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Abstract: Social robots have an enormous potential for educational applications and allow for cognitive
outcomes that are similar to those with human involvement. Remotely controlling a social robot to
interact with students and peers in an immersive fashion opens up new possibilities for instructors
and learners alike. Using immersive approaches can promote engagement and have beneficial effects
on remote lesson delivery and participation. However, the performance and power consumption
associated with the involved devices are often not sufficiently contemplated, despite being particularly
important in light of sustainability considerations. The contributions of this research are thus twofold.
On the one hand, we present telepresence solutions for a social robot’s location-independent operation
using (a) a virtual reality headset with controllers and (b) a mobile augmented reality application. On
the other hand, we perform a thorough analysis of their power consumption and system performance,
discussing the impact of employing the various technologies. Using the QTrobot as a platform,
direct and immersive control via different interaction modes, including motion, emotion, and voice
output, is possible. By not focusing on individual subsystems or motor chains, but the cumulative
energy consumption of an unaltered robot performing remote tasks, this research provides orientation
regarding the actual cost of deploying immersive robotic telepresence solutions.

Keywords: social robotics; education; immersive telepresence; teleoperation; virtual reality; aug-
mented reality; mobile computing; human–robot interaction; user interface design

1. Introduction

The potential of social robots for educational applications is enormous, allowing cogni-
tive outcomes that are similar to those with human involvement [1]. While many research
efforts focus on aspects related to autonomous and cognitive robotics for education [2–5],
enabling learners and instructors to control a social robot remotely and to immersively inter-
act with their peers and students opens up further possibilities for effective lesson delivery,
participation, and tutoring in the classroom. For the operator, who could be either a teacher
or a tutor (peer) [6], directly interacting with students is crucial for acquiring non-verbal
feedback and observing immediate reactions to evaluate their comprehension [7].

Educational research distinguishes various communication mechanisms between
students and instructors, i.e., teachers or tutors, which include non-verbal clues that
are visible to the instructor during the lesson [7,8]. These clues involve monitoring and
tracking motion to different extents and the time that students spend looking at materials
or looking away. Conversely, instructor feedback to students is equally important to the
learning process [9], and could be transmitted to students using the verbal and non-verbal
capabilities of the robot. A social robot with diverse interaction modalities would thus
increase the quality and amount of feedback delivered to students.

Virtual reality (VR) and augmented reality (AR) technologies lend themselves perfectly
to complement pure human–robot interaction (HRI) scenarios where a robot is controlled
remotely. Operators using a VR headset combined with motion-based control can naturally
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translate their movements into input, which, together with the visual, acoustic, and further
channels of expression, allows for a highly immersive interaction between operator and
student. Technologies such as emotion recognition and face detection further enhance how
the operator can perceive the student.

Due to the proliferation and high availability of mobile networked devices, such as
smartphones or tablets, in addition to the VR-based telepresence solution discussed in [10],
in this article, we also introduce a mobile application for the location-independent operation
of a social robot. Albeit slightly less immersive, an AR layer in a mobile application can
also present much of the above information. Motion controls can be realized through both
touch or gyroscopic input.

The recent COVID-19 pandemic has resulted in remote teaching at an unprecedented
scale, with telepresence and related technologies gaining further significance. However,
the performance and power consumption associated with the involved devices are often
not sufficiently contemplated, despite being particularly important in light of sustainability
considerations. In addition to discussing VR- and app-based telepresence solutions for the
location-independent operation of a social robot (cf. Figure 1), we thus perform a thorough
analysis of their power consumption and system performance, examining the impact of
employing the various technologies. By not focusing on individual subsystems or motor
chains, but the cumulative energy and message flows within an unaltered robot performing
remote tasks, this research provides orientation regarding the actual cost of deploying
immersive robotic telepresence (IRT) solutions.

VR-based Telepresence

App-based Telepresence

Network

Phone
Robot

Computer

Figure 1. Immersive telepresence approaches that offer the operator different views and interaction modes: 3D/stereoscopic,
motion-focused (VR, top right) versus 2D, touch-focused (App, bottom right).

1.1. Problem Description

Robotic telepresence in classroom settings has been the subject of research for several
decades, resulting in different applied commercial solutions, such as Beam [11], Double [12], or
Ubbo [13], along with many purely experimental approaches.

Zhang et al. [14], for instance, proposed a telepresence system based on a robot avatar
controlled via a mobile-app solution where the robot fulfills the role of the teacher. In their
work, they reviewed the major hardware and software components associated with telepres-
ence systems. Other research approaches, such as that by Cha et al. [15], evaluated different
design elements associated with robot and interface systems for deploying the platforms in
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classroom scenarios. Based on the Beam system, they analyzed different user experience
challenges in teaching sessions through telepresence, such as communications, inclusion,
or embodiment. Gallon et al. [16] presented an overview based on Self-Determination
Theory (SDT), a psychological theory that was applied to understand the learning process
and how to motivate and attract students’ attention. Using Transactional Distance (TD)
theory, they suggested a multi-device system comprising a tablet serving as a whiteboard
and a computer for robot control. TD focuses on technology-enabled teaching and learning,
determining the degree of psychological distance between the student and the teacher,
including the three variables of dialogue, structure, and learner autonomy.

The robots in all of these experiments consisted of a display or tablet computer mounted
on a mobile drive unit, only vaguely resembling a human. Even with this non-anthropomorphic
shape, such robots prove to be valuable for education, and embodiment constitutes a cor-
nerstone of student engagement [17]. The addition of other humanoid features to the robot
is usually omitted due to bandwidth requirements, as well as an increased interaction
complexity and higher cognitive load for users [15]. In terms of interface, the final operator
is provided with information similar to that of videoconferencing software, i.e., audio–
visual data from the local robot are transmitted to the remote operator, and vice versa.
Some complex tasks can be performed autonomously, such as approaching students or
navigating in the classroom [14].

