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Forest fires are incidents of great importance in Mediterranean environments. Landsat data have proven to be suitable
for evaluating post-fire vegetation damage and determining different levels of burn severity, which is crucial for plan-
ning post-fire rehabilitation. This study assessed the utility of combined Multiple Endmember Spectral Mixture Analysis
(MESMA) fraction images and Land Surface Temperature (LST) to accurately map burn severity. We studied a large con-
vection-dominated wildfire, which occurred on 19-21 September 2012 in Spain, in a zone dominated by Pinus pinaster
Ait. Burn severity degree (low, moderate, and high) was measured 2—3 months after fire in 111 field plots using the Com-
posite Burn Index (CBI). Four fraction images were generated using MESMA from the reflective bands of a post-fire

Keywords: Landsat 7 Enhanced Thematic Mapper (ETM +) image: 1.-char, 2.-green vegetation (GV), 3.-non-photosynthetic vege-
I}?Ali;n;;;/:emy tation and soil (NPVS) and 4.-shade. The thermal band was converted to LST using a single channel algorithm. Next,
LST Multinomial Logistic Regression (MLR) was used to obtain the probability of each burn severity level from MESMA
MLR fraction images and LST. Finally, a burn severity map was generated from the probability images and independently
Landsat validated using an error matrix, producer and user accuracies per class, and « statistic. MLR identified the char fraction

image and LST as the only significant explanatory variables when burn severity acted as the response variable. Two burn
severity degrees (low-moderate and high) were finally considered to build the final burn severity map. In this way, we
reached a higher accuracy (k = 0.79) than using the original three burn severity levels (k = 0.66). Our study demonstrates
the validity of combining fraction images and LST from Landsat data to map burn severity accurately in Mediterranean

Mediterranean forest ecosystems

countries.

© 2016 Published by Elsevier Ltd.

1. Introduction

Wildfires have significant ecological and biophysical repercus-
sions in almost all terrestrial ecosystems (Chuvieco, 2009; Pyne, 1996;
Veraverbeke et al., 2012a). Specifically in Mediterranean countries
(Portugal, Spain, France, Italy and Greece) fires are a substantial
source of land degradation, burning an average of > 0.4 mil-
lion hectares based on a 35-year average as reported by the Joint Re-
search Centre (JRC) of the European Commission (Schmuck et al.,
2014). Accurate knowledge of the spatial distribution of burn sever-
ity levels is crucial to plan and execute post-fire management activi-
ties (mainly soil stabilization and vegetation rehabilitation) (Frolking
et al., 2009; Lentile et al., 2006). Compared to field efforts required
to directly measure the post-fire burn effects, remote sensing based
measures are a more affordable option and are especially suitable for
monitoring large and topographically complex landscapes (Chuvieco,
2009). Fire severity studies, in particular, have been widely based on
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the remotely sensed data acquired by sensors onboard the series of
Landsat satellites (Brewer et al., 2005; Chu et al., 2016; Cocke et
al., 2005; Fang and Yang, 2014; Fernandez-Manso and Quintano,
2015; Parker et al., 2015; Quintano et al., 2013; Wu et al., 2015;
Veraverbeke and Hook, 2013). The main advantages of Landsat im-
agery include multispectral sampling (6 reflective bands and one ther-
mal band), moderate spatial resolution and image time series covering
> 40 years (Fang and Yang, 2014).

Remote sensing based methods to study burn severity are based
mainly on spectral indices (Arnett et al., 2015; Chu et al., 2016;
Fernandez-Manso and Quintano, 2015; Soverel et al., 2011;
Stambaugh et al., 2015; Tanase et al., 2011), radiative transfer mod-
els (RTM, Chuvieco et al., 2006; Chuvieco et al., 2007; de Santis and
Chuvieco, 2007; de Santis et al., 2009), or spectral mixture analy-
sis (SMA, Fernandez-Manso et al., 2009; Lentile et al., 2006, 2009;
Quintano et al., 2013; Sunderman and Weisberg, 2011). Regarding
spectral indices, many burn severity studies are based on the normal-
ized burn ratio (NBR). Differenced NBR (dNBR) is widely used and
can be seen as a reference to map burn severity (Chu et al., 2016;
Fang and Yang, 2014; Key and Benson, 2006; Soverel et al., 2010).
Relative INBR (RANBR) a modification of dNBR initially proposed
by Miller and Thode (2007) may be, however, a superior way of per-
forming burn severity comparisons among regions and for estimating
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burn severity where pre-fire vegetative cover is low (Cansler and
McKenzie, 2012; Kane et al., 2013; Miller et al., 2009; Stambaugh
et al., 2015). A new modification of dNBR, the relativized burn ratio
(RBR), has been recently proposed by Parks et al. (2014) as a sub-
stitute to both RANBR and dNBR for estimating burn severity. How-
ever, some recent studies (Kolden et al., 2015; Sparks et al., 2015)
are pointing out some limitations of all the Monitoring Trends in Burn
Severity (MTBS) products (based on the previous mentioned spectral
indexes). Equally, previous studies (Kasischke et al., 2007; Roy et al.,
2006) identified some shortcomings of NBR derived indices. Roy et
al. (2006) showed that NBR was not optimal in quantifying fire sever-
ity shortly after fire occurrence, and Kasischke et al. (2007) found that
NBR derived indices did not displayed a high correlation with burn
severity as measured by the Composite Burn Index (CBI, Key and
Benson, 2006).

RTM models have been proposed to solve the limitation in accu-
racy and precision of previous burn severity studies and improve the
estimation of burn severity form satellite data (de Santis et al., 2009).
They simulate spectral signatures from a set of input parameters (Leaf
Area Index, percentage of dry leaves, and CBI values using just two
vegetation strata), providing a physically based approach to assess
burn severity. As described by de Santis et al. (2009), in the forward
simulation mode, RTMs calculate the effects of such plant parameters
to generate simulated spectral reflectance. In the inverse mode, spectra
from remotely sensed data are fit against forward modeled spectra to
estimate some of those plant parameters. The use of RTMs in the for-
ward mode to simulate burn severity scenarios (in terms of CBI) was
proposed by Chuvieco et al. (2006). De Santis and Chuvieco (2007)
used the same simulation scenario in the inverse mode to estimate CBI
values from a large forest fire.

