on the training process for its target task. On the other
hand, for the model training process, another set of layers
called decoder was used, which takes the embeddings and
processes them to generate the expected output according to
the assigned task. In our architecture, the wave encoder block
is composed of the encoder layers of each of these models.

The embeddings generated by the wave encoder represent
a position in the latent space, where audios with similar
characteristics are represented spatially close together, and
audios with different characteristics are represented far apart.

B. MFCCs
The MFCCs are coefficients based on the human audible
frequency range, represented by the Mel scale, which is a
linear scale below 1000 Hz and logarithmic above 1 kHz [26].
The Mel scale is a scale that relates the perceived frequency
of a tone to the actual measured frequency. It modifies a
frequency to approximate what the human ear can hear and
is often used to extract features of an audio signal that are
relevant to identifying its content, making it useful in tasks
such as speech representation.

The MFCCs reduce the relevance of information that may
have a minor contribution to speech-processing tasks, which
may add noise to the model and reduce its accuracy.

C. CENTER LOSS FUNCTION
The center loss [60] is a loss function that enhances the
discriminative power of the learned features by minimizing
the distances between the features and their respective class
centers. It introduces class centers and pulls the feature vec-
tors toward these centers during training, promoting compact
clustering of features belonging to the same class, through the

following equation:

Lc =
1
2

N∑
i=1

∥∥xi − cyi
∥∥2
2 (1)

where N is the number of samples, xi is the feature vector of
the i-th sample, yi is its corresponding class label, and cyi is
the center of the class yi.

V. ARCHITECTURE: MEL AND WAVE EMBEDDINGS FOR
HUMAN VOICE TASKS
Fig. 4 depicts a summary of the Mel and Wave Embeddings
for Human Voice Tasks (MeWEHV) architecture.

TheMeWEHV architecture is fed by two inputs, on the one
hand, the audio signal is treated as a one-dimensional vector,
and on the other hand, the MFCCs [26] are extracted from the
same audio signal.

A. WAVE ENCODER BRANCH
The two inputs of the MeWEHV model are processed inde-
pendently by two branches. On the one hand, the raw audio
waveform feeds the encoder layers of a B2 wave encoder
model. TheB2 wave encoder is a block of the architecture that
is composed of a pre-trained embedding generation model.
In this paper, multiplemodels were tested as thewave encoder
block.

The models used as wave encoders are XLSR-Wav2Vec2,
HuBERT in its base and large versions, and WavLM in its
base and large versions. In future research, these models
could be replaced by others.

The first branch of our model will generate multiple
embeddings Ei, one for each audio section Si, which will
summarize the features that the wave encoder considers rele-
vant. We perform transfer learning by feeding the generated
embeddings to new layers connected to the encoder outputs.

We connected the embeddings of the generated sections to
an LSTM layer, L2, and a Soft Attention layer, A2 that will
be able to model their temporal information and generate a
single embedding for the complete audio signal. The blocks
that compose this branch are B2 + L2 + A2.
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FIGURE 4. The architecture of the MeWEHV model proposed in this paper. The model is fed by two inputs, on the one hand, the raw audio
waveform that feeds the wave encoder branch, which contains the encoder layers of a pre-trained embedding generation model from raw
audios. On the other hand, the MFCC coefficients extracted from the same raw audio feed the MFCC branch which contains a set of
convolutional layers. Both branches of the model pass through an LSTM layer and a Soft Attention layer independently. These layers are in
charge of modelling the temporal features and generating, each one, a unique embedding from each input audio. Both embeddings are
concatenated and subsequently feed a series of dense layers that are responsible for the classification of the model.

B. MFCC BRANCH
The second branch of the proposed model is fed by the
information contained in the MFCCs of the original audios
and generates a new embedding. In this way, we enrich the
embeddings generated by the first branch of the model.

The use of MFCCs allows us to analyze the most important
information of an audio and complement the information
that the wave encoder models may have missed during their
analysis.

We use the B1 block, composed of three concatenated
layer sets to process the MFCCs, each set consists of a 1D
convolutional layer, a batch normalization layer, and a ReLU
activation function. At the same time, the output of the last
block is connected to an LSTM layer, L1, and a Soft Attention
layer,A1, in the sameway as the first branch of themodel. The
output of this layer block is a new embedding.The blocks that
compose this branch are B1 + L1 + A1.

C. RICH EMBEDDINGS
The embedding generated by the first branch and the embed-
ding generated by the second branch are concatenated and
generate a new embedding which size is the sum of the
embedding sizes of both branches. The generated embedding
is optimized through the center loss function.

