

SUPPORTING INFORMATION: COMPARISON OF ACTI-VATION METHODS OF 3D-PRINTED ELECTRODES FOR MICROBIAL ELECTROCHEMICAL TECHNOLOGIES

Raúl M. Alonso¹, Isabel San Martín¹, Antonio Morán¹ and *Adrián Escapa^{1,2}

 ¹ Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Avda. de Portugal 41, E-24009 Leon, Spain
² Department of Electrical Engineering and Automatic Systems, Universidad de León, Campus de Vegazana s/n, E-24071 León, Spain

Figure S1. Current density profiles of two successive cycles at the end of a 60 days period that allowed for the development of a stable biofilm.

Electrochemical Impedance Spectroscopy Analysis (EIS)

The EIS spectra obtained during the abiotic characterization of the PLA/Graphene electrodes (Figure 3) were fitted to equivalent circuits to facilitate the interpretation of the results. Two equivalent circuits (EC) have been proposed. Circuit 1 (Fig. SI1 1)) has proved to be useful in the modelling of successfully activated electrodes (DMF and acetone). The main characteristics of the spectra can be explained using a modified pore model version. In this model the impedance of the pore wall is modelled by a charge transfer resistance (R₂), a Warburg impedance (W₂) and a constant phase element (Q₂) accounts the pseudo-capacitive processes that occur at the electrode-electrolyte interface. Table 1 summarizes the fitted parameters to EC 1. The parameter a2 allows to compare the near capacitive behavior of DMF electrode in contrast to the pseudo-capacitive behaviour of acetone electrode (a₂=1 in an ideal capacitor).

EC 2 has served as model from control and electrochemical-treated electrodes. Its elements respond to the modelling of two different pseudo-capacitive processes, perhaps because they occur at two different spatial scales.

The impedances of constants phase elements were adjusted to the expression:

$$Z_Q = \frac{1}{Q\omega(j\omega)^a}$$

Where Q is the pseudocapacitance (F.s^{a-1}), j the imaginary unit, ω is the angular frequency (s⁻¹) and a is an empirical dimensionless parameter (0 for a resistor and 1 for an ideal capacitor).

The impedance of Warburg element is described by:

$$Z_W = \frac{S}{\sqrt{j\omega}}$$

Where S is in (Ω .s^{-1/2}), j the imaginary unit, ω is the angular frequency (s⁻¹).

Electrode	Equivalent circuit	R ₁ (Ω)	R₂ (Ω)	Q ₂ (F.s ^{a-1})	a₂	S ₂ (Ω.s ^{-1/2})
DMF	(1)	14.5	313.8	5.38x10 ⁻⁴	0.907	23.38
Acetone	(1)	23.6	238	1.04x10 ⁻⁴	0.623	9.81

Table S1. Fitted parameters to EC1 (DMF and acetone electrodes).

Electrode	Equivalent circuit	R ₁ (Ω)	R ₂ (Ω)	R₃ (Ω)	Q₂ (F.s ^{a-1})	a₂	Q₃ (F.s ^{a-1})	a ₃
Control	(2)	25.8	119.6	13921	7.4x10 ⁻⁵	0.45	1.2x10 ⁻⁴	0.57
Electrochemical	(2)	23.5	80.3	1205	8.7x10 ⁻⁶	0.73	1.12x10 ⁻³	0.612

Table S2. Fitted parameters to EC 2 (control and electrochemical-treated electrodes).

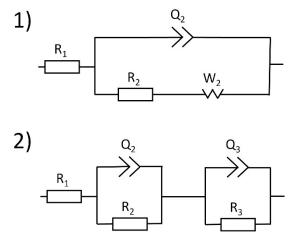


Figure S2. Equivalent circuits for abiotic electrode essays' modellization.1) DMF and acetone 2) Control and electrochemical treatment.