Finally, many studies have used fraction images from SMA to map
burn severity as well (Ferndndez-Manso et al., 2009; Lentile et al.,
2006, 2009; Sunderman and Weisberg, 2011; Veraverbeke and Hook,
2013). Post-fire environments are usually composed of a mixture of
ash, vegetation and soil immediately after a fire. For that reason, mon-
itoring post-fire effects using medium spatial resolution sensors such
as Landsat can be contemplated as a sub-pixel question. The SMA
based method uses potentially all reflective bands of remotely sensed
satellite imagery, whereas spectral index based approaches make use
of just two spectral bands (Sunderman and Weisberg, 2011). Assum-
ing linear SMA, the reflectance of a mixed pixel may be considered as
a linear combination of the endmembers reflectance, weighted by the
fractional area of each endmember in the pixel (Roberts et al., 1993).
Spectral unmixing can be implemented using different approaches.
Modified Gramm—Schmidt orthogonal decomposition (Adams et al.,
1993), least squares (Shimabukuro and Smith, 1991) and singular
value decomposition (Boardman et al., 1995) are three of the most
commonly used; and root mean square error (RMSE) is the most fre-
quently used method to evaluate model fit. SMA is restricted to the
same set of endmembers to unmix the whole image whether or not
such endmembers exist in the pixel. By contrast, Multiple Endmember
SMA (MESMA) (Roberts et al., 1998) may use a large number of end-
members to unmix a scene. MESMA accounts for within class spectral
variability as each pixel may be unmixed by a different combination of
potential endmembers. A few recent studies (Veraverbeke and Hook,
2013; Veraverbeke et al., 2014) have confirmed that MESMA fraction
images show a high correlation with field measured burn severity (of-
ten CBI). Our study will be based on MESMA factions as well but
we will complement reflective information with thermal data, as Land
Surface Temperature (LST) has recently been shown to be related to
burn severity.

All of the studies that associated fire damage with LST (e.g.
Lambin et al., 2003; Quintano et al., 2015; Veraverbeke et al., 2010;
Vlassova et al., 2014; Wendt et al., 2007) reported a LST increase im-
mediately following the fire. Lentile et al. (2006) stated that, although
thermal infrared wavelengths are commonly discarded in burn severity
studies, they may act as an indicator of the absence of evapotranspira-
tion due to the presence of exposed soils after fire. Furthermore, ana-
lyzing fires in Mediterranean forest ecosystems, Quintano et al. (2015)
confirmed that LST may be of considerable value as an indicator of
burn severity. Similarly, other studies (e.g. Veraverbeke et al., 2012c;
Vlassova et al., 2014) concluded that LST is an essential indicator to
interpret immediately after fire the spatial variation of burn severity.
Chen et al. (2015) concluded that the application of thermal infrared
spectral bands (3.0-12.5 nm) augmented burn severity assessments
versus using only mid infrared bands. Harris et al. (2011) concluded
that the spectral index based on NBR and enhanced by LST (initially
proposed by Veraverbeke et al., 2011) slightly outperformed NBR to
assess burn severity in chaparral. Similarly, Zheng et al. (2016) pro-
posed a new index based on LST and enhanced vegetation index (EVI)
and showed that it performed equally well for post-fire areas covered
with both sparse vegetation and dense vegetation and relatively better
than some commonly used burn severity indices.

Quintano et al. (2013) concluded that MESMA fraction images en-
able accurate burn severity mapping in Spanish Mediterranean ecosys-
tems. However, their study was not validated using field measured
burn severity but post-fire ortho-photographs. Furthermore, Quintano
et al. (2015) showed that Landsat LST may act as an indicator of burn
severity, though a true burn severity map was not estimated from LST.
Instead, the authors spatially represented predicted CBI from LST.
This new study aims to confirm that MESMA fractions accurately
map burn severity in Mediterranean ecosystems (ground measured as
CBI) and to demonstrate that LST is highly related to burn severity
immediately following a fire and thus increases the accuracy of the
MESMA -based burn severity map. Moreover, although both reflective
and thermal information have a proven relationship to burn severity,
there are no studies that have exploited them simultaneously, so our
study is testing for the first time the potential of combined use to es-
timate burn severity. Our main goal is to evaluate whether LST com-
plements MESMA fraction images to map burn severity accurately
(more accurately that using just MESMA fractions). The specific ob-
jectives can be summarized as: 1) to verify that MESMA fraction im-
ages are related to field measured CBI and to determine which frac-
tion image is superior for burn severity mapping; 2) to check whether
a burn severity estimate based on both MESMA fraction images and
LST is more accurate than burn severity estimate based solely on
MESMA fraction images; and 3) to map accurately burn severity. We
used Multinomial Logistic Regression (MLR) that has been used re-
cently in different remote sensing based studies (Guccione et al., 2015;
Marchetti et al., 2011; Mulder et al., 2013; Prabhakar et al., 2013a,
2013b; Tan et al., 2015; Vasques et al., 2015; Waser et al., 2014;
Zeilhofer, 2006), but never to estimate burn severity from remotely
sensed images to our knowledge. Moreover, the use of MLR gave us
the opportunity of generating probability images of each burn severity
level that are easy to interpret and can act as inputs to hard classifiers
to create a burn severity map. We based our study on Landsat data that
includes both types of information (reflective and thermal), which is
an opportunity since there is no need to use different sensors.
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2. Material
2.1. Study area

A large fire burned 117.75 km? in ‘Castrocontigo’ (Sierra del Te-
leno, northwestern Spain) between 19 and 21 August 2012. Small fires
mainly caused by dry spring-summer storms have frequently affected
this forest ecosystem. However, the 2012 fire, facilitated by the heat
wave that affected the area, was a convection-dominated mega-fire
predominated by a high burn severity level. This fire was included
in the annual European report of fires by the Joint Research Centre
of the European Commission due to its importance (Schmuck et al.,
2012). Forest fires of such magnitude are uncommon in Europe, and
even less in NW Spain. The Castrocontigo forest fire had two differ-
ent characteristics that made it a singular case of study: 1.-It can be
considered a 4th generation mega forest fire (fire crossing the inter-
face urban-forest) (Costa et al., 2011); and 2.-It had a highly convec-
tive typology (Grillo et al., 2008). Both characteristics are related to
socioeconomic and climatic factors that converge in the Teleno Moun-
tains, causing that forest landscapes to evolve into vegetation struc-
tures with a higher combustible load, and horizontal and vertical con-
tinuity. These situations are becoming more frequent in Europe, so the
study of the Castrocontigo forest fire may help in the prevention and
the study of future fires of similar characteristics.

Sierra del Teleno (Fig. 1) is a small mountain chain with an av-
erage slope of approximately 10% and elevations ranging between
850 and 2100 m above sea level. The vegetation within the area af-
fected by the fire is dominated by Pinus pinaster Ait. (73%) coex-
isting with other Pinus species (Pinus nigra Arm., 3%, and Pinus
sylvestris L., 2%) (Third Spanish National Forest Inventory, Alberdi
etal., 2010). Additionally, 7% of the fire-affected area was covered by
Quercus ilex L., 5% by Quercus pyrenaica Willd. and 10% by shrubs.
The average annual rainfall ranges between 650 and 900 mm and there
is a summer dryness typical of a Mediterranean climate.

