
Sidebar - Programming Commercial Robots

José Maŕıa Cañas1, Vicente Matellán2, Bruce MacDonald3, and Geoffrey
Biggs4

1 Robotics Group, GSyC-DITTE, Universidad Rey Juan Carlos. Móstoles
(Madrid), Spain jmplaza@gsyc.escet.urjc.es

2 Robotics Group, GSyC-DITTE, Universidad Rey Juan Carlos. Móstoles
(Madrid), Spain vicente.matellan@urjc.es

3 Robotics Group, Department of Electrical and Computer Engineering,
University of Auckland, New Zealand b.macdonald@auckland.ac.nz

4 Robotics Group, Department of Electrical and Computer Engineering,
University of Auckland, New Zealand g.biggs@auckland.ac.nz

Lozano–Pérez [LP82] divided robot programming into methods for guiding,
robot–level programming, and task–level programming. A more useful dis-
tinction for modern methods is between manual programming and automatic
programming, based on the actual method used for programming as this is
the crucial distinction for users and programmers.

Manual

Programming

GraphicalText−based

Languages

Specific

Controller−

Languages

Procedural

Generic

Languages

Behaviour−

based

Systems

Graph

Systems

Flowchart

Systems

Diagramatic

Fig. 1. Categories of manual programming systems. A manual system may use a
text-based or graphical interface for entering the program.



4 Authors Suppressed Due to Excessive Length

Learning

Systems

Programming

by

Demonstration

Instructive

Systems

Touch

Teach Pendant/

Vision

Gesture/Voice/

Automatic

Programming

Fig. 2. Categories of automatic programming systems. Learning systems, program-
ming by demonstration (PbD) and instructive systems are all methods of teaching
robots to perform tasks.

Manual systems require the user/programmer to directly enter the desired
behaviour of the robot, usually using a graphical or text-based programming
language, as shown in Fig. 1. Text-based systems are either controller-specific
languages, generic procedural languages, or behavioural languages, which typi-
cally differ by the flexibility and method of expression of the system. Graphical
languages [BKS02, BI01] use a graph, flow-chart or diagram based graphical
interface to programming, sacrificing some flexibility and expressiveness for
ease of use.

The user/programmer has little or no direct control over the robot code in
an automatic programming system, which may acquire the program by learn-
ing, programming by demonstration (PbD), or by instruction, as indicated
in Fig. 2. Often automatic systems are used “online,” with a running robot,
although a simulation can also be used.

In this sidebar we will focus on the characteristics of commercial program-
ming environments. Simple robots can be programmed directly using their
own operating systems. More sophisticated robots include SDKs to simplify
the programming of their robots. Mobile robots programming environments
vs. industrial manipulators are also presented.

1 Industrial Manipulators

Programming systems for industrial manipulators include both manual and
automatic methods of programming. Initially manual programming tools were
common, in the form of text-based controller-specific languages. Controller–



Sidebar - Programming Commercial Robots 5

Fig. 3. The KUKA programming environment. [From [KUK05]]

specific languages are designed for a single robot system, for example the
system provided by KUKA, shown in Fig. 3.

Coupled with touch screens, graphical languages can enable rapid config-
uration of industrial robots.

PbD was developed for industrial robot manipulators, using a teach pen-
dant or similar method to move the manipulator to each position in a task,
where the robot’s joint positions are recorded for later playback. Recent work
in PbD has focussed on creating more flexible robot programs by segment-
ing demonstrations to identify key actions [EZRD02, CM98, CM00, CZ01,
OTKI02], and on using more natural interaction methods such as voice and
touch to perform the demonstrations [GSASH01, YKY02, TOKI02]. Other
work includes virtual environments for PbD [OSK02], finger sensors to de-
tect fine manipulations [ZRDZ02], and graphical display of demonstration
results [FHD98].

2 Mobile robots

Mobile robot programming has evolved significantly in recent years, and two
approaches are currently found, both manual programming methods. On one
hand, application programs for simple robots obtain readings from sensors
and send commands to actuators by directly calling functions from the drivers
provided by the seller. On the other hand, we have identified many common
features across commercial SDKs.



6 Authors Suppressed Due to Excessive Length

First, they offer a simple and more abstract access to sensors and actua-
tors than the operating systems of simple robots. For example, in a Pioneer
with a laser rangefinder, the applications can obtain readings using ARIA or
directly through a serial port. Using ARIA, one need only invoke a method
and ARIA will take charge of refreshing the variables. Using the operating
system directly, the application must request and periodically read the data
from the laser through the serial port, and must identify the protocol of the
device to compose and analyze the low level messages correctly. The abstract
access is also offered for actuators.

Second, the software architecture of the SDK sets the way the applica-
tion code obtains sensor data, commands the motors, or uses a developed
functionality. There are many software options: calling to library functions,
reading variables, invoking object methods, sending messages via the network
to servers, etc.. Depending on the programming model the robot application
can be considered an object collection, a set of modules talking through the
network, an iterative process calling to functions, etc.

