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Grapevine water status is critical as it affects fruit quality and yield. We assessed the po-

tential of field hyperspectral data in estimating leaf water content (Cw) (expressed as

equivalent water thickness) in four commercial vineyards of Vitis vinifera L. reflecting four

grape varieties (Mencı́a, Cabernet Sauvignon, Merlot and Tempranillo). Two regression

models were evaluated and compared: ordinary least squares regression (OLSR) and

functional linear regression (FLR). OLSR was used to fit Cw and vegetation indices, whereas

FLR considered reflectance in four spectral ranges centred at the 960, 1190, 1465 and

2035 nm wavelengths. The best parameters for the FLR model were determined using

cross-validation. Both models were compared using the coefficient of determination (R2)

and percentage root mean squared error (%RMSE). FLR using continuous stretches of the

spectrum as input produced more suitable Cw models than the vegetation indices,

considering both the fit and degree of adjustment and the interpretation of the model. The

best model was obtained using FLR in the range centred at 1465 nm (R2 ¼ 0.70 and %

RMSE ¼ 8.485). The results depended on grape variety but also suggested that leaf Cw can be

predicted on the basis of spectral signature.
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1. Introduction

Water plays an important role in plant physiology, as it con-

ditions yield and quality of crops such as grapes (Vitis vinifera

L.). Water stress induces stomata closure to reduce transpi-

ration, which, in turn, also reduces photosynthesis and car-

bon assimilation. The management of water deficits by

controlling grapevine vigour and improving grape maturity

could be an efficient strategy for producing a high-quality

wine (Chaves et al., 2010). Water content estimation is,

therefore, an important issue in managing vineyards.

Several techniques are available for water content esti-

mation in crops. The main ground-based method used in

viticulture is leaf water potential, which requires measure-

ment of sap pressure in the xylem (Scholander, Hammel,

Bradstreet, & Hemmingsen, 1965). However, this is a

destructive and laborious method for estimating water con-

tent, especially as variations in water potential are often

related to soil type (Chone, Van Leeuwen, Dubordieu, &

Gaudill�ere, 2001). Thus, although it provides the most accu-

rate assessments of plant water status, it is not feasible for

estimates involving large areas (Oumar & Mutanga, 2010).

Since water has some absorption maxima in the infrared

region of the spectrum centred at the 970, 1200, 1440 and

1950 nm wavelengths (Palmer & Williams, 1974), it is possible

to assess plant water status using non-destructive remote

sensing technologies. These are faster than the water poten-

tial method, and so offer a cost/time ratio advantage; more-

over, spatial patterns of water plant content can also be

detected by imagery (Moshou, Pantazi, Kateris, & Gravalos,

2014; Xue & Su, 2017).

The use of remote sensing to monitor crop growth and

development is attracting interest from researchers and

commercial organisations alike. This interest is primarily

driven by opportunities for cost-effective generation of spatial

data capable of supporting precision agriculture (Hall, Lamb,

Holzapfel, & Louis, 2002). To date, limited use has been

made of this technology in the grape andwine sector, whether

for research or commercial monitoring purposes. This article

describes the key principles of remote sensing, reviews the

current status of remote sensing in viticulture and discusses

remote sensing's potential as an integrated management tool

for vineyards. Sims and Gamon (2003) classified remote

sensing methods as follows: (1) vegetation index calculation

using mathematical formulae for reflectance at several

wavelengths; (2) continuum removal (CR) of the spectral

signature and analysis of depth and area in the dip below the

continuum; and (3) water content fitting to spectral reflec-

tance over a range of two wavelengths mainly centred on the

water absorption maxima.

Spectroscopic determination of leaf water content has

been explored by Cheng, Rivard, and S�anchez-Azofeifa (2011)

and Ustin, Ria~no, and Hunt (2012), while a number of studies

have analysed vine water status estimation using remote

sensing. Strever (2005) assessed water stress in vines by field

spectroscopy, finding important differences depending on

vine vigour and concluding that the spectral reflectance of

higher vigour and lower vigour vines was related to leaf water

content and pigment, respectively. Serrano, Gonz�alez-Flor,
Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.
and Gorchs (2010) studied the feasibility of using field spec-

tral measurement to estimate vine water status at both leaf

and canopy levels, reporting strong correlations for the water

index (WI) and stomatal conductance (gs), with coefficient of

determination (R2) values over 0.80. Note, however, that this

result was obtained for potted plants subjected to varying

degrees of water availability. In the field they demonstrated a

correlation between predawn water potential and the

normalized difference vegetation index (NDVI), achieving

R2 ¼ 0.57. Serrano, Gonz�alez-Flor, and Gorchs (2012) related

berry yield and quality with hyperspectral reflectance indices

at canopy level, estimating berry yield by NDVI and WI

(R ¼ 0.57 and R ¼ 0.61, respectively), and suggesting that total

soluble acidity and the total soluble solids/total soluble acidity

ratio might be estimated by WI when vineyards were experi-

encing moderate to severe water deficits.

