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Abstract: In health sciences, identifying the leading causes that govern the behaviour of a response
variable is a question of crucial interest. Formally, this can be formulated as a variable selection
problem. In this paper, we introduce the basic concepts of the Bayesian approach for variable
selection based on model choice, emphasizing the model space prior adoption and the algorithms
for sampling from the model space and for posterior probabilities approximation; and show its
application to two common problems in health sciences. The first concerns a problem in the field of
genetics while the second is a longitudinal study in cardiology. In the context of these applications,
considerations about control for multiplicity via the prior distribution over the model space, linear
models in which the number of covariates exceed the sample size, variable selection with censored
data, and computational aspects are discussed. The applications presented here also have an intrinsic
statistical interest as the proposed models go beyond the standard general linear model. We believe
this work will broaden the access of practitioners to Bayesian methods for variable selection.

Keywords: Bayes factor; bayesian model averaging; censored data; conventional prior; multiplicity
correction; singular models

1. Introduction

In applied sciences, identifying the leading causes that govern a response variable is a
question of crucial interest. In a cardiology study, for example, we could be interested in
knowing which aspects of the clinical history influence the time until the occurrence of a
major adverse event.

Although this problem could be approached from a purely theoretical perspective
by building a mathematical model accurately describing the physics underlying the phe-
nomenon under study (see, e.g., [1] for a model on the cardiac physiology) the more popular
and pragmatic perspective to address it is using statistical methodology. In this framework,
an experimental study is conducted where the response variable (Y) is measured in a
sample of individuals, together with a large number of possible explanatory variables or
covariates (X1, X2, . . . , Xp). A probabilistic model is then used not only to describe the
relationship between Y and X1, X2, . . . , Xp but also to explicitly acknowledge the effect—of
a random nature—of imprecisions in the measurements and of variables not considered in
the study. From this starting point, the question reduces to decide which of the covariates
have a relevant impact on the response, a problem known as variable selection.

Because of its relevance, variable selection has been during decades, and still is, a
leading topic of research with contributions from many areas of statistics. A useful and
didactic classification of methods for variable selection distincts between ‘estimation’ and
‘model choice’ based strategies (for a similar argument see e.g., [2,3]). The first proceeds
based on inferences obtained from the model containing all covariates (the full model)
meanwhile the second assumes that every possible combination of covariates provides an
autonomous description of the phenomenon. Model choice approach to variable selection
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is based on the evaluation of the endorsement that each single model receives from the
data. As an illustration and to make the distinction clearer, a regularization method (like
lasso) falls in the first category while a stepwise procedure belongs to the second.

Both the frequentist and the Bayesian schools—the two main statistical paradigms—
have been used to construct estimation and model choice methods. Nonetheless, the
Bayesian approach better accommodates the idiosyncrasy of the second approach since
it naturally handles the different sources of uncertainty: it is unknown which is the true
model and which is the true value of the parameters within each model. Finally, the
available information is processed through the Bayes theorem, providing the posterior
distribution which assigns the updated probability of every potential model, in light of
the data. Among the advantages, the resulting approach is automatically parsimonious
(promoting simpler over complex models for a comparable fit) and provides the right
control for multiplicity (a large number of models is fit and it is quite likely that just by
chance a ‘good’ spurious model appears). Additionally, the results are arguably very rich
allowing to provide uncertainty measures concerning the selection exercise as well as
model averaging inferences and predictions considering all sources of uncertainties in the
problem. For a careful description of the advantages of the Bayesian method for model
choice, the reader is referred to [4].

In this paper, we introduce the basic concepts of the Bayesian approach for variable
selection based on model choice. In particular, Section 2 presents the main ingredients
and discusses the principal challenges in the implementation of the method. Our main
contribution is the application of this methodology to two real problems in health sciences,
described in Sections 3 and 4. The aim here is twofold: on the one hand, to illustrate the
potential of this approach for health researchers; on the other hand, to highlight some of the
difficulties that appear in the Bayesian method and that will be the base of future theoretical
developments. Section 3 deals with model selection in linear regression with thousands of
potential covariates, in the field of genetics. The issue of variable selection with censored
data is addressed in Section 4, for the analysis of a study of events post-treatment in
cardiology. To finish, Section 5 is devoted to discussion.

2. Variable Selection Based on Bayesian Model Choice

Let y be the n-size vector that contains the observed data for Y. Independently on the
distribution assumed for Y and its relation with the independent variables, the collection of
models that arise when the different combinations of covariates is listed can be compactly
expressed using a binary parameter vector γ = (γ1, . . . , γp). Here γi = 1 if the response
depends on Xi and zero otherwise. For example, the model including only X2 corresponds
to γ = (0, 1, 0, . . . , 0). We label each of these models Mγ or simply γ. The set containing
all potential models is called the model space and its cardinality is 2p. With an abuse of
notation, the simplest model M0 is traditionally named the ‘null’ model and the model
containing all covariates, M1, is the ‘full’ model.

Let fγ(y | θγ) be the probability density function of y given the vector parameter θγ,
which expresses the relation between the dependent variable and the active covariates
in γ. In normal linear models, fγ would be a multivariate normal with mean a linear
combination of the active variables and certain unknown variance. The parameter vector
θγ in that case contains the regression coefficients (of dimension kγ = ∑ γi) which are
specific to that model, Mγ, plus the intercept and the variance of the error which appear in
all models.