The majority of studies focus on enabling telepresence in the first place and rarely
take an immersive approach [18], which would involve dedicated social robots, as in [10],
or adapted robots, as in [19]. IRT solutions are much more common in, e.g., drone oper-
ation [20], since, once airborne, more degrees of freedom (DoFs) can be easily mapped
to motion and sensorics, and VR technology [21] can potentially be involved to convey a
higher informational bandwidth.

VR elements in an IRT system for educational purposes add another dimension to
curricular components, offering many promising applications [22]. For instance, individ-
uals interacting with VR textbooks show better performance and obtain better feedback
than under traditional or video conditions [23]. VR has also been successfully employed in
physical education for people with disabilities [24]. However, such advantages observed in
VR studies also require analysis from a Robotics in Education (RiE) perspective [25], from a
curricular point of view [26], and in the broader perspective of Inclusive Education [27] in
order to be able to provide equal opportunities for all.

Although most of the reviewed IRT approaches are well motivated and well intended,
the literature mainly focuses on the analysis of bandwidth consumption, operator experi-
ence, and final user acceptability. Deployment cost and resource consumption are rarely
contemplated fully, which, under sustainability considerations, is highly relevant and
might result in different design decisions, choices, and concerns.

1.2. Challenges

When deploying robots outside of a laboratory context, power consumption con-
straints become a central concern. Depending on the application, the robot’s battery can be
drained in no time and can deteriorate the user experience. For instance, it is well known
in the robotics community that vision systems and the associated sensors generate most of
a system’s overall consumption.

Modeling a robot’s resource consumption is tackled similarly to modeling any other
computer system [28]. It is not a straightforward process when the robot is not meant to
be tampered with and to remain unopened. Therefore, it is necessary to first identify and
estimate the power consumption of the platform’s various hardware components. Subse-
quently, the power associated with software applications needs to be modeled, since different
heuristics would produce other levels of power consumption [29].
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1.3. Research Question(s)

This article focuses on IRT for remote educational scenarios. By discussing a dedi-
cated social robot’s location-independent operation using (a) a VR headset and controllers
and (b) a mobile application, we explore the following central aspects and associated
research questions:

• RQ1—Applicability. How can we use immersive technologies, such as VR and AR,
to promote engagement in remote educational scenarios involving robots?

• RQ2—Sustainability. How do IRT solutions fare in light of sustainability considerations?

– RQ2.1 (explanatory). What is the cumulative energy consumption?
– RQ2.2 (exploratory). What are the effects of different immersive technology types

on robot performance?
– RQ2.3 (exploratory). What are the deployment costs of each system?

By answering the above research questions and analyzing power consumption, per-
formance, and other vital indices, this article provides a general overview and a set of
guidelines on the potential and associated costs to consider when deploying different IRT
solutions using both VR-based and AR-based approaches. A more detailed discussion of
the underlying framework and an initial qualitative study on how the different stakehold-
ers in educational settings, i.e., instructors, learners, and peers, receive IRT solutions can be
found in [10].

2. Materials and Methods
2.1. Robot

This project’s robotic platform is LuxAI’s QTrobot [30], a humanoid robot with an
expressive social appearance. It has a screen as its face, allowing it to display facial
expressions and emotions using animated characters, along with 12 DoFs to present upper-
body gestures. Eight DoFs are motor controlled—two in each shoulder, one in each arm,
plus pitch and yaw movements of the head. The other four—one in each wrist and one in
each hand—can be manually configured. As shown in Figure 2, amongst other features,
QTrobot has a close-range 3D camera mounted on its forehead and is provided with a
six-microphone array. The QTrobot is powered by an Intel NUC processor and Ubuntu
16.04 LTS, providing it with a native Robot Operating System (ROS) interface.

3D Camera
Intel RealSense SR300

Microphone
6 MEMS's Microphone Array

Processor
Intel NUC 7i7BNH

Memory/Storage
16 GB DDR4 RAM
256 GB M.2 SSD

Connectivity
WLAN: 2x IEEE 802.11 b/g/n
HDMI 2.0a, USB-C(DP1.2), USB 3.0
Ethernet (optional)

Stereo Speakers
Frequency Response: 150-20,000 Hz
Impedance: 4 Ohm

Actuators
HerkuleX Smart Servos

Figure 2. QTrobot features and hardware specifications.
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2.2. Robot Power Model

Throughout an HRI-based telepresence session in the classroom, the robot performs
different interaction patterns with the students. Generally, social robotics research favors
the inclusion of new technologies and approaches in the robot and its interfaces to enhance
operator experience and perceived usability (e.g., offering multiple devices for control
with augmented information on the robot’s environment using lasers or 3D cameras,
adding arms for enhancing the acceptability of the robot). Therefore, it is crucial to
consider all hardware components involved in the robot routine to achieve better energy
efficiency and, in some cases, to avoid specific software solutions that increase overall
power consumption σ:

σComplete = (PHW × PSW) (1)

Hence, the consumption model σ proposed here is associated with hardware compo-
nents PHW , which have a consumption associated with behaviors defined from the software
point of view (PSW).

2.2.1. Hardware Perspective

From the hardware perspective, this study generalizes robot power consumption. The
model for the robot is simplified into the next formula according to the approach suggested
by Mei et al. [31]:

PHW = PSensors + PActuators + PMainControllerUnit + POther (2)

An electronic device can function as both a sensor and actuator, e.g., a motor where it
is possible also to measure movement by analyzing its consumption. However, to reduce
complexity, we assign one device per action. For instance, a piezoelectric transducer in a
speaker produces sounds, and we will not consider it as a microphone.