2.2. Dataset

2.2.1. Field data

The 2012 fall was especially dry and wood extraction was not oc-
curring in the study area. These two facts suggest that post-fire condi-
tions remained almost unchanged for the two-three months following
the fire. Nine to twelve weeks following the fire, burn severity was
measured in the field in 11,130 m diameter circular plots using the
Composite Burn Index (CBI) (see Key and Benson, 2006 for a com-
plete description). CBI is a method of assessing burn severity in the
field specifically designed to validate 30-m resolution Landsat-based
burn-severity images. It combines ecologically significant variables
related to burn severity into one numeric site index, and is becoming
a standard to ground measure burn severity, although diverse studies
have pointed out some of its limitations and have proposed some mod-
ification (e.g. the Geometrically Structured CBI, GeoCBI, by de Santis
and Chuvieco, 2009, or weighted CBI, WCBI, by Soverel et al., 2010,
2011).

Although burn severity can be represented on a continuous scale
by field measurement as CBI, these continuous metrics are usually
grouped into different categories (Parks et al., 2014). In our study,
the chosen categories were: unchanged, low, moderate, and high burn
severity level. Our CBI thresholds for low, moderate and high burn
severity classes were situated halfway between the values listed by
Miller and Thode (2007) as a general guide, as many previous stud-
ies have used (e.g. Kane et al., 2014; Miller et al., 2009; Parker et al.,
2015; Parks et al., 2014; Stambaugh et al., 2015): unburned (0.00),
low burn severity (0.10-1.24), moderate burn severity (1.25-2.24)
and high burn severity (2.25-3.00). To locate the field plots, we
searched areas with similar forest structure and fire effects and used
a Global Positioning System (GPS) to georeference them. The num-
ber of study plots was proportional to the surface included in each
severity level from the initial official severity map. Specifically, the
field measured plots were grouped into four categories: unburned (27
plots), low severity (8 plots), moderate severity (29 plots) and high

i

4675000

Moderate (CBI:1.9, plot:26) 080

Landsat 7 (ETM+) RGB:741 - Coordinale Reference System: ETRSS9 - UTM20N

T
735000

Fig. 1. Location of study area with examples of different burn severity levels by field photograph (adapted from Fig. 2 of Quintano et al., 2015).
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severity (47 plots). Fig. 1 displays some examples of each burn sever-
ity level. The relatively high number of high severity plots versus low
severity plots (47 vs. 8) is due to the existence of a high intensity fire.
The predominant burn severity level was high burn severity, whereas
low burn severity was mostly found close to the fire limits and in small
humid valleys.

2.2.2. Remotely sensed data

Our study was based on a Landsat 7 ETM + scene acquired approx-
imately two weeks after the fire on 6 September 2012. Fortunately, the
study area was situated in the zone of the scene not influenced by the
malfunction of the scan line corrector (SLC) in May 2003. We down-
loaded the scene with a L1G level of processing from the US Geo-
logical Survey (USGS). A L1G level means that the data product has
been radiometrically and geometrically corrected and that the scene
has been rotated, aligned and geo-referenced to the UTM map projec-
tion.

2.2.3. Additional data

Ancillary data included a digital elevation model (DEM), a
post-fire digital orthophotograph, the MODIS precipitable water prod-
uct (MOD 05) and the MODIS Land Surface Temperature and emis-
sivity product (MOD 11). The DEM helped us to topographically nor-
malize the Landsat 7 ETM + image. We used the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model Version 2 (GDEM V2) provided by USGS.
The digital orthophotograph assisted us to define the candidate end-
member spectra. Specifically we utilized a 0.7 m-pixel digital or-
thophotograph acquired in 2014 and supplied by the Spanish Na-
tional Center of Geographic Information (CNIG; http://www.cnig.es/
) through the Spanish Aerial Orthophotography National Planning
(PNOA) agency. Finally, the MODOS product (precipitable water) en-
abled us to define the atmospheric water vapor content (w) (see Eq.
(2)) and the MOD11 product (LST and Emissivity) allowed us to as-
sess the accuracy of our computed LST Landsat image. Both MODIS
products were downloaded from the National Aeronautics and Space
Administration (NASA) Earth Observation System Data and Infor

mation System (EOSDIS) web interface (http://reverb.echo.nasa.gov/
).

3. Methods

Our study is organized into four main stages: 1) pre-processing
of the Landsat scene; 2) application of MESMA to reflective Land-
sat bands; 3) LST calculation from Landsat thermal band; and 4)
MLR, to determine the probability of each burn severity level from the
MESMA fraction images and LST (see Fig. 2).

3.1. Pre-processing

First, the downloaded image was co-registered to the digital or-
thophoto and DEM. The misregistration error between the Landsat
image and the post-fire orthophoto was <7.5m (0.25 of a Land-
sat pixel). Next, the Landsat 7 ETM + scene was subset to the se-
lected forest fire. Specifically latitude/longitude coordinates were: up-
per left corner, 42°20"38.27"N/6°16'49.51"W; and lower right cor-
ner 42°13'59.97 N/6°8'28, 40"W. Subsequently, we performed a topo-
graphic normalization based on the C-correction algorithm (Teillet et
al., 1982). Ten percent of the pixels were randomly selected to com-
pute the C constant used to correct the image. Next, the topographi-
cally normalized image was scaled to radiance values (L,) using the
method proposed by Chander et al. (2009) who tabulated the updated
necessary rescaling factors for the Multispectral Scanner (MSS), The-
matic Mapper (TM), Enhanced Thematic Mapper Plus (ETM +) sen-
sors on board of Landsat satellites and Advanced Land Imager (ALI)
on board of Earth Observing Mission 1 (EO-1). Finally, the radi-
ance values were converted to surface reflectance (p) using the im-
age-based cosine of the solar transmittance (COST) method (Chavez,
1996). The COST method improves upon the simpler image-based
Dark Object Subtraction (DOS) technique (Chavez, 1988, 1989) be-
cause it corrects the multiplicative transmittance effect. Chavez (1996)
stated empirically that the cosine of the solar zenith angle is a good
approximation of the atmospheric transmittance along the path from
the sun to the ground surface (t;). Additionally, Chavez (1996)
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provided default 1, values for bands 1-4. Such values together with
the values proposed by Gilabert et al. (1994) for bands 5 and 7, are the
recommended values by the Spanish Remote Sensing Planning frame-
work. For that reason, we used them to atmospherically correct the ra-
diance values. All pre-processing calculations were performed on R
development software.