Fieldspectroscopy isaneffective technique for assessing the

canopy density of vines. Dobrowski, Ustin, and Wolpert (2002)

observed strong correlations between leaf area per metre of

canopy and narrow vegetation indices, achieving R2 values of

0.87, 0.92 and 0.79 for the ratio vegetation index (RVI), NDVI and

perpendicular vegetation index (PVI), respectively. These au-

thors recommended RVI for vineyard remote sensing applica-

tions, since it is more linearly related to canopy density and

contains the same information as the NDVI. Similar results

were found for imagery at vineyard level: the RVI was linearly

correlated (R2 values of between 0.68 and 0.88) with pruning

weight forgrowingseasons (Dobrowski,Ustin,&Wolpert, 2003).

Dobrowski, Pushnik, Zarco-Tejada, and Ustin (2005) linked vine

physiological status and photosynthetic functioning with

reflectance fluorescence indices (RFIs) calculated in the red-

edge spectral region at canopy level. They indicated that RFIs

were more suitable than the photochemical reflectance index

(PRI) and NDVI indices for tracking photosynthetic status and

plant stress, especially for rapid changes in vine status.

The use of sensors in applications to grapevines is

complicated by the fact that a vineyard has a temporally and

spatially changing environment that affects light interactions

with leaves and grapes (Strever, Bezuidenhout, Zorer, Moffat,

&Hunter, 2012). Nevertheless, the literature cited abovewould

support the usefulness of passive reflectance measurements

in monitoring vine physiological status, so remote sensing

methods for estimating water content merit further study.

A different approach to tackling the problem of water

content estimation from reflectance is based on considering

spectral signatures as continuous curves instead of discrete

values. A review of potential applications of this kind of

functional data analysis to chemometrics is provided by

Aguilera, Escabias, Mariano, Valderrama, and Aguilera-

Morillo (2013) and by Saeys, Keteleare, and Darius (2008). In

exemplifying the use of functional models, Saeys et al. (2008)

concluded that functional data analysis is comparable to

partial least squares regression (PLSR) in terms of predictive

ability. Reiss and Ogden (2007) introduced functional versions

of principal component regression and PLSR to NIR spectral

analyses of both real and simulated data, concluding that

functional models offer advantages over non-functional ap-

proaches. Dias, Garcı́a, Ludwig, and Saraiva (2015) also used

functional data techniques to calibrate and predict NIR

spectral data. Ord�o~nez, Martı́nez, Matı́as, Reyes, and
water content estimation by functional linear regression of field
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Rodrı́guez-P�erez (2010) estimated vine leaf water content

using functional linear regression (FLR) and functional radial

basis functions, concluding that the complex dependency

relationship between reflectance and vine leaf water content

might explain the poor results obtained with methods based

on indices. Ord�o~nez, Rodrı́guez-P�erez, Moreira, and Sanz

(2013) used FLR and non-parametric functional methods to

predict certain vine leaf chemical characteristics (moisture,

dry mass and nitrogen, phosphorus, potassium, calcium, iron

and magnesium concentrations) from electromagnetic

reflectance between 350 and 2500 nm, reporting that non-

parametric methods yielded better results and that moisture

and phosphorous were the best predicted components.

However, non-parametric methods have the drawback that

since they do not allow for a physical interpretation of the

model, there is a risk of overfitting.

This work reports the results of functional analysis of the

vine leaf spectrum, using VIS/NIR spectroscopy at the leaf

level, as the basis for rapid and non-destructive assessment of

water content. The results are compared with those for ordi-

nary least squares regression (OLSR) and vegetation indices.
2. Material and methods

2.1. Study site and experimental setup

The study vineyard was located in Bierzo DO in northern

Spain (550mmean height above sea level and 42�360N, 6�420W;

Datum: WGS84). Measurements of leaf water content were

made for four varieties (Mencı́a, Cabernet Sauvignon, Merlot

and Tempranillo) of 18-year-old vines (V. vinifera L.; rootstock:

1103 Paulsen). The vines were vertical shoot-positioned with

two pairs of wires and mean row spacing was 1.1 m � 2.8 m.

A regular grid of 20 m � 30 m was defined to select the 162

data vines (47 Cabernet Sauvignon, 45 Mencı́a, 27 Merlot and

43 Tempranillo), corresponding to 14 vines ha�1. Three leaves

per vine were marked, giving a total of 486 leaf samples. All

the mature leaves had the same relative location on the shoot

(the opposite side of the first cluster from the bottom). In

accordance with Santos and Kaye (2009), field data were

collected between berry set and veraison (on 17 July 2012).