• Sensors. Every robot has a set of sensors that measure various physical properties
associated with the robot and its environment. Again, we follow Mei et al. [31], who
suggested a linear function to model the power consumption of sensors:

Ps( fs) = cs0 + cs1 fs (3)

The proposal connects the sensing power (Ps) to two physical constants associated
with the device, and is also coupled with the sensing frequency.

• Actuators. This study simplifies the actuators into motors, which convert electrical
energy into mechanical energy. The motor power consumption is associated with the
mechanical engine and the transforming loss related to friction or resistance, such
as those associated with grasping and manipulating objects or the surface where the
robot is moving. Once more, Mei et al. [31] proposed a possible model to be applied
in this case:

Pm(m, v, a) = Pl + m(a + gµ)v (4)

A motor’s motion power Pm is associated with mass m, v represents the velocity,
and a defines the acceleration. Pl defines the transforming loss, and m(a + gµ)v is the
mechanical power, where g is the gravitational constant.

• Main Controller Unit. This element is responsible for managing the robot and parts
of the controllers with their associated devices. It comprises the central processing
unit (CPU) and can sequence and trigger robot behaviors using the different hardware
elements under its controls. This study simplifies the model in that all components
are evaluated together, and it does not distinguish between the directly (hard drive
and fans) and indirectly measurable (network ports) devices.

• Others. There are different devices that need to be considered, such as controllers,
routers, external fans, batteries, displays, or speakers. Each one is modeled on its own,
and product specifications define their values.
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2.2.2. Software Perspective

To assess the power consumption impact of a particular software, this study uses the
model presented by Acar et al. [32], which encompasses the following model subtypes:

• CPU Model. The power consumed by a specific process given a set of constants and
the percentage of CPU use over a period of time.

• Memory Model. The power that a process needs when triggering one of the four
states of the random access memory (RAM): read, write, activate, and precharge.

• Disk Usage Model. The power consumption associated with read/write processes of
a given application when the disk is in active mode.

Combined, these yield the following formula for modeling the software-related
power consumption:

PSo f tware = PCPU,id + PDRAM,id + PDisk (5)

At times, the power consumption associated with sending or receiving data through
the network is also considered. However, as this is highly specific to how the various ROS
topics and the associated ROS message types are defined, we opt for a model that does not
include these data.

2.3. QTrobot Power Model

While Section 2.2 discusses the generalized robot power model, this section details
how it specifically maps onto the QTrobot platform employed in this study. The resulting
model constitutes the basis for the experiments and measurements discussed later.

2.3.1. Hardware Perspective

Physically, the QTrobot (cf. Figure 2) is a non-mobile platform. The power supply
unit is a strictly one-way single-entry point system from a regular plug dock of 220 V.
As detailed in Section 2.1, the QTrobot has eight DoFs for arm and head movements. In
addition, it includes a few extra actuators and sensors—mainly a RealSense camera, as
well as a microphone array. The robot also includes a speaker that is used for presenting
audible information. Furthermore, it has an eight-inch display and an Intel NUC, and we
generalize other components that potentially consume energy in the system (e.g., fans).

• NUC: The robot integrates an Intel NUC i7 computer running an Ubuntu 16.04 LTS
operating system with 16 GB of RAM. The NUC kits are well known for their bounded
consumption [33].

• Camera: The QTrobot is equipped with an Intel RealSense D435 depth camera. Ac-
cording to the Intel documentation [34], it demands 0.7 Amps as a feeding source
for operating.

• Motors: The robot has eight motors rendering eight DoFs for the robot’s neck and
two arms. The neck’s two motors provide pitch and yaw, while each arm contains
two motors in the shoulders and one in the elbow. It is out of this work’s scope
to evaluate the motor efficiency, so we generalize the power consumption without
explicitly dealing with copper, iron, mechanical, and stray losses.

• Display: QTrobot features an LCD panel that is active from the moment that the robot
is switched on. This eight-inch multicolor graphic TFT LCD with 800 × 480 pixels
mainly shows direct animations of facial expressions. The current version does not
allow changes to the backlight brightness, so it is assumed to work under the same
operating voltage and current as the robot. It is not possible to measure or extract
more information about its consumption without disassembling the display.

• Speaker: The robot has a 2.8 W stereo-class audio amplifier with a frequency rate of
800–7000 Hz.

• Other: Any regulators, network devices, or other control mechanisms beyond our
knowledge that somehow drain power.
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Combined, these yield the following formula for modeling the hardware-related
power consumption:

PHW = PNUC + PCamera + PMotors + PDisplay + PSpeaker + POther (6)

As mentioned above, the procedures of handling the power consumption of each
element individually would require disassembling the robot; therefore, this study manages
consumption as a single consumption element.

2.3.2. Software Perspective

From the software perspective, the power consumption is static or dynamic. Static
power consumption results from the component’s features as defined by the manufacturer,
and therefore remains unalterable. Hence, we only model and investigate dynamic power
consumption, which depends on the software’s implementation and source code.

The main applications used in the IRT experience in this article are:

• Robot Operating System (ROS) [35]: ROS is considered the de facto standard for
robotics middleware. It provides a set of libraries and tools for building and running
robot applications.

• NuiTrack™: A 3D tracking system developed by 3DiVi Inc. [36] that provides a
framework for skeleton and gesture tracking. It offers capabilities for realizing natural
user interfaces.

