
CONDITIOI\TAL OR RELATTVR PROBARILITY

¡osé r'é1ix Tobar-Artrulu

"God doesn't play rlice with the worlrl"

Albert- Einsteín

1 . Intro<luction

All object-s exist in some environment or other. The
scientist attempts to moclel material objects in terms of
properties. All l-he properties of a material object-in-
its-environment are lawfully relatecl either deterministi-
ca11y (as in classical mechanics) or stochastically (as in
guantum mechanics ) .

Since the probatrility calcufus is use<1 in physical
science, biology, and sociology, in this paper we shaIl
sketch the calculus of probabilj-ty, CP for shorf-r áS a
mathematical abstract theory. We shall present it in an
axiomatic way followinq Rényi (1955, 1970a,b). Also r¡¡e
shall cleal with some interpretations of CP, in particular
its factual one as propensity of states or events.

2. Kolmogoroffrs Axiomatization of CP

Tn CP we deaf with the notíon of 'event-' and 'proba-
bility *éásure', as in the statement, "The probahilily of
event x eguals y". In principle any set qualifi.es as an
'event'. The probability of such an'event'is a real num-
ber assigned to it by the probablfity function. The proha-
bility function P is defined on a family E of sets. (F
must be a o algebra, i-.e. the union and the intersection
of any two members of F are in F; also F is cfosed under
complernentation. )

Let then F be a o algelrra on a non-empty set S, anrl P
F -) [0r1 ] a non-negat-ive real-valued bouncied function on
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Definition 1. P is cafled the absolute probability measure
on l- iff

(i) P(R) : 0, for every a e P(S),

(ií) P(A U B) = p(n) + p(B), for A,B e P(s) if AO B I b,

(iii) P(S) = 1, i.e., P is normed. ('e'abbreviates'is a
member of' ancl 'P(S)' ábbreviates 'power set of S'; in the
following theorem 'Á' denotes the complement of A in q,=
S _ A. )

Theorem 'l .

p(Á) = 1- P(A)

Proof . From conclition (ii), Á U A = S, ancl contlition (iii)
airectfy.

Theorem 2.

0 5 P(A) s 1

Theorem 3.

P(A U B) = P(A) + P(B) - P(A n B)

Proof. (See fígure)

P(A u B) = PIA u t(A I B) u (Á n B)ll
ptAU (A nB) U (Á nR)l= ptA U (A f-le) l=
P(A) + P(Á nB) (1)

p(B) = pt(A I R) u (Á n e)l - p(A n B + p(A l-l B) (2\
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Subtracting (21

P(AUB)-P(B)

(More theorems

from (1 )

= P(A) - P(A n B)

can be carríed out. See

Q.E. D.

Kolmogoroff 1 950. )

Definition 2. A conditional probability measure,
KolmogoroffE sense, is definea ás follows:

P(A / 
") 

= O...P(A n B) / p(B), where P(B) > 0

IN

(3)

Remark. If P(A / Sl = P(A) we say that
B. If A is independent of B, then B is
A. Therefore P(B / al = P(B).

In this case, from (3) it follows
P(A) . P(B).

A is independent
also independent

that P(A n B)

of
of

3. Rén i I s Axiomatization of CP

The probability function P(A / B) maps pairs A,B of
sets of a family F of sets.

Let F be a o algebra on a non-empty set S, and
P(A 7 B) : F + [9, 1] a non-nógátine -rear valued

function on F (i.e., the pov¡er set of S).

Definition 3. P(A / B) is called the conditional
probability measure of the event A with respect to the
event B, where e e P(s), and Be B=p(s) (where P(s) stands
for the pov/er set of S) iff it satisfies the following
axioms:

Axiom 1.
t(s ) ancl

Axiom 2.
provided

P(A / B) Z 0, further P(B / s') =l for every A e
B e B.

P(ArU A2/ B) = P(Ar / Sl + P(A2/ B) for any B e B,

(a) Ar fi l'r= @¡ and

(b) Ar, Az ! P(S).

Axiom 3. For any fixed B e B, if Ar, A2 e P(5¡ and
Az nB e p, p(A, / ArfrB).p(A2 lt¡l = p(Ar n A2/ B).
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In what foflows, if P(A / B) occurs, it is tacitly
assumed that A e F(s) anct B e B E P(S).

Theorem í.

P(A / B) = P(A n B / B).

Proof. If in Axiom 3, B - A, we have p(Ar/ B).p(B / B)
P(A,f"¡B / B). Taking into acéount Axiom 1, namely P(B / B)
= 1r Theorem 1 follows.