3.2. MESMA procedure

Linear SMA, the base for MESMA, assumes that each pixel is con-
stituted by a weighted linear combination of endmembers that repre-
sent the whole image, in which the fractional coverage of each end-
member within the pixel acts as the weight (Keshava and Mustard,
2002; Quintano et al., 2012; Roberts et al., 1993). In contrast, using
MESMA, each pixel maybe unmixed by a different set of endmem-
ber spectra (model). In this way, the number of components in which
a scene can be spectrally unmixed is not restricted to the quantity of
endmembers used. The model selected to unmix each pixel is the one
that minimizes the RMSE and meets all fraction and fit constraints
(Roberts et al., 1998). An adequate endmember choice is a fundamen-
tal stage to success in the unmixing procedure (Tompkins et al., 1997).
The endmember spectra should exhibit distinguishable attributes in the
scene and be of interest to the user (Quintano et al., 2012). Reference
endmembers are taken from spectral libraries whereas image endmem-
bers are defined from the image itself. A disadvantage of using refer-
ence spectra is the need of an accurate image correction that is com-
plex and where errors always appear (Drake et al., 1999). By contrast,
image endmembers are relatively easy to obtain and they were mea-
sured as the same scale as the image data. As done in previous stud-
ies (Fernandez-Manso et al., 2012; Somers et al., 2012; Youngentob
etal., 2011), we formed our spectral library using image endmembers.

Following Dudley et al. (2015) and Roberts et al. (2015), we used
georeferenced polygons from high spatial resolution ortophotographs
to define the potential endmembers and to form a large spectral library
of candidate endmembers. Uniform polygons of just one class were
digitized and stored in a shape file. Table 1 indicates the number of
polygons used for each class. We used Iterative Endmember Selection
(IES, Roth et al., 2012; Schaaf et al., 2011) to reduce the size of the
spectral library and to improve MESMA run times. IES is an auto-
mated technique that uses an RMSE threshold to identify the endmem-
bers that best model the spectra in a potential spectral library. Initially,
accuracy is determined using «x statistic (Congalton, 1991) and pro-
gressively IES adds or subtracts endmembers to increase the « statis-
tic value. As IES chooses exclusively those endmembers that improve
the « statistic, it is possible that endmembers for determined categories
are not included in the final endmember library (Roth et al., 2012).
Thus, following Roberts et al. (2007), the common spectral shape of
the spectra and our knowledge of the study area were considered as
well.

Once the final spectral endmembers were selected, they were or-
ganized into three spectral libraries (char, green vegetation (GV), and
non-photosynthetic vegetation and soil (NPVS)). This grouping pro-
duced the highest number of classified pixels after unmixing the im-
age and enabled us to have available a char fraction image represen-
tative of burned vegetation. Using the following selection specifica-
tions, the behavior of all candidate models for each pixel was exam-
ined: —0.05 and 1.05 were defined as minimum and maximum, re-
spectively, allowable fraction values; 0.8 was set as the maximum al-
lowed shade fraction value; and 0.025 was established as the max-
imum permissible RMSE. In the case of multiple models fulfilling
these specifications, the model whose RMSE is the lowest was cho

Table 1
Endmember definition and summary of MESMA procedure.

Endmember definition process

Endmember
Spectral definition
library Category Name polygons Endmember spectra
# Km® #defined #selected
Char Scar Char (forest) 8 0.606 674 6
Char (crop) 1 0.012 13 4
Total 9 0.618 687 10
GV Forestry Pinus pinaster 7 0.299 332 1
Pinus 4 0.171 190 1
sylvestris
Pinus nigra 4 0.171 190 1
Quercus ilex 3 0.128 142 1
Quercus 5 0.214 237 1
pyrenaica
Alnus 2 0.030 33 0
glutinosa
Shrub Shrub 5 0.212 236 1
Grassland Irrigated 2 0.085 95 1
grassland
Agriculture  Irrigated crop 1 0.008 9 1
Total 33 1.318 1464 8
NPVS NPV Unirrigated 3 0.128 142 1
grassland
NPV Unirrigated 2 0.051 57 1
crop
Road Asphalt 1 0.009 10 0
Firebreak Firebreak 1 0.019 21 1
Urban Village 3 0.031 35 1
mixture
Badlands Bare soil 3 0.128 142 1
Rock Rock 2 0.057 64 1
Total 15 0.423 471 6
Total 57 2.359 2622 24
Summary MESMA procedure
#models 480
Unclassified pixels #pixels 5072
Y%image 1.39

GV: green vegetation; NPV: no-photosynthetic vegetation; NPVS: no-photosynthetic
vegetation and soil.

sen. All constraint values were successfully used in previous studies
(Dudley et al., 2015; Quintano et al., 2013; Roberts et al., 2012; Roth
et al., 2012; Schaaf et al., 2011; Thorp et al., 2013). In addition, we
defined a number of classified pixels threshold equal to 95%; mean-
ing that the MESMA fraction images were only definitely accepted if
the number of classified pixels of each Landsat image was above 95%.
When this condition was not fulfilled, we changed the spectra included
in the spectral libraries (number and/or type) and unmixed again the
post-fire image.

Finally, the fraction images were shade normalized. Each pixel of
char, GV, and NPVS fraction images was divided by the sum of all
non-shade fraction images in such pixel. Since the shade endmember
was removed, we gained new information on the relative abundance of
non-shade endmembers. The Visualization and Image processing for
Environmental Research (VIPER) tools software (v1.5 and v2.0) was
used in this work to perform all mentioned MESMA procedures.

3.3. LST calculation
The 6L thermal band was converted to brightness temperature

as suggested by Chander et al. (2009). Next, following the single
channel algorithm initially proposed by Jiménez-Muifioz and Sobrino
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(2003) and updated by Jiménez-Muioz et al. (2009) we retrieved LST
(Eq. (1))

1
LST:Y [g (WlLsen+W2) +W3] +d )

where at-sensor radiance is represented by L.,; land surface emissiv-
ity by &; two parameters dependent on the Plank's function by y and §,
respectively, and the so-called atmospheric functions (AFs) by y; with
i=1,2,3. We assumed that AFs are dependent only on atmospheric
water vapor content (w). Thus, we could approximate the AFs by a
second-degree polynomial (Eq. (2)).

Y =CW @)

where the AFs are symbolized by ¥; w is incorporated in the equa-
tion by W; and different coefficients calculated by simulation are
represented by C (cij, i = 1,2,3, j = 1,2,3). Following Jiménez-Mufoz
et al. (2009), the Moderate Resolution Imaging Spectroradiometer
(MODIS) precipitable water product (MOD 05) enabled us to define
the value of w. As recommended by the Spanish Remote Sensing Pro-
gram (PNT) the matrix of coefficients C was calculated based on the
TIRG61 database (Sobrino et al., 1993) that includes 61 atmospheric
profiles. We estimated the land surface emissivity (€) using the proce-
dure suggested by Sobrino et al. (2008). This methodology is based on
NDVI thresholds and calculates € from proportion of vegetation cover
and red band reflectivity.

Once LST was computed, we checked its accuracy by comparing
the obtained LST image to the LST image from the daytime MODIS
LST and Emissivity products. The histograms of both LST images
were compared to verify that differences in mean and range were
insignificant. After validating the Landsat-based LST image, it was
re-scaled to [0—1] range (similarly to MESMA fraction images). We
denoted the re-scaled LST image by LST s.