The posterior distribution of γ is the updated probability that each model is the true
model given the observed data and can be obtained as:

p(Mγ′ | y) =
mγ′(y)p(Mγ′)

∑γ mγ(y)p(Mγ)
, (1)
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where the sum in the denominator ranges in the model space; p(Mγ) is the prior probability
of γ and mγ(y) is the corresponding prior predictive marginal:

mγ(y) =
∫

fγ(y | θγ)πγ(θγ) dθγ. (2)

In the above equation, πγ(θγ) is the prior distribution for the model parameters in Mγ.
An equivalent expression for (1) can be derived using Bayes factors [5,6]. A Bayes

factor is a relative measure of the evidence contained in the data in favour of a model Mγ

and against another one, Mγ′ . Its mathematical expression corresponds to the ratio of prior
predictive marginals between the models. If in (1) we divide numerator and denominator
by the marginal of a fixed model (M0, without loss of generality) we obtain:

p(Mγ′ | y) =
Bγ′(y)p(Mγ′)

∑γ Bγ(y)p(Mγ)
, (3)

where now Bγ(y) are the Bayes factors of Mγ to M0, that is, Bγ(y) = mγ(y)/m0(y).
The posterior distribution is a vast piece of information for the variable selection prob-

lem. Nevertheless, it needs to be properly summarized in order to provide understandable
and useful reports (like with any other posterior distribution). This is a crucial differential
aspect of the model choice approach: instead of just selecting a single model (in many cases
without any accompanying measure of the error in that choice), the posterior distribution
offers an enormous variety of possibilities to gain knowledge about the primary question of
measuring the impact that the different covariates have in the response. In many occasions,
the summaries reported will be guided by the final interest of researchers, though there
are summaries that are quite standard and that we briefly introduce here. One straight-
forward possibility is to report the model endorsed by the highest probability (known as
HPM) jointly with its posterior probability. Alternatively, a list with the first (usually 10
or 20) most likely models and their posterior probabilities is reported, in order to provide
an overall idea of the degree of uncertainty clarified by the data. Posterior probabilities
lose interest (and interpretability) if they are very small, a situation that arise when p is
moderate to large. Another option is to report how many times each model in the list is
less probable than the HPM, which conveys how confident we should be in the HPM as a
single response to the variable selection problem.

Very popular summaries of p(Mγ′ | y) are the posterior inclusion probabilities of the
individual variable, that is, the sum of the posterior probabilities of the models that include
each variable. The median probability model (known as MPM) is defined as the model
than contains all the variables with inclusion probability higher than 0.5. The MPM, that
in general is not equal to the HPM, has appealing predictive characteristics, in particular
is the best single model for prediction when covariates are orthogonal or they are nested
correlated (see [7]), and it seems to have also a better behaviour than the HPM for correlated
covariates (see [8]).

Finally, and not less important, the posterior distribution allows to infer about pa-
rameters (say the effect of a certain covariate on the response) or predictions properly
handling the extra inherent uncertainty induced by the fact that the true model is unknown.
This approach is called Model Averaging and consists in a weighted combination of the
posterior distribution from different models.

Up to here, we have introduced the friendly part of the Bayesian approach to variable
selection based on model choice. Now we focus on the most problematic aspects that are
to be solved before it can be practically implemented. These are mainly of two different
natures: theoretical (assignment of the prior inputs) and numerical (solving the integral in
the marginal and the computation when p is large).
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Difficulty 1: prior inputs in objective settings

It is well known that the posterior distribution is very sensitive to the prior inputs [4,6].
Furthermore, such sensitivity does not vanish increasing the sample size. This makes the
construction of πγ(θγ) and p(Mγ) a delicate issue, particularly in non-informative or
objective settings. In fact, this is a quite technical problem with many considerations to
be taken into account and that should not be approached superficially nor casually. For
instance, an indiscriminate usage of improper priors may have severe consequences in the
evidence reported about the relevance of the covariates. The situation is even worse when
vague proper priors are used. These would hide, not circumvent in any sense, the problem
of the prior assignment. This question was addressed by [9], reviewing the properties that
prior distributions over parameters should satisfy for model selection. Furthermore, given
the number of Bayes factors computed, the multiplicity issue must be handled through
the choice of p(Mγ) so that dimensions containing a large number of models should be
penalized. As recommended by [10], we will use

p(Mγ) =
1

p + 1

(
p

kγ

)−1

(4)

(Section 3 contains a deeper insight on this issue).

Difficulty 2: Computational challenges

The complications in the calculus involved in this procedure is twofold—the compu-
tation of marginal densities in Equation (2) and the huge dimension of the model space
when p is moderate to large. In respect of the former, in general, the integral defining the
marginal density can not be solved analytically, as it entails to integrate out the param-
eters in a multidimensional space. Still, it is possible to use computational methods to
approximate adequately the marginal density in (2), like the Laplace approximation or
other sophisticated methods (see, e.g., [11]). Our first application has Gaussian linear com-
peting models and the marginals can be computed easily with univariate integrals (see the
paragraphs that follow this discussion). In our second application, marginals are computed
using a Laplace approximation. Concerning the latter complication, if p is moderate to
large, the number of possible models, 2p, is too large to exhaustively compute the posterior
probabilities over the entire model space. Instead, it is possible to use numerical methods
to explore the model space as the ones proposed in [12–14]. For the applications in this
work, we will use the Gibbs sampling method to explore the model space as a strategy
to correctly approximate posterior probabilities of models, as appear in [15]. (Section 4
extends the discussion of this issue).