• QTrobot Interface [37]: The set of ROS interfaces for robot interaction provided by
QTrobot’s manufacturer, LuxAI. Following ROS’s publish/subscribe paradigm, it
is possible to find an interface for implementing different robot behaviors, such as
changing the robot’s emotional and facial expressions, generating robot gestures,
or playing audio files.

• Telepresence Components: The set of software components for connecting to the
QTrobot ROS interfaces. These components have two views: the QTrobot side, where
the components manage robot interfaces, and the operator side, which comprises the
components running outside of the robot to control and present robot information
in VR-based IRT or app-based IRT. Additionally, there is always a link between both
sides presented by a communication channel, but its consumption footprint is not
evaluated in this study.

• Object Recognition: There is a component for offering object recognition in the robot.
Such components are notorious in the robotics community for having a higher CPU
consumption than other software components deployed in the robot. Specifically,
Find_Object_2D [38] is used, which is a webcam-based feature extractor employed to
detect objects. Upon detection, the component publishes the object ID and its position
on a dedicated ROS topic.

2.4. Telepresence

The different IRT solutions discussed in this research (cf. Figure 1) have slightly differ-
ent rationales behind their development: on the one hand, the VR-based solution for full
immersion, and on the other hand, the mobile-app-based solution for maximum availability.

2.4.1. VR-Based IRT

VR technology comprises two central elements: the hardware, i.e., all physical components
conveying the experience of and interaction with the environment, such as screens, gloves,
and controllers, and software, which allows the development of the virtual environments.

In terms of hardware, we employ the Oculus Rift 3 headset together with the ac-
companying Touch controllers for the VR-based telepresence solution (cf. Figure 1, top
right). The HMD consists of two PenTile OLED displays with an overall resolution of
2160 × 1200 at 90 Hz and a 110 degree field of view. This dual-display arrangement is
complemented by two adjustable lenses that rectify the 1080 × 1200 image for each eye
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to create a stereoscopic 3D image. The headset features rotational and positional tracking
and comes with integrated headphones supporting 3D-audio effects. The Oculus Touch
controllers utilize the same low-latency tracking technology as the headset, providing a
setup with joysticks and buttons for input and the opportunity for haptic feedback. Both
the headset and the controllers are tracked using Oculus’ Constellation sensors, a pair of
external infrared cameras mounted on dedicated desk stands.

Developers can easily integrate the Oculus hardware with existing game engines, such
as Unity, to create realistic VR experiences. We chose Unity, since it provides the flexibility
to deploy and develop the software on a wide range of different platforms [39]. Moreover,
it has a large community of developers, and there are previous results where the engine
has been put to good use in robot–VR scenarios [39,40]. Different ROS topics communicate
the essential data between the robot and the VR setup; worth mentioning are the two
separate streams provided by the stereo camera, which are necessary to generate the dual
image that is later corrected by the HMD’s lenses (cf. the render view in Figure 3a). The
VR-based IRT solution favors direct interaction control and the use of different sensory
channels. The operator’s head and arm motions are directly forwarded and translated to
the robot interacting with the users and bystanders. Other input, such as audio, can be also
be forwarded and processed in real time. Botev and Rodríguez Lera [10] provided further
details on the software architecture, user interface, and various interaction modes.

(a) VR-based IRT, HMD. (b) App-based IRT, smartphone.

Figure 3. Camera render views of the different IRT solutions.

2.4.2. App-Based IRT

The app-based telepresence solution (cf. Figure 1, bottom right) aims at providing
the same feature set and functionality as in VR-based IRT, but on a more widely available
hardware platform. Due to its dominant global market share of around 85 percent [41], we
chose Android as the target platform for the mobile application, which was also developed
in Unity (Version 2019.3.0a8). For the measurements, the application ran on a Samsung
A40 smartphone (Model SM-A405FN) with Android 10 installed. It has 4 GB of RAM and
comes with a 5.9-inch Super AMOLED display with FHD+ resolution of 2160 × 2340 pixels,
powered by an Exynos 7885 CPU and Mali-G71 MP2 GPU. The built-in sensors include an
accelerometer, fingerprint sensor, gyroscopic sensor, geomagnetic sensor, hall sensor, light
sensor, and proximity sensor.

The smartphone’s gyroscopic sensor is used to translate head motion. Simultaneously,
virtual joysticks with separate elbow motion sliders rendered on a semi-transparent layer
on top of the robot’s camera stream (cf. the render view in Figure 3b) allow the operator to
control arm movement. The partial control of some motors via touch input together with
the perceived screen size hampers immersion, but ensures full controllability. The robot
transmits an unprocessed, single-camera image to the device via a dedicated ROS topic.
The other topics are nearly identical to those of the VR-based IRT implementation, with
their data only rendered in a different way.
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2.5. Experiment Modes and Measurements

To measure the robotic system’s energy consumption in the different experiments,
we used a Fluke 289 True-RMS Digital Multimeter capable of high-resolution and event-
and interval-based logging of the electric current. The multimeter was placed between
the outlet and the robot’s power supply to intercept and record the actual, unalloyed
AAC values.

In addition to the externally gathered data, internal statistics were compiled using
system tools and a dedicated ROS profiling tool [42]. This tool harvests statistics about each
captured event, bounding the window start/stop, samples, and threads running. An event
contains information about CPU usage (as a percentage of total local use), virtual memory
use, and real memory use, which helps with the evaluation of PSo f tware (cf. Section 2.2.2).

Moreover, ROS bags were used for storing different performance and message data
on the robot during operation. The bags were created by subscribing to dedicated ROS
topics and storing the received data in an efficient file structure.

The experiment modes employed for evaluating the impact of the different IRT config-
urations can be classified into two behavioral categories:

• Test/Calibration: Robot behavior associated with various motion and gestures to
check the motor status and perform calibration tasks.