3.4. Multinomial Logistic Regression

Before extracting the values of the shade normalized fraction im-
ages and LST s for the field plots, we applied a mean 3 x 3 filter to
these images. As burn severity is a discrete variable with more than
two categories, MLR (Agresti, 2002), an extension of binomial lo-
gistic regression (BLR), was selected to relate the burn severity level
to the explanatory variables. It describes the relationship between a
polytomous or categorical response and one or more explanatory vari-
ables (Hosmer et al., 2013), and builds trustworthy predictive models
from explanatory variables (continuous or discrete) (Agresti, 2002).
MLR does not suppose either normality or linearity or homoscedas-
ticity. Moreover, MLR does not assume any distribution of variable
relationships (Osborne, 2014). The MLR probability estimate for each
category always varies from 0 to 1, generating a realistic probability
surface. As indicated by Koutsias and Karteris (2000) this model be-
havior is regarded as an advantage over other statistical methods, in
which the probability estimates may fluctuate outside of the interval
[0—1]. The probabilistic outputs of MLR are easy to interpret and can
act as inputs to hard classifiers (from using a probability threshold to
the classical maximum likelihood classifier) (Hogland et al., 2013).

Similar to logistic regression models, in MLR analysis when the
dependent variable exhibits a number of categories, one of them is
chosen as the reference category. In this way, the probability of mem-
bership in the different categories is related to the probability of
membership in the reference category (Hosmer et al., 2013). In our

study, the high burn severity level was taken as the reference category
since it is the most numerous category. Thus, MLR provided us three
equations, one for each non-referential category (unburned, low, and
moderate burn severity level) to illustrate the relationship among the
response and the explanatory variables (Egs. (3)—(6)). The probability
of the reference category is described in Eq. (6).

exp (ZU)
pU) =
1 +exp (Zy) +exp (1) +exp (Zy) (3)
exp (Z
(L) = ()
1 +exp (ZU) +exp (ZL) +exp (ZM) 4)
Z
pM) = a0
1 +exp (Zy) +exp (Zy) +exp (Zy) (5)
pH) = 1
1 +exp (Zy) +exp (Zy) +exp (Zy)
=l+pU)-p@L)-pM) (6)

where, U, L, M, and H represent unburned, low, moderate, and high
burn severity level, respectively; and Z; (i = U, L, M, H) is represented
in Eq. (7).

K
Z; = Poi + Zﬁjixj
i=1 @)

where, the regression coefficients are represented by f; G =0....k:
number of independent variables), and the independent variables by X;
G=1..%.

The whole data set was randomly split into two groups, the train-
ing set (70% of CBI plots) and the validation set (30% of CBI plots).
The samples were well balanced with respect to the proportion of plots
with unburned, low, moderate and high burn severity levels. Addition-
ally, as suggested by Hosmer et al. (2013) we considered a minimum
of 10 cases per independent variable. As in other studies (Montealegre
et al., 2014; Vasques et al., 2015; Waser et al., 2014) we applied the
forward stepwise method to the training dataset to choose the inde-
pendent variables. The starting point of the forward stepwise method
is the model determined by the forward entry method: a model where
only the most significant variables are included (the variables with-
out statistically significant contribution are omitted). From this ini-
tial model, the forward stepwise method alternates between backward
suppression on the stepwise variables in the model and forward en-
try on the variables omitted. To assess the goodness of models and
the significance of variables the log likelihood (— 2LL) statistic and
the likelihood ratio (LR) Chi-Square test were used. Cox and Snell,
Nagelkerke and McFadde pseudo-R? tests were also considered.

Once the model was selected, the intercept and the weights of the
variables incorporated into it were used to calculate the probability of
each burn severity class (p(U), p(L), p(M), and p(H)). The probability
images were then combined, selecting for each pixel the burn severity
class with the highest probability. The burn severity estimate was val
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idated using the CBI validation plots using an error matrix and through
the « statistic (Congalton, 1991). Overall accuracy (OA) as well as
producer accuracy (PA) and user accuracy (UA) of each class were
also computed.

4. Results

The set of geo-referenced polygons defined over the post-fire or-
tho-photographs enabled us to find the spectra of each class (Table 1).
We used three spectral libraries: char, GV and NPVS. Table 1 pro-
vides more information about the endmember selection process. The
char spectral library was defined by 9 polygons digitized inside the
fire scar. These polygons included 687 endmember spectra. The GV
spectral library was generated from 33 polygons grouped in to four
categories: forest, shrub, grassland and agriculture. In this way, we ob-
tained 1464 candidate endmembers, representing Pinus pinaster, Pi-
nus sylvestris, Pinus nigra, Quercus ilex, Quercus pyrenaica, Alnus
glutinosa, shrub, grassland and crops. Finally, we grouped NPV and
soil into one spectral library, NPVS. Fifty polygons were digitized in-
cluding NPV, roads, firebreaks, urban mixtures, badlands and rocks,
which allowed us to obtain 471 potential endmember spectra. Using
the IES algorithm and considering the typical spectral profile of the
endmember spectra and our knowledge of the study area, the number
of endmember spectra that we finally selected included 10 char spec-
tra, 8 GV spectra and 6 NPVS spectra (see Fig. 3 for an example of the
selected endmember spectra from each category). A total of 480 mod-
els (10 8 = 6 =480) were run on each pixel using MESMA, classi-
fying 98.61% of the Landsat 7 ETM + image.

Next, fraction images were shade normalized. In Fig. 4 we can vi-
sually notice distinct burned and unburned areas in the shade normal-
ized char and GV fraction images. Furthermore it is possible to differ-
entiate some variations inside the fire scar that we presume are related
to burn severity. Fig. 4 (right lower corner) also displays the post-fire
LST image. Similarly to shade normalized fraction images, LST al-
lowed us to observe notable spatial variation in temperature between
burned and unburned areas, with unburned areas cooler. In addition,
we observed temperature variations inside of burn limit that presum-
ably reflect differences in burn severity. Thus, the visual analysis sug-
gests that both MESMA fraction images and LST are sensitive to burn
severity levels.

Differentiating three levels of burn severity from satellite data is
not always possible (Miller and Thode, 2007; Quintano et al., 2015;
Tanase et al., 2011). For this reason, we applied MLR to the train-
ing set of the work database, considering both three and two burn
severity levels. When we took into account just two burn severity lev-
els, the low and moderate burn severity classes were merged. Table 2
shows the results of the forward stepwise method applied to the train-
ing set to choose the explanatory variables included in the model. In
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both cases (two and three burn severity levels) only two independent
variables were selected: shade normalized char fraction image and
LST s as they were the only significant ones.