The degree of complexity associated with the difficulties above highly depends on the
statistical model fγ assumed. For instance, in the realm of the general linear model where
the response is Gaussian:

fγ(y | βγ, σ2, β0) = Nn(y | 1nβ0 + Xγβγ, σ2 In), (5)

researchers have reached to very satisfactory solutions. Above we have denoted 1n a
vector of ones of length n, In the n× n identity matrix and Xγ the n× kγ design matrix
corresponding to the variables with ones in γ. Regarding the assignation of the priors, what
was called the conventional approach (a term used by [4,16]) has excellent properties as
shown in [9]. The origin of this approach is the seminal work by [17,18] who recommended
using:

π0(β0, σ) = σ−1, πγ(βγ, β0, σ | g) = σ−1 Nkγ
(βγ | 0kγ

, gσ2 Vγ) (6)

where 0kγ
is a vector of zeros of length kγ,

V−1
γ =

n

∑
i=1

(xiγ − x̄γ)(xiγ − x̄γ)
t, (7)



Mathematics 2021, 9, 218 5 of 16

where xiγ is the ith row of Xγ expressed as a column vector and x̄γ = ∑n
i=1 xiγ/n. In

words of [17] this matrix is suggested by the Fisher information. Notice that except for
constant, V−1

γ coincides with the covariance matrix of covariates. The hyper-parameter g is
either fixed (like in the unit information prior by [19], who fixed g = n) or it is assigned a
density hγ(g) (see, e.g., [9,17]). Unless otherwise specified in our applications, we assume
a random g with the density h that proposed in [9] (called the robust prior).

The Bayes factor associated with conventional priors has a convenient expression in
terms of a univariate integral:

Bγ(y) =
∫ (

1 +
SSEγ

SSE0
g
)−(n−1)/2

(1 + g)(n−1−kγ)/2 hγ(g) dg (8)

where SSEγ and SSE0 are the sum of squared errors under model Mγ and M0, respectively,
M0 denotes the model with only the intercept. This simple expression of the Bayes factor
means that the computation of the marginals in these situations is not an issue and if p is
moderate (say p < 25) exhaustive enumeration of the whole model space is feasible. For
larger p, [15] showed that a crude Gibbs sampling works very well (see Section 3, which
describes an application on the context p� n).

As a consequence of the above, practitioners may have access to the Bayesian solu-
tion without having to be worried about any of the problems exposed. The R packages
BayesVarSel [20] and bas [21] are good examples of friendly interfaces to put into practice
the Bayesian approach. The reader is referred to [22] for a review of the available packages
and their differences for performing variable selection and model averaging within R. The
examples in [22] are didactic illustrations of the potential of the methodology.

3. Variable Selection with p � n
3.1. The Real Problem

Genome-wide association studies (GWAS) investigate the relationship between single
nucleotide polymorphims (SNPs) and diseases. Most often, the number of SNPs, p, is
much larger than the number of subjects studied, n, being one of the typical real problems
in which variable selection with p� n is faced.

We apply the Bayesian method to data from a study on Beta-thalassemia, a disorder
caused by a mutation in the beta-hemoglobin gene, in a population from Sardinia (Italy).
The disease is evidenced by a reduced mean cell volume (MCV), which logarithm will be
used as the dependent variable of the regression model in (5) treating the effect of the SNPs
as additive. Besides, each SNP can take three possible values, {aa, aA, AA}, information
that is encoded as the number of A for the purpose of the study.

The dataset is composed of n = 306 individuals and of p = 6097 SNPs, from which
we aim to select the ones related to Beta-thalassemia. More details on the dataset can be
found in [23,24].

3.2. Implementation of the Bayesian Approach and Results

Compared to the regular variable selection in regression, the problem with p� n has
peculiarities that need further consideration.

Firstly, in such a huge model space, the control for multiplicity is crucial. For instance,
in the GWAS dataset there are around 5× 10124 models of dimension 50 and quite obviously
the possibility that, just for chance, some of these models would fit very well the data
is extremely large. The prior over the model space, Equation (4), provides the right
multiplicity correction [10]. An unexpected side effect of this prior in high dimensional
settings is a clear tendency to favour simpler models hence automatically providing sparse
responses. Nevertheless, it is important to differentiate between both concepts and how
these are treated in the Bayesian context. For this, we have designed a simple simulation
experiment based on the GWAS dataset. The true model from which we have simulated
the data has five SNPs
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ysim
i = 1 + 1.5 xj1i + 1.5 xj2i + 1.5 xj3i + 1.5 xj4i + 1.5 xj5i + εsim

i , εsim
i ∼ N(0, 10.22),

for i = 1, . . . , n, and where the indexes of the variables are randomly selected and the
covariates have been scaled so that the contribution of the parameter regression is similar
in all the covariates. The standard deviation used for the errors mimics that observed
in the real data. As expected, the true model here is highly endorsed by the simulated
data, having a Bayes factor of 9.3 against the null, in logarithmic scale. Now, we have
computed the Bayes factor of the models that result by adding a spurious covariate xj
where j 6∈ {j1, j2, j3, j4, j5}:

yi = β0 + β j1 xj1i + β j2 xj2i + β j3 xj3i + β j4 xj4i + β j5 xj5i + β j xji + εi, εi ∼ N(0, σ2).