• Natural: Classic HRI-related robot behavior comprising motions and gestures such as
greetings, head tilts, or hand rubbing.

The next sections detail the various routines that we devised for the baseline and
realistic measurements, introducing the different experimental modes that form the basis
of the results discussed in Sections 3 and 4.

2.5.1. Baseline

To better evaluate the performance and power consumption with natural behaviors
and provide a common baseline for the measurements, we integrated two different test-
specific modes into our experimental setup. On the one hand, we assessed the robot in
idle mode, i.e., the QTrobot at the beginning or end of a session without any external or
scripted activity. On the other hand, a scripted demo routine provided a further indication
of the aggregate cost of coordinated motion using the robot’s different actuators. The demo
relied on the basic interfaces supplied by the manufacturer to trigger predefined motion
sequences as follows: The robot (1) spreads its arms while moving its head to look up,
(2) moves its head from left to right and, at the same time, twists and folds the stretched
arms so that its hands touch, and (3) moves its head to the upper left while the arms move
down, stretch, and settle in the default, relaxed position. Both baseline modes were carried
out with and without active 3D tracking to explore the associated cost.

2.5.2. Realistic

This study’s central element is the measurement under realistic conditions, i.e., com-
prising the full experimental setup with VR- and app-based IRT to control the QTrobot.
The following calibration routine with simplistic robot movements covers the respective
servo motors’ full play: (1) left arm (up/down), (2) right arm (up/down), (3) nod of the
head (up/down), and (4) shake of the head (left/right). Finally, we tested the system
with a natural motion routine mimicking realistic behaviors extending over all DoFs: (1)
wave with right arm bent (welcome), (2) fling up both arms (cheer), (3) grab and look
(investigate), (4) nod swiftly (sneeze), and wave with right arm stretched (farewell). These
gestures are examples of purposeful and meaningful interactions for robotic telepresence,
as proposed, e.g., in [43,44].

3. Results

This section presents the experimental results obtained from the profiling tools and
power consumption measurements. All experiments were performed in five iterations (or
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more) but for the baseline measurements, which needed less individual capturing, since no
applications were running.

The experiment results are presented below as follows: Firstly, we show the overall
real power consumption obtained from the power meter device; secondly, we focus on
the software results, where the CPU and RAM consumption is evaluated. In total, we
ran 39 different test routines, comprising 14 baseline measurements and 25 measurements
under realistic conditions (divided into five loops each plus an extra five rounds for cali-
bration in VR-based IRT). The 14 baseline measurements are distributed into four different
collections: (1) idle, default robot behavior; (2) idle with NUI, default, plus NuiTrack appli-
cation; (3) demo, default robot behavior running find-object-2d for entertainment purposes,
and (4) demo with NUI, similarly to the previous case, but adding NuiTrack. The reason
for using five extra loops for VR-based IRT was the appearance of non-normal outlier
cases during data analysis; thus, after removing some of them, we decided to maintain
ten iterations. Overall, the experimental results supported our core hypotheses and are
consistent with related research.

3.1. Hardware Perspective

The robot’s regular power consumption was measured using the external multimeter
(cf. Section 2.5) for periods of approximately one minute, during which data on the electric
current were recorded.

Research question 2.2 (“What is the cumulative energy consumption?”) is partially
answered with Table 1, which details the robot power in watts in both baseline and realistic
(i.e., app- and VR-based IRT) scenarios, underlining the importance of specific applications
in the robot. Firstly, the baseline cases without NuiTrack had a 44% and 37% lower power
consumption. Secondly, there was a measurable difference between the two IRT options,
with the VR-based approach producing a slightly higher consumption. This establishes that
telepresence proportionally doubles the overall power consumption, which natural-input,
VR-based IRT further exacerbates.

Figure 4 illustrates the cumulative consumption for the different experimental modes as
a function of power over time based on the events captured by the multimeter. The x-axis
indicates the variable count (over time), and the y-axis presents the consumption in Amps.
Looking at the realistic modes, we can discern two cases: (1) calibration (Figure 4a,b), where
the line slightly fluctuates around the mean, which is below 0.5, and (2) natural (Figure 4c,d),
where the line shows a pronounced fluctuation around a mean of above 0.5 for VR-based
IRT and below 0.5 in app-based IRT. The baseline (Figure 4e,g) and demo (Figure 4f,h) modes
also showed clearly discernible behaviors: The baseline remained mostly constant except for a
few sudden spikes, while the demo mode consistently showed dramatic power consumption
changes. In these cases, the consumption was around 0.3 Amps in the non-NUI approaches
and close to 0.5 Amps in those deploying NuiTrack, which was also reflected in the cumulative
power consumption data and relative behavior presented in Table 1.
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Figure 4. Cumulative power consumption over time in the different experimental modes (Amps).
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Table 1. Cumulative power consumption in different modes.

Power [W]

Baseline App-Based IRT VR-Based IRT

Idle Idle/NUI Demo Demo/NUI Calibration Natural Calibration Natural

Valid 3 8 1 2 5 5 10 5
Missing 0 0 0 0 0 0 0 0
Mean 59.684 105.774 69.641 110.627 111.811 110.224 113.051 121.638
Std. Deviation 1.469 1.753 NaN 0.063 1.285 0.768 1.359 0.885
Minimum 58.660 102.174 69.641 110.582 110.051 109.260 110.705 120.701
Maximum 61.368 107.349 69.641 110.671 113.662 111.212 115.155 122.493

3.2. Software Perspective

This section mostly covers the exploratory research question RQ2.2 (“What are the
effects of different immersive technology types on robot performance?”). The question
is associated with PSo f tware, and we examined the robot performance from two central
characteristics: CPU and memory. We refrained from measuring disk usage, assuming that
the robot processed everything in memory based on ROS’s publish/subscribe paradigm
without necessitating paging or using swap memory.