Thus, the result of the concatenation of both embeddings
is a rich embedding in a new latent space.

Finally, the rich embedding feeds a block D of two fully
connected neuron layers, with intermediate ReLU activation
and a dropout function, which is responsible for generating
the output of the model that classifies the input according to
the assigned task.

The center loss score is combined with the classification
loss of block D, in this case, the negative log-likelihood [61].
In particular, the risk function used during training is the sum
of the center loss and the classification loss. The objective

is to minimize both the classification loss and the distance
between the learned features and their class centers.

The proposed MeWEHV architecture complements the
information of the pre-trained wave encoder model with the
information extracted using the MFCCs to generate a more
powerful and flexible model.

VI. EXPERIMENTS
A. DATASETS
The datasets used allow us to evaluate the performance of our
model in the tasks of language identification, accent identifi-
cation, and speaker identification. These datasets are diverse
in terms of the number of speakers, nationalities, gender, and
environments in which they were recorded, which allows us
to evaluate the correct functionality of a MeWEHV model
with complex data.

The lists of audios used in the training, validation, and test
partitions are publicly available,6 so that future research can
make a fair comparison of results.

1) VoxForge
VoxForge is a dataset composed of the voices and transcrip-
tions of a large number of speakers, originally intended for
speech-to-text conversion. It comprehends a large number of
languages, which makes it also useful for language identifi-
cation.

We use this dataset to compare the proposed architecture
in language identification. The used subset is based on the
FuzzyGCP paper presented by [51].

This subset contains 5 languages: French, German, Italian,
Portuguese, and Spanish. All the speakers of each language
were divided into a proportion of 70% for training, 10%
for test, and 20% for validation. Subsequently, considering
only the audios with the selected speakers, 1400 audio clips

6Partitions of the datasets used are publicly available at:
https://bit.ly/3ydSEAt
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were randomly chosen for the training set, 200 for the test
set, and 400 for the validation set, per language. This results
in a training, test, and validation sets with 7000, 1000, and
2000 audios, respectively.

The generated partitions have no speaker contamination,
i.e., the speakers present in one set are not present in the
other sets, which assures that the model learns to recognize
the languages and not the voices of the speakers.

2) COMMON LANGUAGE
The Common Language dataset [62] has a set of audios
selected from the CommonVoice dataset [63], which contains
audios provided by volunteers. Common Language contains
45 languages, 272360 audios, and 13808 speakers.

The dataset was used for language identification and we
used the training, validation, and test partitions provided by
the authors: 177552, 47104, and 47704 audios for training,
validation and test sets, respectively.

3) LRE17
The NIST 2017 Language Recognition (LRE17) [64] is a
dataset created for the language identification task, with
approximately 2100 hours of audio in 14 languages. The
dataset comprises a training set with 15904 audios, and a
predefined test set with 25451 audios.

For the training of the models used in this paper, the
original training set was randomly divided into 90% for train-
ing and 10% for validation. Subsequently, due to the long
duration of the original audios, for both subsets the audio
segments containing speech were extracted, and in order to
eliminate examples with little relevant information, segments
less than 1.5 seconds long and segments without speech were
discarded. Each generated segment was treated as a separate
example during the training and validation phase.

The resulting subsets consisted of 616324 training and
67451 validation examples. In the test set, the original
25451 audios, without separation into speech segments, were
used.

4) LATIN AMERICAN SPANISH CORPORA
Latin American Spanish Corpora [10] was originally pro-
posed for the speech-to-text conversion task. However, thanks
to being a highly balanced dataset, both by gender and by
accents, it can be used in accent identification. In this paper,
to the best of our knowledge, this is the first time that this
dataset is being used for for accent identification.

The dataset comprises 37.79 hours of 6 Latin American
accents: Argentinian, Chilean, Colombian, Peruvian, Puerto
Rican, andVenezuelan.We divided the speakers of the dataset
into training (70%), validation (15%), and test sets (15%), and
use all the audios of each speaker.

5) COMMON VOICE
We used the Common Voice dataset for the task of accent
identification. We worked with an English subset containing

audios of five accents: American, British, Indian, Canadian,
and Australian.

We used a subset with 10000 audios per accent, whichwere
divided into training (70%), validation (15%), and test sets
(15%), resulting in a training set with 35000 audios, a valida-
tion set with 7500 audios, and a test set with 7500 audios.