Third, usually the SDK includes simple libraries and common use func-
tionality, such as robust techniques for perception or control, localization, safe
local navigation, global navigation, social abilities, map construction, etc. The
robot manufacturers sell them separately or include them as additional value
with their own SDK. For example, ERSP includes three packages in the basic
architecture: one for interaction, one for navigation and another for vision.

There are several advantages of using the SDKs. First, they favor the
portability of applications between different robots. Second, they promote
code reuse, shortening the development time and reducing the programming
effort needed to code the application as long as the programmer can build the
program by reusing the common functionality, keeping herself focused in the
specific aspects of her application. And third, the software architecture offers
a way to organize code, allowing the handling of code complexity when the
robot functionality increases.

The next sections present some case studies for different mobile robot
environments. Most of them are based on libre5 software because it lets us
freely explore the underlying technologies.

2.1 LEGO RCX and BrickOS

The RCX6 in Fig. 5 is sold as a creative and educational toy. It has a central
processor, the RCX brick, and a set of LEGO pieces that are assembled to
build the body. There are many ways to program it. LEGO offers a graphical
programming environment oriented to children, named RCX-code (Fig. 4).
Another possibility is NQC [Bau00], a variation of C which includes instruc-
tions to access to the sensors and actuators.
5 We use the Spanish term “libre” to avoid the common misunderstanding between

free as in “free beer” and free as in “free speech.”
6 http://www.legomindstorms.com



Sidebar - Programming Commercial Robots 7

Fig. 4. The Lego Mindstorms graphical programming environment, used to create
simple programs for Lego robots.

The open-source operating system BrickOS7, developed by Markus L.
Noga [Nie00], allows programming the brick in C. And the LeJOS operat-
ing system allows the creation of Java applications. These operating systems,
including the original LEGO, offer multitasking. Since its sensors and actua-
tors are simple, an SDK is not necessary and applications can be developed
without difficulty, programming directly over the API of the operating system.

robot hardware

Robotic application

Operating System
drivers

BrickOS
drivers

C application

drivers
ROBIOS

C application

Fig. 5. LEGO (center) and EyeBot (right) are programmed over their Op. Systems

7 http://brickos.sourceforge.net/



8 Authors Suppressed Due to Excessive Length

2.2 EyeBot and ROBIOS

The EyeBot 8 [Bra03] is a small robot. Its operating system, ROBIOS, is a
meaningful example of an ad-hoc operating system. It allows programs to be
loaded through a serial port and executed by pushing buttons. The ROBIOS
API includes functions to read the infrared sensors, capture images from the
camera and move the motors at a certain speed. It also includes two functions
to send and receive bytes through the radio link to other EyeBots or a PC.
ROBIOS includes primitives to monitor whether a button is being pushed, and
to display images and text on the screen. Concerning multitasking, ROBIOS
has primitives to create, pause or kill threads. It offers two ways to share the
processor time between threads: with and without preemption. If also offers
locks for the coordination of concurrent execution of these threads, and access
to shared variables.

2.3 Aibo and OPEN-R

The Aibo robot9 in Fig. 6) is sold as a pet, with a program that governs its
movements to exhibit dog behaviors (follow a ball, look for a bone, dance,
etc.) and learn. Since the summer of 2002 it has been possible to program it,
and so the AIBO is useful for research. The operating system in charge of con-
trolling the hardware devices is Aperios, a real-time operating system based
on objects. On top of this, Sony provides the OPEN-R SDK [Cor03], which
includes many specific C++ objects to access the Aibo hardware. There are
objects for basic access to camera images, joint positions, management of the
TCP/IP stack and management of the microphone and speaker. Additionally,
OPEN-R allows multitasking and event oriented programming.

2.4 Pioneer and ARIA

The Pioneer10 is a medium size robot, shown in Fig. 6. Its onboard PC is
connected to the base microcontroller via a serial port. ARIA (ActivMedia
Robotics Interface for Applications) [Rob02] is the manufacturer SDK for
the Pioneer robot. ARIA is supported by ActivMedia Robotics, but it is dis-
tributed with a GPL license. It offers an object-oriented programming envi-
ronment, which includes support for multitasking programming and network
communication. Applications must be written in C++, and since ARIA runs
both on Linux and MS-Windows, the same ARIA application can control
robots from either operating system.

For hardware access, ARIA offers a collection of classes, which setup an
object based API. The main class ArRobot has many relevant methods. There

8 http://robotics.ee.uwa.edu.au/eyebot/
9 http://www.aibo.com/

10 http://www.activrobots.com/



Sidebar - Programming Commercial Robots 9

SDK

robot hardware

Operating System

Robotic application
APERTOS

C++ application

OPEN−R

C++ application

ARIA

GNU/LINUX, MS−WINDOWS

Fig. 6. Two robots programmed using an SDK: Aibo (center) and Pioneer (right)

are classes for range sensors and their objects have methods which allow the
application to access the data from the proximity sensors. The objects of ARIA
are not distributed, ARIA allows the programming of distributed applications
using ArNetworking to manage remote communications.