There are p− 5 = 6092 of these models whose Bayes factors are represented in Figure 1 in
the form of a box-plot where the Bayes factor of the true model is also displayed. We see
that there are a few number of models (6%) that surpass in evidence to the Bayes factor
of the true model and some by an order of magnitude (the largest Bayes factor is almost
2000 times larger) and these would be eventually favoured in the variable selection scheme
if for instance posterior probabilities are proportional to the Bayes factors. Notice that this is
not an issue related with penalization for complexity since, if we were to compare only one
of these models against the true model, the Bayes factor would, in the very great majority
of occasions, successfully penalize complexity. The issue is because we are considering
a huge amount of models and this fact should be taken into account. With the prior in
Equation (4), the posterior probability of the wrong models to the true model would be
approximately the ratio of Bayes factors times p−1 so even the wrong model that provides
the best fit would barely have 30% of the posterior probability of the true model.

8
10

12
14

16

lo
g(

B
F

)

Figure 1. For the first simulated experiment, based on the genome-wide association studies (GWAS)
dataset, boxplot of the Bayes factors (in logarithmic scale and compared to the null) of models defined
adding a spurious covariate to the true model. The horizontal line represents the (log) Bayes factor of
the true model.

Later we report that only two SNPs exhibit significant posterior inclusion probabilities,
for the GWAS problem. This clearly differs from the results drawn by [24] where around
35 SNPs were declared important (the two most evidenced by the data being the two that
we obtain). The approach in [24] is developed in two stages and multiplicity issues could
be responsible for these disparate results.

The second consideration is of conceptual nature and concerns the existence of com-
peting models Mγ whose number of regressors, kγ + 1, exceed the sample size n. These
are singular models in the sense that their parameters are not estimable because the design
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matrix is not of full row rank. There are a huge number of such models. For instance, in
the GWAS dataset, the larger dimension of non-singular models is kγ = 305, entailing a
proportion of around 10−1311 of the model space (hence, an upper bound of the proportion
of non-singular models is 10−1308, in other words, the proportion of singular models is
essentially one). It is clear that whatever we do with singular models may have a huge
impact on the results. A popular possibility is to assign a zero prior probability to singular
models (see, e.g., [25,26]). The severe dependence of the assumed prior, p(Mγ), on n is
undesirable from a Bayesian perspective (seriously violating the principle of sequential
updating). More importantly, from a practical perspective, is that one has to be aware
of the strong underlying statement, namely that we are completely certain that the true
number of covariates does not exceed n. In our problem, where n = 305, this does not
seem a compromising assumption but it could be so if the sample size was of the order of
tens, as is the case of many omic studies.

In [27], the strategy to handle singular models is quite different, simply observing
that these models provide a perfect fit, that is, SSEγ = 0 and can be reparameterized as
models with kγ + 1 regression parameters. This results in Bayes factors equal to 1, like
in the saturated models where n = kγ + 1. Once every Mγ in the model space has a
Bayes factor, we can combine these with p(Mγ) in Equation (4) to obtain the posterior
distribution. With this simple approach the need for a prior p(Mγ) that depends on n
disappears leading to a fully Bayesian methodology. Of course, it could be the case that
the set of singular models, sayMS, accumulates a probability. This situation, that would
typically happen in cases where n is very small, would lead to non-informative results with
highly multi-modal summaries and posterior inclusion probabilities of 0.5. Fortunately,
we can asses the importance of the singular subset computing p(MS | y). An estimation
of this probability is provided in BayesVarSel. In the GWAS dataset, the estimation of
p(MS | y) is zero, hence confirming that here a sample size of n = 306 is enough to ensure
that the true model will be in the regular part of the model space.

The last consideration regards computational aspects of the problem. The model space
is extremely large and, obviously, an exhaustive enumeration is unfeasible. Therefore, the
question of how to approximate the posterior distribution arises. The Gibbs sampling,
jointly with estimations based on the frequency of visits, was shown to be reliable for
problems of moderate size in [15]. Assessing its performance when p is large (or very
large) is still an open question and several authors (see, e.g., [28] and references therein)
have argued about its possible limitations. Our position on this question is different
and we believe that this simple sampling algorithm is a valid numerical tool for high
dimensionality problems. A detailed study of this assertion would require a separate and
comprehensive analysis that goes beyond the scope of this paper and will be considered
in future research. Nevertheless, what it is always convincing is a comparison with the
more recent methodologies to cope with scenarios of high dimensionality. One such
method is the proposal in [29]—sparsevb—that replaces the actual posterior distribution
with a variational approximation that allows for much faster computations. In their
implementation, the authors use a spike-and-slab prior based on the Laplace density
for the regression parameters and a prior over the model space that induces sparsity
(favouring simpler models). Our main interest in the paper [29] is their comparison with
a large number of competing Bayesian methods conceived for variable selection in high
dimensional settings. In particular, they consider varbvs which is a related variational
Bayes procedure but with the spike-and-slab prior using the Gaussian density. Additionally,
ordinary (not-variational) spike-and-slab methods like the one based on an implementation
of the Expectation Maximization algorithm [30] (called EMVS) and the more recent proposal
in [31] (called SSLASSO) based on the well-known LASSO are considered. Finally, in the
list of competing methods [29] also include the empirical Bayesian procedure (ebreg) in [32].
Notice that a method based on the popular BIC (Bayesian Information Criterion) is not an
option in high dimensional settings because, as shown in [33], this criterion is too liberal
with an inadequate tendency to favour complex models.
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In the frequentist experiment in [29] they simulate 100 datasets from:

yi =
380

∑
j=1

β j xji +
p

∑
j=381

β j xji + εi, εi ∼ N(0, σ2), i = 1, 2, . . . , n

where n = 100, p = 400 and β j = 0 for j = 1, . . . , 380 and β j = log(n) for j = 381, . . . , 400
(only the last 20 variables are active). The error variance σ2 = 25 and the covariates
are simulated as iid standard normal variables. As it is common in the literature of
variable selection, what is of most relevance in these type of simulated experiments is
the frequency of times a given method provides the right response. This performance is
normally summarized with two statistics: the false discovery rate (FDR, frequency of times
an inert variable is declared as significant which in the Bayesian setting would correspond
to an inclusion probability larger than 0.5) and the true positive rate (TPR, frequency of
times a true explanatory variable is declared as irrelevant which in the Bayesian setting
would correspond to an inclusion probability lower than 0.5). Obviously, methods with a
FDR close to zero and TPR close to one are optimal. To summarize both statistics in only
one, we also report the F1 score, defined as the harmonic mean of the TPR and the Positive
Predicted Value, PPV, determined by PPV=1-FDR. In the experiment described in [29],
these statistics are computed and the results are reproduced in Table 1 (cf. their Table 2) to
which we have added those that correspond to our Bayesian methodology approximated
with Gibbs sampling (that we simply label Bayes). This approach shows quite positive
results although requiring a considerably greater computational burden: around 7 min per
dataset as opposed to their computational time of less than a second.

Table 1. Simulation experiment in [29] for the different methodologies described in the text. In
each of the 100 datasets, false discovery rate (FDR) is calculated as the number of inert variables
(1 ≤ i ≤ 380) not selected by the methodology, divided by the true number (380, in this case);
FDR is reported as mean ± a Monte Carlo estimation of the standard error (estimated through
the 100 replications). Similarly, TPR is calculated as the mean of the proportions for truly relevant
variables (381 ≤ i ≤ 400). F1 score is the harmonic mean of true positive rate (TPR) and Positive
Predicted Value (PPV) = 1-FDR.

FDR TPR F1 Score

sparsevb 0.12 d ± 0.17 0.70 ± 0.31 0.78
varbvs 0.06 ± 0.11 0.34 ± 0.37 0.50
EMVS 0.24 ± 0.13 0.59 ± 0.14 0.66
SSLASSO 0.00 ± 0.00 0.01 ± 0.01 0.02
ebreg 0.38 ± 0.20 0.88 ± 0.18 0.73
Bayes 0.00 ± 0.00 0.99 ± 0.07 0.99

Our experience on approximating the posterior distribution in the GWAS dataset (with
a quite large p) can also be helpful to gain insight about the ability of the Gibbs sampling
method. Initially, we ran the algorithm using the command GibbsBvs in BayesVarSel with
N = 104 iterations and a burn-in of 1000 with three independent chains with initial models
with one potential covariate randomly selected. In Table 2 we have collected results for
SNPs that have either an inclusion probability larger than 0.5 or was active in the HPM
found. Despite the very large number p, there are only small disagreements on 6 variables.
In this respect, the approximation of the inclusion probabilities are very similar for the
chains agreeing in that only rs10837540 and rs11036238 have a substantial impact on the
response. Of note, these are already known to be related to beta-thalassemia (rs10837540)
or to be located near the HBB gene (rs11036238) and were also pointed out by [24]. We
find slight variations about the best model encountered but these affect only few variables.
To investigate the sensitivity of the method to the number of iterations we additionally
ran the simulations for three chains now with N = 3× 104 and initial models with 10,
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20 and 15 SNPs randomly chosen. We clearly observe that the main conclusions remain
the same and, quite remarkably, the inclusion probabilities are highly robust and barely
vary. The HPMs found tend to be slightly simpler and with small variations between
the chains (as a curiosity, we later discovered that SNPs rs10160707 and rs7483683 have
exactly the same values). Finally, we also have computed the posterior probability (except
for the normalizing constant) of the HPM model found in each chain (see Table 2). This
value speaks about the “quality” of the models visited and it changes substantially in the
different chains when N = 104 (the best model found in Chain 2 is 880 times more probable
than that found by Chain 3) nevertheless, this aspect does not influence the goodness in
the approximations of the main summaries of the posterior distributions. This observation
clearly suggests the convenience of preserving the probabilistic structure of the problem
when designing algorithms to explore the model space (as opposed to mechanisms to look
for “good” models).

Table 2. For GWAS dataset, results in several runs of the Gibbs sampling. In all cases, a burn-in of 1000 has been used and
the intial model has 1 covariate randomly selected (for N = 104) and 10, 20 and 15 (randomly selected) in Chain 1, Chain 2
and Chain 3 (respectively) for N = 3× 104. In parenthesis Bγ(y)p(Mγ) (log scale) for the HPM found.