The most relevant parameters of these MLR models are displayed
in Table 3. The — 2LL was lower and LR Chi-Square was higher when
only two burn severity levels were taken into account indicating a
better statistically significant agreement (p < 0.001) (Hosmer et al.,
2013). Like linear regression, the pseudo-R-squared values roughly
display how much variation the model explains. In our case, the three
pseudo R-square statistics are higher when two instead of three burn
severity levels are considered. Similarly, the OA of the burn sever-
ity estimates within the training set when two burn severity levels
were considered was higher than the OA if we take into account three
burn severity levels. We found both models highly significant (Sig-
nificance < 0.000). The coefficient or parameter estimates of both in-
dependent variables are negative and significant, suggesting that a re-
duction in either shade normalized char fraction image or LST s de-
termines an increment in burn severity.

To highlight the contribution of LST to the MLR model, the for-
ward stepwise method was applied again to the training set, exclud-
ing LST s as independent variable. In this case, only the shade nor-
malized char fraction image was included in the MLR model for both
two and three burn severity levels. Table 3 also shows the summary of
MLR parameters when only the shade normalized char fraction image
was used as an explanatory variable. The comparison of MLR para-
meters when LST s is or is not included as an explanatory variable,
illustrates the contribution of LST s to the model. In both cases (two
and three burn severity levels) the « statistic increased when LST s
was included (from 0.59 to 0.79, and from 0.55 to 0.66, respectively).

From the accuracy analysis shown in Table 3, the MLR model with
two explanatory variables and two burn severity levels was selected to
obtain the final burn severity probabilities. A « statistic of 0.66 (three
burn severity levels) was considered insufficient. Table 4 displays the
accuracy measures of the selected MLR model for the training and
validation set. Very similar values were obtained (OA = 85% and k
statistic =~ 0.78). Both error matrices showed some confusion between
low-moderate and high burn severity classes. The validation error ma-
trix also indicated some confusion between low-moderate burn sever-
ity and unburned classes.

Once validated, the parameter estimates shown in Table 3 were
included in Egs. (5)—(9) to calculate the probabilities of unburned
class, low-moderate burn severity class and high burn severity class.
These predicted probabilities are plotted in Fig. 5. Fig. 5, upper left,
shows the probability of the unburned class inside the fire scar. There
are some white spots (high probability of unburned) inside the fire
perimeter. Fig. 5, middle left, displays the probability of low-moder-
ate burn severity class. Finally, Fig. 5, lower left, displays the proba
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Fig. 3. Example spectra from the final spectral libraries. a) Green vegetation spectral library; b) char spectral library; ¢) non-photosynthetic vegetation and soil spectral library.
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Fig. 4. Shade normalized fraction images and LST. a) shade normalized char fraction; b) shade normalized NPVS fraction; ¢) shade normalized GV fraction; d) LST image.

Table 2
Selection of the explanatory variables used in the Multinomial Logistic Regression
(stepwise method).

Effect — 2 log likelihood of reduced model Likelihood ratio tests
Chi-Square  df Sig.
Two burn severity levels
Intercept 102.394 31.535 2 0.000
LST s* 93.672 22.814 2 0.000
Char_sn* 84.453 13.594 2 0.001
GV_sn 71.214 0355 2 0.837
NPVS sn  70.883 0.024 2 0988
Three burn severity levels
Intercept 129.311 27.437 3 0.000
LST s* 129.679 27.805 3 0.000
Char_sn* 115.560 13.687 3 0.003
GV_sn 107.043 5.170 3 0.160
NPVS sn  103.405 1.531 3 0.675

LST s: land surface temperature scaled to [0,1] range; Char_sn: shade normalized char
fraction image; GV_sn: shade normalized green vegetation fraction image; NPVS sn:
shade normalized non-photosyntetic vegetation and soil fraction image.

# Explanatory variables selected by the forward stepwise method. The chi-square
statistic is the difference in — 2 log-likelihoods between the final model and a reduced
model. The reduced model is formed by omitting an effect from the final model. The
null hypothesis is that all parameters of that effect are 0.

bility of high burn severity class. Most of this image appears in white
tones indicating a high proportion of high burn severity class as really
occurred. The categorical maps of burn severity are valuable for for

est management plans. For that reason, Fig. 5, right, shows the burn
severity estimate obtained by selecting the class with the highest prob-
ability in each pixel. It can be noticed that most of the area was classi-
fied in at the high burn severity level.

5. Discussion

A total of 98.61% of the image was classified by MESMA using
three spectral libraries: char, GV, and NPVS. This high value could
not be obtained without an adequate endmember selection. As Maselli
(1998) summarized, a satisfactory set of endmembers must meet sev-
eral conditions: linear independency, spectral representativity and spa-
tial generality. Many previous MESMA based studies (Franke et al.,
2009; Quintano et al., 2013; Roberts et al., 2012; Youngentob et al.,
2011) used indices such as: Count based Endmember Selection (CoB,
Roberts et al., 2003), Endmember Average RMSE (root mean squared
error) (EAR, Dennison and Roberts, 2003) and Minimum Average
Spectral Angle (MASA, Dennison et al., 2004) to define the final
spectral libraries. In this study, IES was used to find the best subset of
endmembers. IES is a relatively new method to reduce the size of the
spectral library by selecting only the endmember spectra that increase
K statistic (Roth et al., 2012). This approach resulted in the most favor-
able selection of endmembers. Consequently, an accurate burn sever-
ity estimate could be obtained from the fraction images.

Fig. 6 shows the combined contribution of the potential explana-
tory variables from a graphical perspective. A four-axis chart, one for
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Table 3

Comparison of MLR models considering two and three burn severity levels and includ-
ing shade normalized char fraction image and land surface temperature scaled to [0,1]
or just shade normalized char fraction image.

Two burn severity levels Three burn severity levels

Char sn & Char sn &
LST s Char_sn LST s Char_sn
Pseudo R-squares
Cox and Snell 0.779 0.728 0.790 0.728
Nagelkerke 0.882 0.824 0.859 0.792
McFadden 0.761 0.606 0.619 0.517
Model fitting
— 2 log likelihood 71.641 94.806 107.613 136.396
Chi-square 168.957 145.734 174.672 145.856
Degrees of freedom 4 2 6 3
Significance 0.000 0.000 0.000 0.000
Parameter estimates (coefficients)
Class  Coefficients
0 Intercept 47.241 47.088 48.043 48.093
Char_sn —118.442 —188.727 —119.252 —188.747
LST s —26.489 —26.991
1 Intercept 12.781 5.480 13.536 3.849
Char_sn —8.648 —8.845 —15.022 —8.517
LST s —9.692 -6.777
2 Intercept 12.033 5.271
Char_sn -8.719 —8.951
LST s -8.912
Accuracy (considering the training set, n = 77)
Overall Accuracy 0.86 0.73 0.77 0.70
(%)
Kappa statistic 0.79 0.59 0.66 0.55
oy 0.018 0.02 0.016 0.018