Concerning multitasking, the application on ARIA can be programmed as
mono-threaded or multi-threaded. In the latter, ARIA offers infrastructure for
both user threads and kernel threads, which are a wrapper of the native Linux-
pthreads or Win32-threads. For concurrency and synchronization ARIA offers
resources such as ArMutex and ArCondition. It also has basic behaviors such
as safe navigation and obstacle avoidance, but it does not include map con-
struction or localization functionalities, which are sold separately. Recently, it
has included the open-source simulator Stage (renamed as MobileSim), which
has been adapted to work with ARIA. It is a clear example of code reuse in
robot applications, involving a private company.



References

[Bau00] Dave Baum, Dave baum’s definitive guide to lego mindstorms, Apress,
2000.

[BI01] A. Bredenfeld and G. Indiveri, Robot behavior engineering using DD-

Designer, Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, vol. 1, 2001, pp. 205–210.

[BKS02] R. Bischoff, A. Kazi, and M. Seyfarth, The MORPHA style guide for

icon-based programming, Robot and Human Interactive Communica-
tion, 2002. Proceedings. 11th IEEE International Workshop on, 2002,
pp. 482–487.

[Bra03] Thomas Braunl, Embedded robotics, Springer Verlag, 2003.
[CM98] J. Chen and B. McCarragher, Robot programming by demonstration-

selecting optimal event paths, Robotics and Automation, 1998. Proceed-
ings. 1998 IEEE International Conference on, vol. 1, May 1998, pp. 518–
523.

[CM00] J.R. Chen and B.J. McCarragher, Programming by demonstration - con-

structing task level plans in hybrid dynamic framework, Proceedings of
the IEEE Intl. Conf. on Robotics and Automation (ICRA ’00), vol. 2,
apr 2000, pp. 1402–1407.

[Cor03] Sony Corporation, Open-r sdk, programmers guide, Technical Report
20030201-E-003, 2003.

[CZ01] J.R. Chen and A. Zelinsky, Programming by demonstration: removing

sub-optimal actions in a partially known configuration space, Proceed-
ings of the IEEE Intl. Conf. on Robotics and Automation (ICRA ’01),
vol. 4, May 2001, pp. 4096–4103.

[EZRD02] M. Ehrenmann, R. Zollner, O. Rogalla, and R. Dillmann, Programming

service tasks in household environments by human demonstration, Robot
and Human Interactive Communication, 2002. Proceedings. 11th IEEE
International Workshop on, 2002, pp. 460–467.

[FHD98] H. Friedrich, J. Holle, and R. Dillmann, Interactive generation of flexi-

ble robot programs, Robotics and Automation, 1998. Proceedings. 1998
IEEE International Conference on, vol. 1, May 1998, pp. 538–543.

[GSASH01] G. Grunwald, G. Schreiber, A. Albu-Schaffer, and G. Hirzinger, Touch:

The direct type of human interaction with a redundant service robot,



12 References

Robot and Human Interactive Communication, 2001. Proceedings. 10th
IEEE International Workshop on, 2001, pp. 347–352.

[KUK05] KUKA Automatisering + Robots N.V., http://www.kuka.be/, June
2005.

[LP82] Tomás Lozano-Pérez, Robot programming, Tech. Report Memo 698, MIT
AI, December 1982, revised April 1983 1982, Also published in Proceed-
ings of the IEEE, Vol 71, July 1983, pp.821–841 (Invited), and IEEE
Tutorial on Robotics, IEEE Computer Society, 1986, pp.455–475.

[Nie00] Stig Nielsson, Introduction to the legos kernel, Technical Report, 2000.
[OSK02] H. Onda, T. Suehiro, and K. Kitagaki, Teaching by demonstration of

assembly motion in vr - non-deterministic search-type motion in the

teaching stage, Intelligent Robots and System, 2002. IEEE/RSJ Inter-
national Conference on, vol. 3, 2002, pp. 3066–3072.

[OTKI02] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi, Generation of

a task model by integrating multiple observations of human demonstra-

tions, Proceedings of the IEEE Intl. Conf. on Robotics and Automation
(ICRA ’02), vol. 2, May 2002, pp. 1545–1550.

[Rob02] ActivMedia Robotics, Aria reference manual, Technical Report (1.1.10),
2002.

[TOKI02] J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, Correcting ob-

servation errors for assembly task recognition, Intelligent Robots and
System, 2002. IEEE/RSJ International Conference on, vol. 1, 2002,
pp. 232–237.

[YKY02] Y. Yokokohji, Y. Kitaoka, and T. Yoshikawa, Motion capture from

demonstrator’s viewpoint and its application to robot teaching, Proceed-
ings of the IEEE Intl. Conf. on Robotics and Automation (ICRA ’02),
vol. 2, May 2002, pp. 1551–1558.

[ZRDZ02] R. Zollner, O. Rogalla, R. Dillmann, and M. Zollner, Understanding

users intention: programming fine manipulation tasks by demonstration,
Intelligent Robots and System, 2002. IEEE/RSJ International Confer-
ence on, vol. 2, 2002, pp. 1114–1119.