N = 10,000 N = 30,000
Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3

SNP (22.49) (26.01) (19.23) (26.52) (25.46) (26.52)
ip HPM ip HPM ip HPM ip HPM ip HPM ip HPM

rs10837540 1 y 1 y 1 y 1 y 1 y 1 y
rs11036238 1 y 1 y 1 y 1 y 1 y 1 y
rs7483683 0.51 y 0.53 n 0.48 n 0.51 n 0.46 n 0.52 y
rs357116 0.06 y 0.04 n 0.04 n 0.04 n 0.03 n 0.03 n
rs10160707 0.46 n 0.44 y 0.47 y 0.47 y 0.50 y 0.45 n
rs10017809 0.24 n 0.25 y 0.26 n 0.24 n 0.24 n 0.25 n
rs11242740 0.20 n 0.23 y 0.22 n 0.19 n 0.21 y 0.22 n
rs6844867 0.01 n 0.01 n 0.01 y 0.01 n 0.01 n 0.01 n

4. Variable Selection with Censored Data
4.1. The Real Problem

Longitudinal studies are very common in health sciences and, among other objectives,
allow researchers to determine the risk factors that affect the course of a disease, the
performance of a treatment, or determine whether a patient will suffer an adverse event.
It is commonplace that these kind of studies deal with censored observations. In this
framework, the variable selection problem for censored data naturally comes to light.

For illustration of the variable selection methodology with censored data we analysed
data from a registry on acute coronary syndrome (ACS), which recruited patients from
10 hospitals between 2013 and 2017. See [34] for a detailed description of the study and the
patients’ characteristics. The purpose of the study was to investigate the safety and efficacy
(in terms of adverse events) of the treatment—a percutaneous coronary intervention (PCI)
with a certain stent—in a clinical population with ACS. Patients entered the study in the
date of the PCI and were followed up until the end of the study, time during which all
major adverse cardiac events (MACE) are annotated. Although a lesion oriented outcome
was the focus of the original study, in this application, we are interested in a composite
endpoint—which we will refer to as MACE from now on—indicating whether the patient
has died for cardiac causes, has suffered a myocardial infarction or has been revascularized
during follow up, i.e., a patient oriented outcome.

Data of n = 1008 patients with ACS who underwent a PCI were analysed. The depen-
dent variable is, therefore, time to MACE in logarithmic scale. Free-of-events patients, at
closing date, are treated as censored. There are nu = n− nc = 60 uncensored observations,
leading to a 94% of censoring.
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The following potential explanatory variables were considered: age (years), sex, dia-
betes, hyperlipidemia, hypertension, current smoker, prior PCI, peripheral vascular disease,
glomerular filtration rate (mL/min/1.73 m2), ST elevated MI (STEMI), unestable angina, left
ventricular ejection fraction (%), multivessel disease, dual anti-platelet treatment (DAPT)
period (months), DAPT with Clopidogrel (vs. Prasugrel or Ticagrelor), oral anticoagulation,
stents implanted, total stent length (mm), and severe calcification (in any lesion).

4.2. Implementation of the Bayesian Approach

In this problem, the probability distribution fγ(y | β0, βγ) is composed by two factors.
The first factor comes from the uncensored data (i.e., those observations for which yi < ci),
and is of the form in (5) and N(· | µ, σ2) denotes the density of a normal distribution with
mean µ and variance σ2. The second corresponds to the censored data and contributes to
the distribution with the survival function:

Sγ
nc(c, β0, Xc, βγ, σ) ≡

nc

∏
i=1

∫ ∞

ci

N(t | β0 + xi
c
γβγ, σ2) dt,

where xiγ is the (transpose) of the i-th row vector of Xc (the design matrix corresponding to
the censored observations) for those variables active in Mγ. Also, slightly abusing notation
c above represents the censored times for censored observations. With respect to the
prior distributions, an obvious possibility would be adopting the conventional priors (6).
Authors in [35] discuss in favour of this scheme but with a deep revision of the form of
the variance matrix Vγ (recall that this matrix is inspired by the information, in the sense
of expected Fisher terms, that the sample contains about the parameters). These authors
argue that the definition (7) is not adequate here since not all the observations contain,
a priori, the same amount of information which in fact depends on the value of ci. For
instance, an observational unit with a very small ci will be very likely censored and its
covariates xi should barely contribute to Vγ. These arguments are formally explored in [35]
where it is shown that (7) in the censored problem leads to unsatisfactory results (like eg.
violation of the predictive matching principle). Instead, [35] proposed using a weighted
version of (7) that directly results from the analysis of the Fisher information matrix for
this censored problem:

Vγ(β0, σ)−1 =
∑n

i=1 w(zi)

n

n

∑
i=1

w(zi) (xiγ − x̄wγ)(xiγ − x̄wγ)
t, (9)

where x̄wγ = ∑n
i=1 w(zi)xiγ/ ∑n

i=1 w(zi), and zi is the standardization of ci, that is zi =
(ci − β0)/σ and

w(z) = Φ(z) + φ(z)(φ(z)/(1−Φ(z))− z),

where Φ, φ stand for the cdf and pdf of a standard normal distribution. The properties of the
weight function w() are studied in [35] where it is shown that it behaves very similarly to a
cumulative distribution function. Hence, the larger the standardized difference (ci − β0)/σ
(it is more likely that individual i is uncensored), the larger the value of the weight. In
the limit, when ci → −∞ (ci → ∞), wi → 0 (wi → 1). As a consequence, if all ci are equal
then (9) and (7) coincide and, otherwise, the differences between the matrices will be more
pronounced when the ci are more varying.