3.2.1. CPU Consumption

The percentage of mean CPU consumption associated with each routine is described
in Table 2, showing the cumulative mean CPU loads induced by the ROS processes during
the routine tested in each experimental approach. There were six different nodes involved
in every experiment associated with ROS: find_object2d, qt_emotion_app, record nodes,
rosprofiler, rostopic, and qt_nuitrack_app. Outside of the baseline modes, i.e., during the
actual IRT experiments, the following ROS nodes were active: infoJoints, repub, rosapi,
and rosbridge_websocket.

Table 2 indicates a low CPU consumption of under 15% for the idle and demo baseline
scenarios. However, involving NuiTrack or with realistic IRT modes, CPU consumption
leaped up to beyond 200%. In contrast, only around 6.4% of the CPU consumption was
necessary for running in the simple baseline.

The most distinctive peaks could be observed in the realistic scenarios, specifically
during calibration, where maximum values of up to 280% were possible, i.e., more than
30% above the actual mean values.

Table 2. CPU consumption associated with each routine.

Mean CPU Load [%]

Baseline App-Based IRT VR-Based IRT

Idle Idle/NUI Demo Demo/NUI Calibration Natural Calibration Natural

Valid 30 60 36 56 156 149 264 122
Missing 234 204 228 208 108 115 0 142
Mean 10.982 223.574 13.885 217.771 240.862 235.832 255.595 249.095
Std. Deviation 0.762 2.692 3.026 24.369 13.034 8.510 16.223 9.529
Minimum 9.530 218.030 8.541 138.965 216.535 220.540 185.175 231.063
Maximum 12.590 230.505 23.085 248.000 281.030 259.950 287.545 276.020

Figure 5 presents a high-level overview of the mean CPU consumption in percent over
time, with the x-axis indicating the number of events registered by the profiling tool. In
accordance with the profiling tool’s documentation [42], the sample rate was set to 0.1 s
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with an update rate of 2 s. The y-axis shows the mean CPU load in units of percent for the
total number of CPUs; values above 100 imply that more than one CPU core was used.

CPU load (%)
E
v
e
n
ts

Figure 5. Mean CPU load over time during the experiments (percent).

The overlaid plots in Figure 5 show that the baseline graphs level off around their
means (cf. Figure 6e,g,h). However, the demo mode with active NuiTrack exhibited four
drastic drops in find_object_2d. This might have been due to the app being blocked during
a short period of time, and therefore, its performance decreased. We included this data in
tabular form (cf. Table 3) for clarification; however, the specific behavior of this application
is out of this article’s scope, and these drop points are considered outliers when compared
to the otherwise constant behavior of the demo.

Table 3. Scenario-specific overview for the demo, NUI.

Mean CPU Load [%]

/find_object_2d /qt_emotion_app /qt_nuitrack_app

Mean 158.601 0.142 55.990
Std. Deviation 27.326 0.264 7.221
Minimum 79.995 0.000 46.990
Maximum 178.980 1.000 72.540

The app-based IRT approach, in turn, showed constant behavior over time (cf. Figure 6b,d).
The other realistic mode, VR-based IRT, showed a more fluctuating behavior over time;
however, this appears to be coherent with the scenario’s average performance.
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Figure 6. Mean CPU load over time in the different experimental modes (percent).
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3.2.2. Memory Usage

Memory usage is also associated with the software perspective and is one of the
elements that affects power consumption. Although the default consumption is low, a com-
ponent view of RAM power consumption [45] revealed values between 3 and 4.5 Watts
for a DDR2 RAM module at 1.8 Volts and 2 Watts for a DDR3 RAM module at 1.5 Volts.
Memory size and use should be considered for cases where much memory is needed, and it
is likely necessary to perform paging, which includes storing data on a disk, and therefore
also adds to the power consumption.

This study presents a general overview of the total RAM used for all ROS nodes
running on the system using the same nodes presented in Section 3.2.1 on CPU usage.
Table 4 contains the values measured for each scenario, which, again, exhibited consistent
behavior across scenarios (baseline and realistic). Baselines without NuiTrack used between
200 (idle) and 270 MB (demo), while the values increased to between 820 and 873 MB with
NuiTrack active. Conversely, the realistic scenarios showed means that doubled the mean
memory consumption.

Table 4. Memory consumption in the different experimental modes (megabytes).

Memory [MB]

Baseline App-Based IRT VR-Based IRT

Idle Idle/NUI Demo Demo/NUI Calibration Natural Calibration Natural

Valid 60 31 56 36 156 150 264 122
Missing 204 233 208 228 108 114 0 142
Mean 208.1 820.0 268.2 873.6 803.2 884.8 1658.2 1464.4
Std. Deviation 36.3 4.5 6.0 10.2 21.0 28.5 234.9 34.6
Minimum 12.0 796.2 233.3 821.6 764.5 828.4 1171.3 1414.7
Maximum 214.7 822.6 269.3 877.0 827.0 945.9 2462.6 1492.2

To illustrate these values, Figure 7 shows a box plot that reveals that the scenarios
with active NuiTrack showed a similar behavior to that of the realistic app-based option.
Finally, the realistic VR-based solution consumed almost 1.5 GB of RAM.
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3.3. Collateral Effects of the Telepresence Option

The remote telepresence component is not independent of robot telepresence compo-
nents, showing that the remote control or visualization tool relies on the hardware and
software components available on the robot. For instance, if the robot has stereo-vision
services provided by the camera, it will affect runtime performance. This means that a
telepresence system component can affect and be affected by other software components
that related with IRT or unrelated.