6) NISP
The NISP [65] dataset is a speaker profiling dataset contain-
ing information such as height, age and accent of 345 speak-
ers. The speakers have 5 mother tongues (Hindi, Kannada,
Malayalam, Telugu, and Tamil), and among the audios in the
dataset there are English recordings of these speakers.

This dataset was used for the accent identification task,
and, for the experimental phase of this paper we consider each
of the mother tongues as accents, and, therefore, as the true
labels to be predicted by the evaluated models.

For the partitioning of the dataset, the 345 speakers were
divided randomly and stratified in order to maintain the same
proportions in each accent. The portions used are: 70% for
training, 15% for validation, and 15% for testing. Subse-
quently, all the audios belonging to each speaker were used as
part of their corresponding partition. Thus, the final training
set contains 10247 audios, the validation set 2246 audios, and
the test set contains 2201 audios.

7) VoxCeleb1
For the speaker identification task, another of the datasets
we chose is VoxCeleb1 [66], which is composed of
153516 audios samples from 1251 different speakers. The
audios of the dataset were extracted from public videos of
celebrities on YouTube.

For the VoxCeleb1 dataset, the same partition proposed by
the creators 7 was used, which contains 138361 audios in the
training set, 6904 audios in the validation set, and 8251 audios
in the test set.

8) YouSpeakers204
The YouSpeakers204 dataset is one of the contributions of
this paper and its information can be found in Section III.

The entire YouSpeakers204 dataset was used for speaker
identification. The audios of each speaker were divided into
a proportion of 70% for training, 15% for validation, and 15%
for test, and all the audios available in the dataset were used.
This resulted in a training set of 13728 audios, 2942 audios
in the validation set, and 2942 audios in the test set.

9) VBHIR
A Dataset for Voice-Based Human Identity Recognition,
which we call VBHIR [67] is a dataset containing
3000 audios from 150 English speakers of Middle Eastern
descent. Half of the audios in the dataset contain 10 record-
ings per speaker, in which they read the same text, while the
other half contains 10 recordings per speaker, where they read

7https://www.robots.ox.ac.uk/∼vgg/data/voxceleb/meta/iden_split.txt
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a different text in each audio. In the second case, the texts read
by the speakers do not repeat with the other speakers.

In the present paper, in order to evaluate the robustness
of the proposed models, we considered only the record-
ings where a different text is read, resulting in a dataset of
1500 audios.

The dataset was divided into training, validation, and test
subsets, with a proportion of 70%, 15%, and 15%, respec-
tively. Resulting in a training set with 1050 audios, a valida-
tion set with 225 audios, and a test set with 225 audios.

B. EXPERIMENTAL SETUP
For the experimentation, in all the datasets and tasks, audios
with a sample rate of 16000 samples per second were used,
converted into 8-second clips. Those with a shorter duration
were repeated as many times as necessary until reaching
8 seconds, and those with longer duration were trimmed and
only the first 8 seconds were worked on.

In the creation of the MFCCs, 128 MFCC coefficients
were defined as a parameter to be used, which we consider it
provides the MFCCwith a high level of spectral detail, which
allows the models to perform tasks requiring such detail.

The specific parameters of the MeWEHV model used in
our experimentation can be seen in Table 2, which were
empirically selected.

We established multiple baseline models, on which the
MeWEHV architecture is applied, and took them as a ref-
erence to compare the performance of our proposal. Among
the architectures used as baseline we include the CNNMFCC
architecture, which is composed of the same layers contained
in the MFCC branch of the MeWEHV model, described in
Section V.
In addition, we include each of the embeddings generation

models used aswave encoder in theMeWEHVarchitecture as
standalone models. These models are composed of the same
layers as the wave encoder branch described in Section V.
In Section VII, all models generated from the wave encoder
branch structure are named identically to their corresponding
embedding generation model.

The architectures based on the wave encoder branches are
presented in Table 3. These architectures are composed by
the encoder layers of the pre-trained embedding generation
model and the classification layers of the first branch of the
MeWEHV architecture. The layer blocks B2, L2, and A2 pre-
sented in Table 3 have the same experimental configuration
and number of parameters as those described in Table 2, with
the same name. The only difference appears in block D2,
which uses 128 neurons instead of 256 of block D presented
in Table 2, resulting in a model with 625, 542 trainable
parameters.