These weights are unknown because of its dependence on β0 and σ. For the variable
selection problem, this dependence is not an issue, as it is automatically handled in the
computation of the marginal (2) via integration. Irrespectively of this, an inspection of the
estimation of wi = w((ci − β0)/σ) can reveal interesting characteristics of the experiment.
For instance, in the registry on ACS, the posterior means of wi (under M0) vary moderately
among the 1008 patients ranging from 0.02 to 0.33 with a mean of 0.25 and a standard
deviation of 0.04. The values of the covariates that correspond to the patient with the
lowest weight essentially will not contribute to the Vγ. That all the patients have a small



Mathematics 2021, 9, 218 11 of 16

estimated weight (recall weights are in the interval [0,1]) is due to very small censoring
times in relation with the expected observed time and in fact only few persons are finally
uncensored (nu = 60). In relation with this, an interesting quantity that arise within this
approach is the sum ∑n

i=1 w(zi) that, following [36], can be interpreted as an effective
sample size. That is, the equivalence in observed units of the censoring experiment. In the
registry on ACS the posterior mean of the effective sample size under the null is 255 with
a posterior standard deviation of 20. Hence, with the censoring mechanism used in this
dataset, the n = 1008 persons enrolled in the study count as 255 uncensored observations.
Similarly, [37] analysed a penalization of the Bayesian Information Criterion (BIC) that
takes into account that not all observations contribute equally to the likelihood when
modelling censored data, implying that this definition of effective sample size could be
used also in the context of BIC or other measures of variable selection.

For each competing model Mγ, the marginal density mγ(y) now involves multivariate
integrals in large dimensions (the subindex γ has been removed to simplify notation):

m(y) =
∫

Nnu(y | 1β0 + Xuβ, σ2 I)Snc(c, β0, Xc, β, σ)σ−1 Np(β | 0, gσ2 V(β0, σ)) h(g) d(g, β, σ, β0).

Unlike the situation in the standard regression model, here the likelihood function does not
conjugate with the prior because of the factor Snc . Also, as we already mentioned, the matrix
V depends on β0, σ. These two particularities make the computation of the marginal quite
challenging and one has to envisage trustful ways to deal with such a multidimensional
integral. Just to have an idea of the difficulty of computing m(y), the exact evaluation
using importance sampling as described in Section 9 in [35] takes about 40 h for a problem
with 6 covariates in a Linux machine with 32 parallel treads, making its implementation
in the variable selection problem practically unfeasible (in the regression problem this
takes a fraction of second). The alternative is to rely on a Laplace approximation, several
authors have argued about the convenience of Laplace approximations over numerical
approaches like for instance [38]. The only parameter that cannot be properly handled
via Laplace integration is g, for that reason this parameter is integrated with standard
numerical quadrature (for more details see Section 9 in [35]).

In this case, for the same problem with 6 covariates the approximation of all marginals
takes 3 min (a sensible reduction). In our case the implementations in the entire variable
selection problem that implies computing it in 219 = 524,288 different models requires
approximately 14 days to run. Quite obviously, to make the approach more broadly
accessible we have to think on an implementation scheme that alleviate this computational
burden. The idea is to perform a Gibbs sampling scheme to sample models over the model
space then using the frequency of visits as an approximation to the posterior probability.
This is of course a standard approach that is successfully implemented in the popular
variable selection packages like BayesVarSel (see [22] for alternative R packages that
implement related sampling schemes). Nevertheless in our problem, the main bottleneck
is the computation of the marginal and we have to redesign the algorithm so that the
computation of the Bayes factor is performed only the first time a model is sampled (and if
is later resampled then the previous computation is used).

The Gibbs sampling algorithm begins taking an initial model γ(0) = (γ1(0),γ2(0), . . . ,γp(0))
with associated (Laplace) approximated Bayes factor Bγ(0) then repeating, for i = 1, . . . , N:

� Step j : 1 ≤ j ≤ p. Consider the model γ∗ = (γ1(i−1), . . . , 1− γj(i−1), . . . , γp(i−1)). If
this model has been sampled before, use its Bayes factor Bγ∗ ; otherwise, compute it and
save it. Compute r = Bγ∗ p(Mγ∗)/Bγ(i−1) p(Mγ(i−1)) and with probability min{r, 1}
re-define γ(i−1) = γ∗.

� Final step. Define and save γ(i) = γ(i−1) and Bγ(i) p(Mγ(i)) (a quantity that is propor-
tional to the posterior probability of this model).

The R code implementing this algorithm is provided as supplementary material. The
approach is very efficient and produces very reliable results in a considerable shorter
time. As an illustration, we describe the performance of this algorithm in the ACS dataset
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for which we ran the procedure with N = 5000 taking around 20 h. The gain in time
is essentially due to the fact that we only computed around 9500 different Bayes factors
corresponding to the sampled models so only 2% of all models. For comparison, the
estimated inclusion probabilities (through exhaustive enumeration) and their estimations
using the Gibbs sampling are provided in Table 3 , as it can be appreciated they are very
similar.