2.2. Workflow

The methodology involved three main steps: (1) spectral data

collection, (2) leaf data collection, and (3) statistical analysis.

The field and laboratory measurement sequence for each leaf

was as follows: reflectancemeasurements weremade, the leaf

was picked, placed in a plastic bag and stored in a cooler, fresh

mass (Mf) was measured, the leaf was dried and finally, dry

mass (Md) was calculated. From the spectral data, two different

transformations were made to obtain the CR intervals and the

vegetation indices. FLR and OLSR were used to estimate Cw.

2.3. Spectral data

2.3.1. Field spectroscopy measurements
Reflectance measurements of the 486 leaves were made using

an ASD FieldSpec 4 spectroradiometer (Analytical Spectral
Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.
Devices Inc., Boulder, CO, USA) that detects reflectance in the

350e2500 nm spectral region. The spectroradiometer was

coupled with a leaf clip and a plant probe to ensure correct

data acquisition at leaf level. Three spectral measurements

per leaf were made from the adaxial surface and the mean

reflectance value for each point was saved. Measurements

were made avoiding leaf veins and spots and applying the

same criteria: thus, the first measurement was made on the

right part of the leaf, the second in the centre and the third on

the left part of the leaf. Each capture saved was the average of

three spectral measurements, meaning that there were three

spectral signatures per sample. The spectroradiometer was

calibrated against the white panel face following ASD Inc.

(2012) recommendations and was recalibrated before

measuring the first leaf of each vine.

2.3.2. Spectral data pre-processing
The field reflectance datawere pre-processed using ViewSpect

Pro 6.0 (Analytical Spectral Devices, Inc., Boulder, CO, USA)

and SAMS 3.2 (Center for Spatial Technologies and Remote

Sensing-CSTARS, University of California, Davis CA, USA;

http://cstars.metro.ucdavis.edu/resources/software/), obtain-

ing an average spectral signature per leaf sample. The spectral

data processing resulted in the calculation of the narrow-band

vegetation indices derived from the spectral signatures, the

CR transformation and the functional analysis.

2.3.3. Vegetation indices
Eleven vegetation indices, which take into account the

wavelengthsmost related to spectrumwater absorption, were

calculated to estimate water content using OLSR. Table 1

shows the vegetation indices calculated for this research.

2.3.4. Continuum removal
CR was used to enhance the absorption characteristics of the

spectrum (Kokaly & Clark, 1999). CR transformation normal-

ises reflectance values to a common baseline, thereby allow-

ing individual absorption features to be compared and

highlighting and identifying absorption features of interest.

The CR calculation requires the target regions to be identified,

and in this study they were determined by the main water

absorption features located at 970, 1200, 1440 and 1950 nm

(Kokaly, Asner, Ollinger, Martin, & Wessman, 2009; Sims &

Gamon, 2003). Table 2 shows the wavelengths for the four

zones (Zi) where CR was calculated.

2.4. Leaf data collection

Immediately after reflectance measurement, three 6.16-cm2

disks were cut from each leaf and weighed using a SNUG-150

precision scale (Xiamen Jadever Scale Co., Xiamen, Fujian,

China) in order to determineMf for each sample. The leaf disks

were then dried in an oven at 65 �C for 72 h, after which Md

was calculated. Water content was determined by the equiv-

alent water thickness (Cw), obtained by calculating the dif-

ference between fresh and dry mass (Mf � Md) per unit of leaf

area (AL) according to the following equation (Datt, 1999):

Cw ¼ �
Mf �Md

��ðrw �ALÞ (1)

where rw is the density of pure water (1 g cm�3).
water content estimation by functional linear regression of field
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Table 1 e Spectral indices.

Vegetation index Acronym Equation Reference

Red/green index RGI RGI ¼ R695
R554

(Fuentes, Gamon, Qiu, Sims, & Roberts, 2001)

Structure intensive pigment index SIPI SIPI ¼ R800�R445
R800þR680

(Pe~nuelas, Baret, Filella, 1995)

Water index WI WI ¼ R900
R970

(Pe~nuelas, Pinol, Ogaya, Filella, 1997)

Simple ratio water index SRWI SRWI ¼ R1350
R870

(Zarco-Tejada & Ustin, 2001)

Normalized difference vegetation index NDVI NDVI ¼ R858-R645
R858þR645

(Rouse, Haas, Schell, & Deering, 1974)

Normalized difference water index NDWI NDWI ¼ R870�R1260
R870þR1260

(Gao, 1996)