Overall, the wave encoder branch-based architectures are
composed of the B2 + L2 + A2 + D2 layers.
The structure of the CNNMFCC models, based on the

MFCC branch, is presented in Table 4. The B1, L1, and A1
blocks described have the same experimental configuration
and number of parameters as the blocks with the same names

in Table 2. As with the wave encoder branch-based architec-
tures, in this case, the fully connected layers of block D1 has
128 neurons, unlike the 256 of block D in Table 2, resulting
in a model with 355, 654 trainable parameters.

Overall, the CNNMFCC architecture comprises the blocks
B1 + L1 + A1 + D1.
For both the wave encoder branch-based architectures and

the CNNMFCC architecture, we use the same experimental
setup as presented in each respective branch of theMeWEHV
architecture. This approach ensures a fair comparison of
results across all models.

VII. RESULTS
The results of the experiments performed can be seen in
Table 5. Since the evaluated datasets are balanced in their
respective classes, we use accuracy as the metric in the exper-
imentation.

The number of parameters mentioned in Table 5 for the dif-
ferent versions of XLSR-Wav2Vec2, HuBERT and WavLM
include the 0.62M trainable parameters of the LSTM, Soft
Attention, and classification layers added, which have as
input the embeddings generated by each of the mentioned
models.

As it can be seen, the implemented MeWEHV models
improve the results with respect to all the embedding genera-
tionmodels used as wave encoders and onwhich our proposal
was implemented. It is worth noting that the MeWEHV
models have only 0.68M more parameters than their corre-
sponding baseline models, which represents, in the case of
the XLSR-Wav2Vec2 model, the baseline model with the
highest number of parameters, an increase of only 0.21% of
parameters.

On the VoxForge and Common Language datasets, the
best language identification model is MeWEHV, using
WavLM-large as wave encoder, achieving accuracies of
97.06% and 72.53%, respectively, which represents an
improvement of 0.73% and 14.47% with respect to WavLM
large, with the improvement achieved with Common Lan-
guage being the largest among the models tested in this
dataset with respect to its baseline model. The largest
improvement with VoxForge was achieved with the XLSR-
Wav2Vec2-based MeWEHV model with respect to the
XLSR-Wav2Vec2 model and represents an increase of
14.86%.

The MeWEHV model, using WavLM-large as wave
encoder, also achieved the best result with the LRE17
dataset, yielding an accuracy of 41.05%, which represents
a 12.49% of improvement in language identification com-
pared to the baseline WavLM-large. Furthermore, the largest
leap in performance on the LRE17 dataset was achieved
with the MeWEHV-XLSR-Wav2Vec2 model, obtaining an
improvement in accuracy of 46.68%, compared to the XLSR-
Wav2Vec2 model.

In addition to the mentioned results, we can add as a
baseline the result achieved by the FuzzyGCP model in lan-
guage identification with the VoxForge dataset, obtaining
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TABLE 2. Details of the MeWEHV model used in the experimentation, assuming a task with six possible output classes. (T) represents that the input of a
given layer has been transposed. With each extra output class, the number of parameters increases by 256, being the number of connections that the new
output neuron would have with the penultimate layer. The number of wave encoder parameters depends on the model chosen for that block, and the size
of the generated embeddings of 1024 was assumed as the wave encoder output.

an accuracy of 68%, being particularly relevant since the
FuzzyGCP model is based on another approach for input
combination with multiple audio representations. Our best
MeWEHV model has an improvement of up to 43.53%
over the result achieved by FuzzyGCP, with a Vox-
Forge subset inspired by the one used in the FuzzyGCP
paper.

On the YouSpeakers204 and VoxCeleb1 datasets, the
best speaker identification model is again MeWEHV using
WavLM-large, yielding accuracies of 89.22% and 70.62%,
respectively. The largest improvements were achieved with
the HuBERT-large-based MeWEHV model with respect
to the HuBERT-large model and represent an increase of
88.27% and 58.69%, respectively.

In contrast, for the VBHIR dataset, the best result was
obtained with the MeWEHV model using XLSR-Wav2Vec2
as wave encoder, reaching a 94.67% of accuracy. While the
highest improvement is 24,23% and was achieved with the
MeWEHV-WavLM-large, with respect to the WavLM-large
model. It is interesting to note that with this dataset, the
models in their base version achieve better results than in
their large versions. This may be because in this specific
case, being a dataset with relatively few training examples,

a smaller number of parameters may reduce the probabilities
of overfitting during training.