Char_sn: shade normalized char fraction image; LST_s: land surface temperature scaled
to [0,1] range; class 0: unburned class; class 1: low-moderate class when three burn
severity levels were considered, or low class when four burn severity levels were
considered; class 2: moderate burn severity level; the high burn severity level is the
reference class.

each variable (shade normalized char, GV and NPVS, and LST 5s) is
shown for the unburned plots (left), for the low-moderate burn sever-
ity level plots (center), and for the high level (right). From these plots
it is possible to observe the characteristics of the different burn sever

Table 4
Error matrices (training and validating) and summary of accuracy parameters.

ity categories. Unburned plots display a high GV value (near 1), near
zero char fraction, and the lowest soil fraction and LST values. In
contrast, high burn severity plots (Fig. 6 right) display minimal GV
values, maximum values of char fraction and the highest values of
soil fraction and LST. The low-moderate burn-severity plots have in-
termediate values between unburned and high burn severity level,
displaying relatively high values of char fraction and LST s, and
low-medium values of GV. These results agree with the characteriza-
tion of the unburned, low, moderate and high burn severity plots re-
garding fraction images made by previous studies (Fernandez-Manso
et al., 2009; Quintano et al., 2013).

In our study, MLR helped to identify which among the shade
normalized MESMA fraction images, and LST s was more impor-
tant in differentiating burn severity levels. MLR identified the shade
normalized char fraction as the most significant explanatory variable
for burn severity. This fact agrees with a small number of previ-
ous studies that highlighted the potential of char fraction as indicator
of burn severity (Fernandez-Manso et al., 2009; Hudak et al., 2007;
Lentile et al., 2009; Smith et al., 2005; Sunderman and Weisberg,
2011; Veraverbeke and Hook, 2013; Veraverbeke et al., 2014). Most
of the previous studies, however, used SMA fraction images. The last
two, however, used MESMA-based fractions. Veraverbeke and Hook
(2013) defined the quotient between the char fraction (as an indicator
of the combusted material) and the sum of char, GV and NPV frac-
tions (as an indicator of all combustible materials) and showed its cor-
relation with burn severity (GeoCBI, de Santis and Chuvieco, 2009)
(R2:0. 66) in eastern Arizona (USA). Veraverbeke et al. (2014)
showed that the ratio between combusted and combustible mater-
ial (from MESMA fractions) was strong correlated to GeoCBI
(R?=0.86) in the Canyon Fire (California, USA). All of the previous
studies except Veraverbeke et al. (2014) were based on multispectral
Landsat data. Veraverbeke et al. (2014), however, used AVIRIS im-
agery.

The second explanatory variable identified by MLR that signifi-
cantly contributed to model burn severity was LST s. Other authors
have also shown that there is a relationship between thermal data and
burn severity. Quintano et al. (2015) concluded that, immediately af-
ter fire, LST and CBI (measuring burn severity) are significantly re

Error matrices

Training set

Validation set

Predicted Y%correct UA Predicted Y%correct UA
8] L-M H U L-M H
Observed U 19 0 0 19 1.00 Observed U 9 0 0 9 1.00
L-M 0 20 5 25 0.80 L-M 2 7 2 11 0.64
H 0 5 28 33 0.85 H 0 1 13 14 0.93
Sum 19 25 33 77 Sum 11 8 15 34
PA 1.00 0.81 0.85 PA 0.82 0.88 0.87

Summary of accuracy parameters

Training set

Validation set

Sample size 77

K 0.79
oK 0.018
PA 0.88
UA 0.88
OA 0.86

34
0.78
0.054
0.85
0.85
0.85

U: unburned, L-M: low-moderate burn severity; H: high burn severity, PA: producer's accuracy, UA: user's accuracy, OA: overall accuracy, k: kappa statistic; ok: standard deviation

of kappa statistic.
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Fig. 5. Probability images from MLR and burn severity map. a) probability image of unburned; b) probability image of low-moderate burn severity level; ¢) probability image of

high burn severity level; d) burn severity map.
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Fig. 6. Characterization of the unburned, low-moderate and high burn severity plots by four-axis charts of shade normalized MESMA fraction values together to LST scaled to [0,1]

range value. a) unburned; b) low-moderate burn severity level; ¢) high burn severity level.

lated (Rzadj =0.84), that this statistical relation weakens during
fall-winter (R2adj =0.46) and strengthens again during the follow-
ing summer (Rzadj =0.84, again). They also found that immediately
following a fire, LST enabled them to distinguish two burn sever-
ity levels with statistical significance (average LST value of un-
burned = 303.7 K; of low-moderate = 316.2 K; of high=319 K). In
their study about post-fire assessments, Veraverbeke et al. (2012b)
stated that estimates of char, NPV and substrate based on MESMA
fractions from a combination of visible to shortwave infrared
(VSWIR) and mid to thermal infrared (MTIR) data were 5—7% more
accurate, than estimates from only VSWIR data. Roberts et al. (2012)
reached a similar conclusion when working in urban environments.
They found TIR data complemented VSWIR data and vice versa, as
the confusion among classes in one spectral region was corrected by
the other spectral region.

From these two explanatory variables, MLR provided us three
probability images: unburned, low-moderate burn severity level and
high level. These probability images have physical meaning, are easy
to interpret, and can be used to generate a wide variety of maps iden

tifying class locations that are tailored to specific questions, which
represents one advantage of MLR (Hogland et al., 2013). The use
of fraction images also eases the interpretation of the MLR model
since they represent the abundance of each endmember within the
pixel. The straight connection between field measures and remotely
sensed variables is an important advantage of the unmixing procedure
(Morgan et al., 2014; Veraverbeke and Hook, 2013). The combination
of MESMA and MLR gave a physical meaning to the whole modeling
process, what eased its understanding.

Finally, our burn severity map from the probability images was in-
dependently validated obtaining a « statistic of 0.79 when two burn
severity levels were considered and 0.66 when three burn severity lev-
els were considered. To compare the accuracy of our burn severity
map to the accuracy of burn severity maps obtained by other authors,
we used the Cansler and McKenzie (2012) summary of the classi-
fication results of studies based on dNBR or RANBR and validated
with CBI in coniferous forest in North America. From this summary,
considering three burn severity levels, k statistic ranged from 0.37
(Soverel et al., 2010) to 0.62 (Cocke et al., 2005). Thus, our result
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(k=0.66) was slightly higher than the highest result. Additionally,
to assess the contribution of MESMA fractions and LST as explana-
tory variables, we obtained the burn severity level probability images
from MLR using post-fire NBR as unique explanatory variable. Table
5 shows a summary of the obtained pseudo R-squares and accuracy
measures considering two and three burn severity levels. In both cases,
K statistic values were similar and lower than k statistic values ob-
tained from the unitemporal proposed method based on MESMA frac-
tions and LST. The synergy between MESMA char fraction and LST
found in our study (reflective and thermal bands of Landsat 7 ETM +
data) indicates the high potential of the new sensors onboard Landsat
8 (specifically, Operational Land Imager, OLI, and Thermal Infrared
Sensor TIRS) and of the Hyperspectral Infrared Imager (HyspIRI)
that will combine VSWIR-MTIR imagery at pixel sizes smaller than
100 m.