Remark. P(S / B) = 1

By Theorem 1 we have P(S / B) = P(S n e /e) =
P(B / e); by Axiom 1, we get P(S / B) =1.

Theorem 2.

P(A /B) = 1.

Proof. According to Axiom 2, we have

P(An B / B) + PtÁ ne /B) = P(B / B). ByAxiom 1,

P(B / B) = 1, and PtÁ n e / B) > 0. Therefore, it fol-fows

P(A n B / B) 1, and by Theorem 1, P(A / el s l.

Theorem 3.

P(a / B) = 0.

Proof. According to Axiom 2,

p(0 / B) = p(AU ó /el = 2p(A / B). rherefore,

P(6 / B) = 0.

Remarks.

1. It follows from Theorem 3 that A é B, because if @

belongecl to B, we would have P(ó / ól = O ny Theorem
3. Thus the assumption 0 e B leads to contradiction.
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2. rf- A n B
P(A/B) =0.

Theorem 4.

TfAgA'gB'EB,

Proof.

P(A / B) = P(A ll

P(AnA'/B'n
P(A' / B')-P(Á

A, then from Theorems and )

then P(A / B) s P(e' / B').

A' ll B' / sl=

B).P(B' / B) : P(A n At / e') =

n A' / B') = P(A' / B').
o.E. D.

Remark. If A = Ar, then A 
= 

B' c- B. Therefore,

P(A / B) s P(A /B' ).
For more theorems see Rényi 1955, 1970 arb).

The advantage of R6nyi's approach is that his axioma-
tization contaíns Kolmogoroffts as a special case. It is
richer than Kolmogoroff's as we shal1 see presently.

4. From Rényi's to Kol-moqoroff's Axiomatization of CP

If P is a probability measure defined on a o algebra
F of subsets of the set S, and further if P(S) = 1, then
the triple <S, F, P >is called a probabilitv space in the
sense of Kolmogoroff.

If we define I( as the set of those sets B for which
P(B) > 0, and put P(A / B) = P(A n B)/P(B) fof A e F ancl B
e H, then the quadruple ( S¡ Fr X, P(A / Bl > is a con-
ditional probability space generated by the probabi-1ity
space <S, F, P>.

Conversely, if <S, F, B, P(A / Bl>, where B G P(s)
(recall- Section 3), is a conditional probability space and
C is an arbitrary element of B, putting Pc(A) = P(A / C),
then <S, F, Pc> will be a probability space in the sense
of Kolmogoroff.

Let us see the connection between Rényi's anrl
Kolmogoroff's approach. ff we put Pc(A) = P(A / c) for A e
F with C e B fixed, and define, as usual in the theory of
Kolmogoroff, the conditional probaLrility Px(A / R) for a
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set B e B for which P" (B) > 0
Pc (A n B) / n" {n), then we ñave

P*(A / B) = P(A n B/ c) /PlB / c\

Px(A / B) = P(A / B n c).P(B /
P(^ I B n c).

Remarks.

1. In case S e B, clearly <S, F, P=) is a probability
space in i-he sense of Kolnogoroff.

2. In the previous case, remark 1l

aird

E

<S, F, B, P (A / B) > may not be iclentical with the
probability space generated by <S, F, Ps ) because
may contain sets B for which P(B / S) = 0 and at the
same time need not- contain every set E for which
P(B / S) > 0, i.e., the system consistlng of all
sets B e F for which P(B / S) > 0 need not be
identical wit-h B.

3. Tf Px(A / B) is defined by Px(A 1 B)
p(A ne / s) / p(B / s) tor e e 8,, we have P*(A / B)
= P(A / B), provided that e e B.

Rényi's approach then is richer than Kolmogoroff's
contains the theory of Kolmogoroff as a special case.

Some Interpretations of CP

by P*(A / B)

and by Axiom

c) /P(Blc')

We said above that CP ls an abstract mathematicaf
theory devoid of any specifical factual content. Now we
can interpret the member:s of the universe S as a co11ec-
tion of events (propensity interpretation), data
( frequency interpretation ) , statements ( some logicians
claim that S coul-d only be a set of propositions ( 1 ) and
P(A) the probability that A be true (2\1, or beliefs (for
criticism of the subjectivistic interpretation of probabi-
lity as the degree of belief see Popper 1956-1982).