In the case of the accent identification task, the best
model on the Common Voice dataset and NISP dataset
is MeWEHV based on WavLM-large, and on the LASC
dataset is the MeWEHV model based on XLSR-Wav2Vec2,
which achieve accuracies of 42.55%, 84.42%, and 81.59%,
respectively. On Common Voice the highest improve-
ment is 20.38% and was obtained with the MeWEHV-
HuBERT-basemodel with respect to HuBERT-base. OnNISP
dataset the highest improvement is 20.38% and was yielded
with the MeWEHVHuBERT-base model with respect to
HuBERT-base. Meanwhile, on the LASC dataset the highest
improvement is 20.18% and was achieved with MeWEHV-
HuBERT-large with respect to HuBERT-large.

The experiments showed a large increase in accuracy for
multiple speech classification tasks when MeWEHV is used.
The MeWEHV models can be considered a fusion between
the wave encoders and the CNNMFCC model, therefore,
we can notice that the fusion of both approaches significantly
exceeds the performance of each approach separately and
that the resulting model takes advantage of the modeling
capabilities of both.
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TABLE 3. Details of the baseline architectures based on wave encoder
branches, adapted to function as classification models, assuming a task
with six possible output classes. The number of wave encoder parameters
depends on the model chosen for that block, while we set a fixed size of
1024 for the generated embeddings, which is the wave encoder output.
The blocks B2, L2, and A2 in the CNNMFCC architecture share the same
layers and hyperparameters as the corresponding layers in the wave
encoder branch of the MeWEHV model.

TABLE 4. The architecture of the baseline CNNMFCC model is described,
considering a task with six potential output classes. (T) represents that
the input of a given layer has been transposed. The blocks B1, L1, and A1
in the CNNMFCC architecture share the same layers and hyperparameters
as the corresponding layers in the MFCC branch of the MeWEHV model.

VIII. DISCUSSION
In the proposed MeWEHV architecture, we used two mod-
ules that work together to generate rich embeddings. On the
one hand, a module for extracting features from raw audios
using multiple embedding generation models called wave
encoder. On the other hand, a module obtains more features
using a series of convolutional layers fed by theMFCCs of the
original audios, calledMFCC encoder. The joint work of both
modules proved to achieve better results than those obtained
by the two modules separately. To validate our approach,
we experimented with nine datasets, used for three different
tasks, three datasets per task.

Our studies show that optimal results can be obtained
after combining both types of inputs in a single architec-
ture and generating rich embeddings. This relates to the

findings presented by [51] on FuzzyGCP, where although
an approach based on the generation of embeddings was
not used, it was shown that combining different audio rep-
resentations can improve the results obtained with each of
these representations individually. In the language identifica-
tion task with the VoxForge dataset, our approach, based on
embeddings generation, proved to be able to achieve better
results.

We compared our proposal with five state-of-the-art mod-
els and found that the MeWEHV version of each model was
able to achieve superior accuracy on all the datasets used.
In addition to this, we found that one of the advantages
of the proposed model is that only a small number of new
parameters are required to be learned to significantly increase
the performance of the baseline models.

We can also note that the only model that managed
to outperform the MeWEHV-WavLM-large model was the
MeWEHV-XLSR-Wav2Vec2 model in the specific cases of
accent identification with the LASC dataset and speaker
identifications with the VBHIR dataset. This may be because
XLSR-Wav2Vec2 was trained to be able to model multiple
languages, so it should be able to identify different types of
pronunciations and the use of different phonemes, in addition
to those used in English, while the other models are only spe-
cialized in this language. This can be useful for accent iden-
tification, as well as identification of speakers with accents.
Also noteworthy is the robustness of the XLSR-Wav2Vec2
model in speaker identification with the YouSpeakers204
dataset, being notably that this, baseline without MeWEHV,
has the highest accuracy among all the baselines evaluated,
but always lower than our proposal.

In a neural network, the stacking of convolutional layers
allows a hierarchical decomposition of the inputs. Because
of this, the more convolutional layers are added to a neural
network, the higher the level of abstraction that subsequent
convolutional layers will achieve.

The MFCC branch of the MeWEHV architecture contains
only three convolutional layers. As per the standard structure
of a CNN, the first layers are in charge of modeling the
low-level features, such as straight lines, edges, and corners,
while the later layers are in charge of modeling the high-
level features. Based on the results obtained, we can conclude
that the addition of low-level features from the MFCC works
well complementing the information extracted by the wave
encoders.

However, a possible limitation of the MeWEHV archi-
tecture is the fact that, since the MFCC branch might not
be abstracting high-level features from the inputs due to its
relatively low depth., this could imply that the architecture is
not exploiting the full potential of the demonstrated comple-
mentarity of the evaluated representations.