The chosen example is associated with the robot camera, as well as the assumption
that a data stream of stereo images will generate more consumption. Particularly, we will
analyze the Rosbridge performance. By definition [46], Rosbridge provides a JSON API to
ROS functionality for non-ROS applications. In our specific case, ROS needs to work with
the Unity framework, which both the VR-based and app-based IRT solutions require.

Table 5 presents an overview of the component performance. For VR-based IRT,
Rosbridge sends more information due to the requirement of simulating human binocular
vision. This requires sending more than one image per frame to perceive depth, nearly
doubling the machine’s CPU consumption. Moreover, the memory consumption is quite
similar for app-based and calibration-based operation. When comparing the results using
means, it should be noted that the calibration mode in VR is reported to have a high
value. However, when focusing on individual modes’ values, this pattern can be correlated
with other cases; both work under the same exponent and can be considered similar
and minimal.

Table 5. Rosbridge effects of VR-based and app-based IRT.

Mean CPU Load [%] Memory [MB]

Calibration, App Calibration, VR Natural, App Natural, VR Calibration, App Calibration, VR Natural, App Natural, VR

Valid 156 164 150 121 156 278 150 121
Missing 0 114 0 0 0 0 0 0
Mean 5.398 10.735 4.939 13.361 9.728 × 107 4.017 × 108 1.608 × 108 8.442 × 107

Mode 6.005 11.000 4.995 13.505 1.011 × 108 8.041 × 107 1.538 × 108 8.371 × 107

Std. Deviation 0.587 0.938 0.583 1.027 6.400 × 106 4.603 × 108 1.527 × 107 512,456.718
Minimum 3.990 7.455 2.995 10.000 8.214 × 107 6.188 × 107 1.538 × 108 8.343 × 107

Maximum 7.015 12.030 6.015 15.010 1.013 × 108 1.226 × 109 2.162 × 108 8.507 × 107

4. Discussion
4.1. Impact of Measurement Tools

Measurement tools were essential for determining the power consumption in this
study. While the correctness of an external multimeter relies on the device manufac-
turer’s calibration, it is necessary to evaluate the tool’s impact when measuring system
performance using software.

On the one hand, the ros_profiling tool’s impact was minor; its mean CPU load in
regular operation was 3.66%, with a mode of 3.5% and a standard deviation of 0.34 (using
692 events throughout the experimental measurements).

Regarding the mean memory usage, the average consumption was 58,836,646.466 MB
(standard deviation of 219,576.960 MB) in all cases. This mean value corresponded to
the 28% in the baseline excluding the NuiTrack application and 7% in the idle/demo
cases including NuiTrack, as well as 3.5% in VR-based IRT. Such values reveal a normal-
ized behavior, but significantly impact the baseline while only marginally impacting the
other cases.

On the other hand, we used the rosbag tool during some of the experiments to record
from and play back ROS topics afterwards. The tool is preconceived to operate with high
performance, and its working mode avoids deserialization and reserialization of harvested
messages. Thus, it used around 1% of the mean CPU load and 12 MB of the memory mean.

As we are evaluating the power consumption, it is important to consider the related
footprint of recording rosbags (cf. Table 6). The power consumption minimally deteriorates,
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mainly for the idle baseline scenarios. We observed only slightly increased values; however,
that difference is not significant.

To sum up, these results lead to acceptable values for our measurement tools, with only
a minimal, negligible impact on the general metrics outside of the baseline cases with their
very low mean consumption.

4.2. Effect of Immersive Technologies on the Power Consumption Model

When employing novel technologies to create immersive experiences, it is vital to
assess and weigh the various cost factors associated with their deployment. For both the
VR-based and app-based IRT solutions, the transfer of video data constitutes the largest
payload and, thus, the most significant power consumption factor. While there is a sizable
difference between transmitting stereoscopic and regular video, the transmission of the
video data and commands/controls is—in terms of electricity—completely “overpowered”
by the AI-based processing on the QTrobot.

Table 6. Effects of rosbag recording on power consumption (Watts).

Power [W]

Baseline, Idle/NUI Baseline, Idle

RosBag No_RosBag RosBag No_RosBag

Valid 6 4 3 1
Missing 0 0 0 0
Mean 106.736 106.758 63.345 58.660
Std. Deviation 3.430 0.355 5.577 NaN
Minimum 102.174 106.372 59.026 58.660
Maximum 110.671 107.205 69.641 58.660

However, it is essential to note that the realistic scenarios have a significant impact
on the PSo f tware trends. In both cases, we continuously measured a CPU consumption of
beyond 200%, and the memory consumption in the VR-based IRT setting increased sharply.
Unsurprisingly, CPU and RAM consumption reached their lowest levels in the baseline
scenarios or the minimal demonstration modes.

4.3. Developing Energy-Efficient Demos

To our knowledge, the development of energy-efficient demos remains mostly unex-
plored in social robotics research. Usually, the different demo modes included with social
robots aim at increasing acceptability without involving sustainability considerations. Dur-
ing the experiments, we observed that a demo is highly dependent on depth information or
detection services, which constitute the robot’s baseline energy consumption. In addition,
in light of the economic aspects discussed in the following section, it is advisable to address
sustainability issues already when designing demonstration routines [29].

4.4. Economic Efficiency

To assess the economic impact of operating a robot or a set of robots, we can estimate
the cost associated with power consumption. To this end, we consult the European Union’s
official electricity price statistics [47] and use the current average of 0.2126 EUR/kWh.