Here is a sample of interpretations:
(i) Propens j,ty interpretation ( obl ective

probability): interpretation of g = set of possible
physical events of a klnd; interpretation of P(A / B)
=natural dispositlons of events(s) A to happen in environ-
ment B;

( ii ) Randomness interpretation ( obj ective chance ) :
Interpretatlon of S = set of random (mutua11y independent)
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events of a kind; interpretation of P(A / B) = the
objective odrls of event(s) A given an environment R;

(iii) Statistical intelpretation (relative observerl
frequency): interpretation of S = population of empirical
dati of á ti.,a; interpretation of P(A / B) = relative
frequency of the sample A of observations in the context
E. ia t'rui to be a ranáom sample of E- P(A / B) are
iational numbers includecl in the unlt interval '
Empirically founrl frequencies are therefore bound to
diifer from calcutated probabilities: while probability
values are real numbers, frequencies are rational. )

6. Propensitv in Quantum Theory

That chance is obiective has been stressed, among
others , hy Popper (1 957 | 1 959 | . Whi le some authors
interpret P(A) as the natural disposition of event(s) A t-o
happeñ, i . e. , propensities are interprete<i. within the
frámework of i'absolute" probabilities, Popper' s
interpretation applles to a quantum-system within an
environmenf-. ( See Settl e 1 91 4 for different interpreta-
tions of prohability in quant-um theory. )

The probability of an event in some environment sug-
gests not separating the two, but- regarcling them as
éifferent features of a síng1e indlvisible block:
event-pLus-surrounrfing. The statement 'P(A / B) = r e

[0, 1 ' can hre interpreted in two waYS:
i) the system "has" the probability;
ii ) system and environment enter the sítuation on

an equal basis, the probability belongs to both.
In our lnterpretation,in the above statement r is

preclicated of a relation in which the quantum-system
it-ands to the environment, and not to the quant-um-system
taken by itself. As Cini ('1983, p. 53) reminds us:

"I want physics to clescrihe reality without any
reference to the community of okrservers. But what T

mean by this is that it is not possible to describe
reality without any reference to the collection of
instruments and artifacts placerl by the experimenter
in or,:ler to detect the properties of the objects he
is interested in. Not aL¡sofute properties, therefore,
hut properties which depencl on t-he conditions he has
chosen to operate wit-h. f do not want to speak of
observers because they do not have any role in the
rlefinition of the physical reatity. They do not
interfere with reafity when they look at a dial or a
pointer".
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A similar interpretation
(1971, p. 301 ):

is supported by Fock

rrProbability is to be regarded as an essential
elqment of the description an<l not as an indication
of the incompleteness of our knowledge I as EinsLein
thought l; this follows already from the fact that,
for given external conditionsr the result of the in-
teraction of the object with the measuring instrument
is (in the general case) not predetermined, but has
only some probability. A series of interactions leads
statistics that correspond to a definite probability
distribution. This probability distribution reflects
the potentiality that existed in the glven conditions
before the interaction had taken place.t'

Ancl by Omelyanovsky (1979, p. 136) when he states
that in quantum mechanics, ttprobablities are considered as
ocurring in the basíc laws of nature, and their introduc-
tion reflects the potentially possible objectively
existing in certaj-n reaL conditíons".

Probability then is no longer interpreted as the
measure of human knowledge or ignorance but it is at the
very basis of the laws of quantum mechanícs. Further, pro-
bability underlines the main trends in modern scientific
research, from physics to biology to sociology.

I claim, following Einstein, that the world of pho-
tons, electrons, and the like exists.out there, even if we
do not observe it. Further, !Íe must accept the qualitative
difference between the quantum world and the classical
wor]dr pdc! Einstein himself (Tobar-ArbuIu 1 985a).
According to guantum theory some properties, i.e., the
position, momentum, spin of a quantum-system (electron,
proton, photon or whatnot) are represented by random
variables. Every property is representable by a variable
which in turn is an operator. The variables then are
assigned probabilities. Therefore, in quantum theory
probability is primary and irreducible ( 3 ) . Further,
relative or conditional probability is the mathematicaf
tool (Rényi 1955, pp. 285-6 ) which stands for the
objective propensity of the physical object-environment
cqmplex. Quantum physics i.ntroduces a random variable
V^QY, where Q is an operator acting on V, a place and tj-me
dependent function that determines the position
probability density p = | V txt l' . we consj-der, then,
propensities as physical and real. They are time
dependent. Further, Schródinger eguation tell"s us how
probabilities change as time goes by. Schródinger equati-on
is a law of changes of probabilities along time.