A future research line would be to evaluate the
use of deeper MFCC branches. The exploration could
involve replacing the presented convolutional layers with
architectures widely used in the field of image processing,
such as ResNet, VGG, and DenseNet [68], among others.

80100 VOLUME 11, 2023



A. Carofilis et al.: MeWEHV: Mel and Wave Embeddings for Human Voice Tasks

TABLE 5. Results in terms of accuracy, obtained in three speech classification tasks, with nine datasets. The models starting with the designation
‘‘MeWEHV-X’’ refer to the models in which the proposed architecture was applied using the baseline model ‘‘X’’ as a wave encoder. The acronym CL refers
to the Common Language dataset, LRE17 refers to the NIST 2017 Language Recognition dataset, CV refers to the Common Voice dataset, LASC refers to the
Latin American Spanish Corpora dataset, YS204 refers to the YouSpeakers204 dataset, and he acronym VBHIR refers to the ‘‘A Dataset for Voice-Based
Human Identity Recognition’’ dataset. The best result of each pair of ‘‘X’’ and ‘‘MeWEHV-X’’ models is shown in italics, and the best overall results of each
dataset are shown in bold.

Another limitation of the present work is that we only
evaluated the use of MFCCs as an imposed representation.
Although it was demonstrated that MFCCs are functional
for the purpose of our work to generate rich embeddings,
it also opens the door to a future research line in which the
performance of the MeWEHV architecture is compared to
new architectures based on other representations, like spec-
trograms, Power-Normalized Cepstral Coefficients (PNCC)
[69], and others.

Related to the previous point, a limitation in this work
is that only two acoustic representations were used at the
same time. In a future research line, the creation of new
architectures based on MeWEHV fed by more than two
representations can be explored in order to establish if the
addition of further representations increases, even more, the
results achieved.

Finally, the presented work demonstrates experimentally
that there is a complementarity between the used embeddings
generated from raw audio waves and the embeddings gener-
ated from MFCCs. A future research line would also consist
of determining the causes of this complementarity, establish-
ing what information is missing in both representations.

IX. CONCLUSION
In this work we have proposed MeWEHV, a machine
learning model architecture that enriches the embeddings,
generated by a pre-trained wave encoder, using features
extracted fromMFCC representations. MeWEHV was tested
on the language identification task with the VoxForge,
Common Language, and LRE17 datasets, achieving accu-
racies of up to 97.60%, 72.53%, and 41.05%, respectively,
superior to other state-of-the-art approaches. It should be
noted that the MeWEHV architecture only requires 1.04M
additional parameters in addition to the wave encoder
parameters, representing only 0.33% to 1.09% additional
parameters.

Furthermore, the model was tested in the identification of
accents with the Latin American Spanish Corpora, achieving

an accuracy of up to 87.62%. This is the first result reported
with this dataset in this specific task, which will allow future
research to have a reference result to compare with. More-
over, it was tested on the Common Voice, and NISP datasets
achieving an accuracy of up to 42.55%, and 84.42%, respec-
tively. In all three datasets the MeWEHV models achieved
the highest results.

We proposed YouSpeakers204, a new speaker identi-
fication dataset, highly balanced by accent and speaker
gender, in which MeWEHV obtained 89.22%, which is
the highest accuracy. Together with the dataset, we pro-
posed training, test, and validation sets, which can be used
by other researchers for a fair comparison. In speaker
identification, we also tested the VoxCeleb1 dataset,
and the VBHIR dataset, obtaining the best results with
MeWEHV, with accuracies of up to 70.62%, and 94.67%,
respectively.

In all experiments, the results of MeWEHV models were
compared with the CNNMFCCmodel which is anMFCC-fed
CNN model, and with five state-of-the-art embedding gen-
eration models, i.e. WavLM base, WavLM large, XLSR-
Wav2Vec2, HuBERT base and HuBERT large, outperform-
ing, in all cases, their results. In this way, we demonstrated
that our approach is superior to all baselines, in multiple
speech classification tasks.

Thus, this work allows the use of a machine learning
architecture that requires training with a relatively low addi-
tional computational cost and consistently achieves superior
results than the baselines. Our architecture provides a general
framework that can be used with other pre-trained models as
wave encoders.

This paper demonstrates experimentally that there is a
complementarity between the information that MeWEHV
is able to extract from the embeddings generated by a
pre-trained model from raw audio and the MFCCs extracted
from the same audios, since the results of using both
representations outperformed the results of using each rep-
resentation separately.
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