The results obtained through projection of valid measurements (cf. Table 7) indicate
that whether or not a demo is running by default on the robot can significantly impact the
annual cost and needs to be taken into account. On the other hand, the difference between
IRT experiences using VR-based versus app-based telepresence solutions has only a minor
impact. However, if the number of robots increases, the telepresence mode might also
become a relevant factor with regard to the overall energy footprint. Due to the sporadic
nature of the calibration process, it is excluded from the annual projection.
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To put these results further into context, consider a typical desktop computer setup
that uses an average of 200 Watt hours (Wh); the computer itself has an average per-hour
consumption of 171 W, the network card uses 10 W, the printer uses 5 W, and the speakers
use 20 W. Assuming that the computer is also operated for six hours a day, the annual
consumption amounts to circa 450 kWh (i.e., 95.535 EUR/year). This corresponds to CO2
emissions of more than 130 kg per year, which is roughly 1.3 percent of the average total
emissions of a Belgian national [48].

Table 7. Estimated annual cost of a robot operated six hours/day in different modes (EUR).

EUR/Year

Baseline Telepresence

Idle NUI Demo NUI VR-Based App-Based

Valid 3 8 1 2 15 10
Mean 27.749 49.178 32.379 51.434 53.892 51.616
Minimum 27.273 47.505 32.379 51.414 51.471 50.799
Maximum 28.532 49.911 32.379 51.455 56.951 52.846

4.5. Social Efficiency

Using a robotics platform for remote presence and IRT in different assistive scenarios
can create new jobs in (health)care and other interactive settings. In addition, beyond the
current pandemic situation, it is foreseeable that IRT has the potential to enable new
interactive applications and create a positive impact in various collective contexts and any
type of event, even beyond educational or healthcare scenarios.

At the same time, it is necessary to increase the number of sensors and actuators associ-
ated with HRI in IRT to expand the interaction bandwidth and create alternative mechanisms,
such as those favoring kinesthetic learning or those requiring dedicated physical feedback.

Again, this requires a careful cost–benefit analysis for the various factors associated
with the deployment of these new technologies, particularly classic and resource-hungry
approaches, such as the OpenCV object recognition (find_object_2D) or NuiTrack’s more
modern approach based on deep learning. Table 3 shows that these applications exhibit nearly
the same CPU consumption as that of the immersive system. In addition, it is necessary
to consider that newer RGBD-range image cameras perform some of these algorithms on
board. According to the specs sheet, they can have peaks of 0.7 Amps (more than our current
immersive consumption), so manufacturers and developers need to select the type of camera
with care.

5. Conclusions

The in-depth analysis of the VR-based and app-based IRT solutions revealed several
interesting aspects related to the initial set of research questions.

In terms of applicability (RQ1), our results confirm the huge potential for immersive
telepresence and the associated positive effects, as discussed in [10]. However, when includ-
ing sustainability considerations (RQ2), different features and interaction modes need to be
carefully weighed in a cost–benefit analysis. Particularly, employing AI-based technologies or
other computationally expensive features can dramatically influence the cumulative energy
consumption (RQ2.1) and, consequently, the system’s deployment costs (RQ2.3). Compared
to these, immersive technologies, per se, only marginally affect the overall robot performance
(RQ2.2), and they can help improve acceptance for operators, users, and bystanders alike
without causing overly high costs.

Unless AI-based technologies become substantially more energy efficient, their foot-
print directly impacts feature sets of IRT systems that are operated continuously and over
more extended periods. Similarly, demo routines should not only be created to maximize
acceptance while omitting sustainability considerations. Even minor adjustments here can
be hugely impactful and can help in deploying more affordable and practical solutions.
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Social efficiency in education linked to public goods can only be realized when in-
struction is effective and learning is universal [49]. With this in mind, IRT can only benefit
collectives and society on a larger scale if, on the one hand, teachers adapt lessons, assign-
ments, and assessment methods to immersive interactive scenarios for the instruction to
be effective. On the other hand, the required technologies need to be readily available to
students for learning to be universal. Therefore, it is vital to not only apply and adapt IRT
solutions to the curriculum to increase knowledge transfer and skill development, but to
extend the use of IRT technologies in the classroom beyond academic approaches.

Integrating IRT systems with robotic platforms entails additional evaluations by man-
ufacturers and developers alike in order to optimize efficiency and battery consumption.
Such integration requires an in-depth and fine-grained analysis of all the processes running
on the robot and the impact of each algorithm selected to perform specific tasks.

Furthermore, it is essential to analyze flexibility and potential pitfalls when considering
robotics in general and IRT systems in particular [22]. Albeit guided by teachers, traditional
classes are already highly dynamic settings, where alongside lessons, students ask questions
in the classroom, i.e., the same location. The IRT solution and software embedded in the
robot platform, as well as the IRT hardware and robot skills available to the students at
home, determine the set of possible tasks that students can perform and need to be carefully
adapted to the different scenarios.
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The following abbreviations are used in this manuscript:

AAC Amps Alternating Current
AMOLED Active-Matrix Organic Light-Emitting Diode
API Application Programming Interface
AR Augmented Reality
CPU Central Processing Unit
DDR Double Data Rate
LCD Liquid-Crystal Display
DoF Degree(s) of Freedom
HMD Head-Mounted Display
HRI Human–Robot Interaction
IRT Immersive Robotic Telepresence
JSON JavaScript Object Notation
LTS Long-Term Support
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NUC Next Unit of Computing
OLED Organic Light-Emitting Diode
RAM Random Access Memory
RiE Robotics in Education
ROS Robot Operating System
SDT Self-Determination Theory
TD Transactional Distance
TFT Thin-Film Transistor
VR Virtual Reality
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