V*QV are possesed all the time by the guantum-system,
they are real ( though not directly observable ) properties.
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Every one of the random variables stands for a property of
an individual thing-in-its-environment, not a collection
property of a whole bunch of similar enti-ties. Thus some
stochastic properties (represented by random variables)
are basic. Further, since the physical object in question
is always in some envi-ronment or other (there is no thing
without environment except the universe as a whole), all
the properties are properties of a physical object-in-its-
environment. (Needless to say, here we are dealinq with an
objecti-ve interpretatlon of quantum theory free from mea-
suring j-nstruments, Iet alone from observers. )

To repeat, propensities are physical and real (Popper
1956-1 982 ). Moreover, in quantum theory we deal with
superposition of probability amplitudes and their inter-
ference. (For example, the initial superposition state \y 

=
c,Vr + c"Y, "collapses" into state \rr with probability
I ó t I' or into státe Vz with probability I czl".l rhe
superposition principle, which is responsible for aciding
amplitudes instead of probabilities, is one of the laws of
nature that we must accept as we accept the universal
constancy of the speed of 1iqht. This principle is
responsible for the peculiar interference phenomena that
l-ead to quantum correlations quite different from clas-
sical ones. Physical reality at the quantum level connot
be defined ín classical terms, as was attempted by
Einstein, Podolsky and Rosen in their famous paper. The
superposition principle is a principle of nature and
applies to síngle (though complex) individuals' such as
molecules.

So every individual is normafly in a superposition of
eigenstates. Thus \.re can say that quantum theory deals
with potentialities ( 4 ) that qet actualized only excep-
tionally, namely during measurements. The measuring ap-
paratus filters out all eigenstates ttprojecting" the one
corresponding to the eigenvalue it measures.

As for measurement, with Margenau ( 1 958 ) , Pauli
(1980, p. 75) and Fock (1982t p. 19), we di-stinguish the
act of measurement from the preparation of the quan-
tum-system. In a specific measurement the potentialities
quantum theory is about geL actualized (Fock 1982, p. 20!-:
In this case the environment is the apparatus itself.
Thus, Cini ( 1 983 ) has developed a real-istic theory of
measurement, treating the measurement process as a
particular one ocurring in a physical system. He has
studied the specific measurement of a single indj-vidual
wíth polarized counters and Sterri-Gerlach devices as a
mi-cro-macro interaction. Ci-ni has shown that the so-called
"collapse of the wave-packett' or "projection of the state
function" occurs with a high degree of accuracy, though
not instantaneously, and as a consequence of basic
physical laws ( 5 ) . The change brought about in the
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physical system due to the interaction with the measuring
apparatus is not interpreted to mean that "reality is
created by measurement". on the contrary, "as soon as one
takes into account the physical fact that only the
microsystem together with the apparatus can be correctly
represented as an isolated system, the objectivity of
reality j-s restored and the causal evolution of the state
vector Igives ] information about the possible different
outcomes of the interaction of the microsystem with the
apparatus" (Cini 1983, p. 50).

Conclus-ions

Our consideration of propensity in guantum
free from any empiricist traits. However, it
into account the physical envi-ronment. Further,
measurement takes into account the apparatus as
environment. Our interpretation is close to
fact, Omelyanovsky, after reminding us (1983, p
"the very nature of the micro-object- is the ba
fact that its description is unthinkal:]e with
bilistic concepts and potential probability
probability itself is part of the laws of quantum
mechanics", states (omelyanovsky 1 983, p. 50 ) r "in
describing phenomena on the atomic scale one must not
ignore the physical conditions (experimentally recorded)
under which these phenomena are observed. This kind of
relativity with regard to the experimental clevices or
instruments of observation ( the concept and term
"relativity with regard to the instruments of observatíon"
were first introduced by Fock) t ... I is a distinctj-ve
feature of the description in guantum mechanics". (For the
notion of relativity in quantum mechanics with regard to
the means of observation see Fock 1971 | 198?,.1

Thus with Fock (1971, p. 300) we can say that in
quantum mechanics "we introduce a new, lmportant notion of
relativitv with respect to means of observation which
constitutes a general-ization of the old anC well-known
notion of relativity with respect to a reference frame". f
should add, however, that this new principle of reJ-ativity
is with regard to the surrounding physical envi-ronment and
it. requires that physical reality has to be considered as
given in a physical reference frame.

McGifl University (Montreal, Canada)

theory is
does take
t]'re act of
a specific

Fockrs. In
. 51 ) that
sls of the
out proba-
t ... I for
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NOTES

(1) The claim (Carnap 1950) that probability is a certain logical
relation between propositions is lrrong. In fact, there are no
objective procedures for assi.gning probabilities to propositions, in
particular to probabilistic hypotheses such as probability distribu-
tions. 0n the contrary, such assignments are made either as the
strenght of measufements (as in technology) or of hypothetical random
mechanisms (as with genetic mutation in biology). The ttprobability of
a propositionrr connot be interpreted as ttthe probability of the fact
referred to by the propositionrr.