Table 3. Estimated inclusion probability based on exhaustive enumeration over the model space and
using the Gibbs sampling algorithm for each variable.

Variable Exhaustive Evaluation ip Gibbs ip

Age 0.087 0.079
Sex 0.039 0.035

Diabetes 0.034 0.033
Hyperlipidemia 0.352 0.349

Hypertension 0.043 0.043
Current smoker 0.095 0.096

Prior PCI 0.132 0.123
Peripheral vascular disease 0.086 0.087
Glomerular filtration rate 0.054 0.053

STEMI 0.035 0.035
Unestable angina 0.035 0.033

Left ventricular ejection fraction 0.055 0.052
Multivessel disease 0.963 0.964

DAPT period 0.280 0.279
DAPT with Clopidogrel 0.068 0.063

Oral anticoagulation 0.089 0.084
Stents implanted 0.033 0.029
Total stent length 0.040 0.037

Severe calcification 0.031 0.031

4.3. Results

Table 4 contains he Bayes factors, the prior probabilities and the posterior probabilities
of the four more probable models. The HPM is the one that only includes multivessel
disease, the second adds hyperlipidemia, the third considers variables multivessel disease
and DAPT period, and the fourth model includes the three variables. We have also added
the BIC defined using n in the penalization term. Results obtained with this definition
of BIC are very similar to the ones reported by the posterior probability, the two more
probable models are the ones with smaller BIC. However, BIC does not report any measure
of uncertainty about the model selection by itself.

Table 4. Posterior probabilities of the more probable models, jointly with the BIC measure for these models.

Variables Included Bayes Factor Prior Prob. Posterior Prob. BIC

Multivessel dis. 293.09 0.003 0.312 525.58
Multivessel dis. + hyperlipidemia 724.12 0.0003 0.086 525.71
Multivessel dis. + DAPT period 389.5 0.0003 0.046 527.01

Multivessel dis. + hyperlipidemia + DAPT period 1725.87 0.00005 0.036 526.53

The posterior probabilities are, as expected, quite small since the number of models
is very large. Perhaps posterior inclusion probabilities are more appealing and easier to
interpret (see Table 3). In agreement with results in Table 4, only variable multivessel
disease has a significant impact on the survival to a MACE. Also interesting is that there is
barely any uncertainty in assessing that none of the other variables have any impact on the
appearance of severe episodes of the studied disease.
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The variable selection procedure, per se, does not provide the magnitude of the impact
of a variable in the variable response. To answer this relevant question we must rely on
Model Averaged estimations of the corresponding regression parameter. For illustration
purposes, in Figure 2 we show the model averaged posterior distribution of βMultivessel
with an estimated value of about −0.97 (its posterior mean) and a 95% credible interval of
[−1.58, 0.54]. In terms of survival probabilities, straightforward computations show that
patients with more than one affected vessel has probability of 0.86 of not experiencing a
relapse after 5 years of the primary intervention (this probability is 0.95 for patients with
none vessels affected).

β
−1.5 −1.0 −0.5 0.0

0.016

Multivessel (Approx. Prob.Null = 0.016)

Figure 2. Model averaged posterior distribution of βMultivessel represented as a histogram. In a darker
colour the bar that corresponds to the probability of this variable being zero (which in this case is
very low).

5. Discussion
5.1. Theoretical Contributions and Practical Implications

The problem of variable selection arises frequently in health sciences research. Deci-
sions made from these type of studies can have a great impact on society. The aim of this
paper is to present the Bayesian approach for variable selection based on model choice, in
practice, by showing its application to two common problems in health sciences. The first
relates to genetics, aiming to link genes with a biomarker of a disease, in which a linear
regression model is used, with a number of regressors that can be greater than the sample
size. The second application is on a longitudinal study in cardiology, in the presence of
censored data. Very little was found in the literature on the question of variable selection
in these popular frameworks. One of the strengths of this paper is that goes beyond the
standard regression model.

One of the key aspects of Bayesian variable selection is models’ prior selection. In
Section 3, the results of this investigation show how multiplicity correction can be achieved
by choosing a prior distribution over the model space. Regarding censored data, a prior
that accounts for the amount of information provided by each individual in the sample is
described in Section 4. The second major contribution was a fully Bayesian approach to
deal with variable selection when p� n.

Both applications deal with a large model space, of which an exhaustive analysis
is impractical. The results shown in Tables 1 and 3 confirmed that the Gibbs sampling
algorithm proposed for exploring the model space works satisfactorily.
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5.2. Directions of Future Research

In order to summarise the results, the inclusion probability has been proved to be the
most adequate measure to help practitioners in model choice. However, all the standard
measures for summarising the results of variable selection are subject to certain limitations,
when dealing with correlation in the covariates. This issue reasonably emerges in high
dimensional problems, especially in genetics, as the set of possible values for the covariates
is small. A reasonable approach to tackle this issue is described in [8]. Further research on
dealing with covariates correlation would be worthwhile.

6. Conclusions

Overall, this research strengthens the idea that Bayesian variable selection can be
applied to health sciences problems, providing a reliable tool to approach these problems.
The findings of this study have a number of practical implications and contribute to the
understanding of Bayesian methods for variable selection. We hope that this work will
expand the use of these methods among medical researchers.

Supplementary Materials: The supplementary materials are available online at https://www.mdpi.
com/2227-7390/9/3/218/s1.
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