From the burn severity map of Fig. 5 we observe that most of the
burned area was affected by a high burn severity level, a fact that is
greatly related to the fire characteristics. The fire burned through a
continuous forest mass of P. pinaster (8183 ha) and areas recently re-
forested (1095.17 ha). Only small valleys inside the fire perimeter dis-
played low burn severity level or unburned level. These islands with
lower burn severity were due to three factors: 1.-The areas were lo-
cated at the bottom of the valley and perpendicularly oriented to the
fire propagation axis (SW-NE). For this reason, the fire pattern was
against the slope. Thus it had a flame with lower intensity and lower
propagation speed. 2.-Valley bottoms are places with higher capabil-
ity for water retention. For that reason, it is highly probable that the
water content of vegetation in these islands was higher than the water
content of vegetation in other areas. 3.-The vegetation of these islands
was less flammable (Quercus pyrenaica Willd., Pteridium aquilinum
L., Cytisus multiflorus L., Cytisus scoparious L.).

The study area is characterized by rugged terrain with > 1000 m
elevation range and strong topographic effects on insolation, water
availability and vegetation type and cover density. This environmen-
tal heterogeneity can be expected to complicate burn severity map-
ping. Further complications and confusion may result from the fact
that burn severity patterns are constrained by pre-fire vegetation and
fuel load patterns. However, the use of MESMA fractions minimized
the topographic shadowing effect (shade fraction image) and took
into account the variability of vegetation type (GV fraction image),
what helped to obtain an accurate burn severity estimate. As MLR
showed, LST complemented the char fraction image by adding infor

Table 5
Pseudo R-Squares and accuracy measures of MLR models considering two and three
burn severity levels and using as explanatory variable post-fire NBR.

Accuracy (considering the

Pseudo R-squares training set, n = 77)

Cox and
Snell Nagelkerke McFadden OA K Oy
NBR
Two burn 0.573 0.634 0.431 0.67 0.49 0.029
severity levels
Three burn 0.483 0.522 0.362 0.60 0.45 0.016

severity levels
Char sn & LST s*

Two burn 0.779 0.882 0.761 0.86 0.79 0.018
severity levels
Three burn 0.790 0.859 0.619 0.77 0.66 0.016

severity levels

# Pseudo R-squares and accuracy measures of MLR models using as explanatory
variables shade normalized char fraction image and land surface temperature scaled to
[0,1] was included as well to ease the comparison.

mation of statistical significance that helped to increase the accuracy
of burn severity estimation. A single channel algorithm (proposed by
Jiménez-Mufioz and Sobrino, 2003, and updated by Jiménez-Muiloz
et al., 2009) was used to compute LST and emissivity was estimated
using NDVI. We did not analyze the potential differences of using this
algorithm vs., for instance, the mono-window algorithm developed by
Qin et al. (2001), or calculating the emissivity by the classification
method. However, we did compare MODIS LST (which does not use
NDVI) to Landsat LST, and the temperatures were comparable.

Summarizing, the added value of our method can be deduced from
the following reasons: 1.-It is a unitemporal method. Thus, we avoided
questions relatives to the selection of pre-fire image (no clouds, same
phenology, a year before...) and reduced the need of very accurate
and precise image correction algorithms; 2.-It is based on MESMA
fraction images instead of widely used spectral indices. Consequently,
burned vegetation was represented more accurately as we used all
reflectance bands information (instead of just information from two
spectral bands) and the influence of background effect of soil was
reduced. MESMA maximizes the image information by using multi-
ple endmember spectra combined in multiple different models; 3.-It
is based as well on thermal information (specifically LST) that has
recently been shown to vary with burn severity. Thus, the proposed
method may maximize the synergies between Operational Land Im-
ager (OLI) data and Thermal Infrared Sensor (TIRS) data both on-
board of Landsat 8 (reflective and thermal); and 4.-It is a simple
process, once familiarized with it.

The burn severity mapping method proposed in this study could be
readily applied to other ecosystems (Mediterranean and non-Mediter-
ranean). A careful selection of candidate endmembers from the im-
age would make MESMA fractions adaptable to most ecosystems. Re-
garding LST, the generalized single-channel algorithm used in this
study requires minimum input data (only one atmospheric parame-
ter, w). Thus, LST could be computed for these ecosystems without
any modification except the value of w. Finally, MLR is a statistical
procedure that does not require any specific parameter to character-
ize the ecosystem to be analyzed. Furthermore, the proposed method
could successfully work using satellite data acquired from other sys-
tems than Landsat, such as Sentinel, and be readily adapted to use ref-
erence endmembers from a spectral library (MESMA procedure) or
any other method to compute LST.

6. Conclusion

Although reflective spectral indexes are frequently utilized to map
burn severity, there is an absence of a definitive method in Mediter-
ranean countries. We validated a unitemporal method that takes ad-
vantage of both reflective and thermal spectral bands of Landsat 7
ETM + data and accurately mapped burn severity. Three different
levels of burn severity (low, moderate and high) were ground mea-
sured by CBIl in 111 field plots. MLR was applied to MESMA frac-
tions and LST for accurate burn severity mapping at the regional
scale. The obtained burn severity map was validated by means of er-
ror matrix, k statistic, and PA, UA and OA values (30% of CBI plots
acted as validation set). Our results confirmed the high correlation
between char fraction image and CBI values (specific objective 1).
OA of burn severity map from MESMA char fraction was 73% when
three burn severity levels and 70% for four burn severity levels (spe-
cific objective 3). In addition, we showed that the inclusion of LST
in the MLR model enabled us to increase the OA to 86% for three
severity levels and to 77% for four severity levels (specific objective
2). A fundamental factor that enabled us to obtain a high accuracy



12 Remote Sensing of Environment xxx (2016) xxx-xxx

burn severity map was a careful and methodical choice of endmem-
bers representing all land covers under study. In particular, IES helped
us identify an optimal selection of the final endmembers that we orga-
nized in three spectral libraries (Char, GV, and NPVS).

Our study demonstrates the validity of combining MESMA frac-
tion images and LST from Landsat data to map burn severity accu-
rately in Mediterranean countries. Although we studied a large fire ina
Mediterranean P. pinaster ecosystem, we are convinced the proposed
method could be applied to other Mediterranean and non-Mediter-
ranean ecosystems as long as candidate endmembers are carefully de-
fined. The MESMA-LST based methodology we proposed may con-
tribute to improved interpretation of patterns of burn severity, and to
plan improved post-fire management strategies.
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