(2) The notíon of probability has been used to elucidate the concept
of partial truth. This approach ls misleading because the notion of
partial truth is prior to the concept of probabilty statenent. (Tobar-
Arbulu 1986b). Further, we must have an independent notion of truth
if we want to know what the value of a given probability statement
ís.

(3) Tn Holton's words (1984) nowadays physical themata presuppose
fundamental probabilism. I.e., probabillty in modern physical theo-
ries is primary and irreducible. It is to be regarded as "an essen-
l1a1 element of the description and not as an indication of the in-
completeness of our knowledge" (Fock 1971, p. 301). Similar conside-
rations can be made in other fields: "The problem of the relation be-
tween a living system and the surrounding medium bears some res-
semblance with that of the relation between an atomic object and a
measuring device: an organism is characterized by its own properties
that are not reducible to those of the medium, but it cannot exist
independently and irrespectively of the surrounding mediumrr (Fock
I97I , p. 30ss) .

(4) According to Pauli (1946, p.30), "I sha11 only reca11 that the
statements of quantum mechanics are dealing only with possibilities,
not with actualities [ .. , ] The actual observation appears as an event
outside lhe range of a descriptíon by physical laws and brings forth
in general a discontonuous selection out of several possibilities
foreseen by the statistical laws of Lhe new theorytt. (See, however,
C¡'ni i9B3 for a realistic interpretation of the act of measurenent.)
Dirac (1928) at the fifth Conseil Solvay of Physics on I'Electrons and
Photonsil in Brussels, after commenting on the essential dlfferences
between classical and quantum description of physical processes dealt
with the so-ca11ed rwave-function'. 

Quantum theory, according to him,
describes a state by a time-dependent wave-functio¡¡ V, which can be



expanded at a given tine t in a series containing wave functions Yn

with coefficients cn. The wave functions Y¡ are such that they do not
interfere at an instant t > tt. For Dirac, Nature makes a ctioice some

time later and decides ln favor of that state ryn with probabilíty
lc 12. fni.s choice cannot be renounced and determines the future
evoi.ution'of the state. Llhat Dirac cal1s ttchoice of Naturetr, we have
ca11ed "objective propensity" (Tobar-Arbulu 1986a). The quantum
mechanical principle of superposítion of states is a principle of
Nature and has to be interpreted only in this way. Thus the quantum
object is characterized by a definite set of possibilities. In the
interaction of this quantum object with the apparatus (Cinj. 1983) the
possible gets actualized.

(5) Cini (1983) has proved quite convinclngly that the postulate of
wave packet co1lapse, introduced as an extra assunption in quantum
mechanics in order to describe the change in the wave function of a

quantum object ocurring during the time interval which is necessary
to perforn the neasurement of one of its physical variables, can be
dropped and replaced by the Schródinger time evolution of the state
vector of the total system object plus apparatus. This is proved,
strictly speaking, only for the ideal measuring processes described
by the interacting Hamiltomians introduced j.n his paper' and not for
any conceivable measuring apparatus. But, within these 1imÍts, the

. elimination of the projection postulate fron the conceptual founda-
tions of quantum mechanics is shown to be consistent with the known
features of any physical measurement.
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RES1JMEN

/
En e1 tra[ájo se presenta e1 cálcu1o de probabilidades como

una teoria matemática abstracta. Para e11o seguínos 1os enfoques
de Kolrnogoroff y Rényi. Se prueba que e1 enfoque de Rényi. es más
rico que e1 de Kolmogoroff, pues incluye a éste.

Dado e1 carácter abstracto de1 cá1cu1o de probabilidades, puede
ser interpretado de forma diferente: como propensidad, azay o cambio
objetivo y, estadísticamente, como frecuencia observada.

En cuanto a 1a interpretación como propensidad, se da una inter-
pretación de la mecánica cuántica no-relatlvista siguiendo a Bohr.
Es decir, las probabilidades que aparecen en esta teoría física
se interpetan como irreducibles (por tanto, no expresan ninguna
subjetividad de1 observador) que hacen referencia a 1a potencialidad
o propensidad que posee un sistema cuántico en un cierto medio am-
biente. La probabilidad se refiere, por tanto, a relaciones, como
una y otra vez ha repetido Bohr. Tales potencialidades únicamente
se actualizan en deter¡ninadas ocasiones: una de e11as cuando se
reali-za 1a medlción.