Floating position water band index fWBI fWBI ¼ R900
minðR930�980Þ (Strachan, Pattey, & Boisvert, 2002)

Shortwave infrared water stress index SIWSI SIWSI ¼ R858:5�R1640
R858:5þR1640

(Fensholt & Sandholt, 2003)

Normalized difference infrared index NDII NDII ¼ R835�R1650
R835þR1650

(Hardisky, Klemas, & Smart, 1983)

ZarcoeTejadaeMiller Index ZTM ZTM ¼ R750/R710 (Zarco-Tejada & Ustin, 2001)

Photochemical reflectance index PRI PRI ¼ R570�R531
R570þR531

(Gamon, Pe~nuelas,Field 1992)

Rl: Reflectance at l wavelength.

Table 2 e Definitions of spectral zones for continuum
removal calculations.

Zone Interval (nm) Range Central wavelength (nm)

Z1 860e1065 205 960

Z2 1114e1265 151 1190

Z3 1265e1668 403 1465

Z4 1830e2240 410 2035
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Total specific leaf freshmass (Cfm, Equation (2)) and specific

leaf mass (Cdm, Equation (3)) were calculated for Mf and Md,

respectively, per unit of leaf area:

Cfm ¼ Mf

�
AL (2)

Cdm ¼ Md=AL (3)

2.5. Statistical analysis

2.5.1. Functional analysis: mathematical model
We constructed a mathematical model based on FLR to esti-

mate water content from the reflectance. We used this tech-

nique because data collected by the spectroradiometer can be

considered as samples of continuous curves, so it could be

assumed that the underlying curve-generation process was

smooth and that the measured data were dependent. It was

more appropriate, in order to preserve the dependence re-

lationships in the analysis, to operate at a global level using

functional regression rather than on individual wavelengths

(e.g., using vegetation indices).

In functional regression analysis, which is an extension of

ordinary linear regression analysis, the covariates are func-

tions instead of scalar values (Ramsay& Silverman, 2002). The

model takes the form:

y ¼ aþ
Z
S

xðsÞbðsÞdsþ ε ¼ aþ 〈x;b〉þ ε (4)

where y represents the response variable; xðsÞ represent the

covariates, which are real functions; a and bðsÞ are the

regression coefficients, represented by a real value and real

functions, respectively; and ε is the error term.

Since discrete data instead of functions are normally

available, x(s) and b(s) are approximated by means of decom-

position into basis functions:
Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.
xðsÞ ¼
Xn

k¼1

akfk ¼ aTfðsÞ

bðsÞ ¼
Xm
p¼1

bpjp ¼ bT
jðsÞ

(5)

where a and b are vectors of coefficients, and fðsÞ and jðsÞ are
the basis functions. These functions can be polynomial,

exponential, B-splines or Fourier functions, among others.

Substituting the expressions in Equation (5) in Equation (4),

an estimate of y is obtained as follows:

by ¼ ba þ aTJb (6)

where the nxm matrix J is given by:

Jfj ¼
Z
T

jðsÞfðsÞds ¼ 〈j;f〉 (7)

The prediction by in Equation (6) can be expressed as:

by ¼ Zz (8)

where Z ¼ ½1;aTJfj� and z ¼ ða;b1;…;bmÞ
The estimate of the vector of regression coefficients bz is

obtained by minimising the residual sum of squares

½y� a� R
S

XðsÞbðsÞds�2. The result can be expressed as:

bz ¼ �
ZTZ

��1
ZTy (9)

To avoid overfitting, a regularisation of the solution is ob-

tained bymeans of a penalty function that prevents excessive

local fluctuation in the estimated function. Given any twice

differentiable function u, it is possible to define the penalised

residual sum of squares as:

Plða; bÞ ¼
2
4y� a�

Z
S

XðsÞbðsÞds
3
5

2

þ l

Z
S

�
D2uðsÞ�ds (10)

where the operator D2 represents the second derivative, and

where the smoothing parameter l>0 controls the trade-off

between roughness and infidelity in the observed data

(Ramsay & Silverman, 2002). When the smoothing value l is

close to zero, we aremainly concerned with the fit to the data;

a complex and difficult to interpret regression coefficient bðsÞ
is typically the result and overfitting of the model is common.

With increased lwe obtain a smoother solution, whichmeans
water content estimation by functional linear regression of field
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that the regression coefficient is easier to interpret. However,

since larger smoothing parameter values produce excessively

smooth solutions that approach standard linear regression, it

is very important to locate a compromise value for this

parameter.

The solution to the regularisation problem with a rough-

ness penalty is analogous to that of Equation (9):

bz ¼ �
ZTZþ lR

��1
ZTy (11)

where R is a m � m matrix with elements

Rjk ¼
R
S

D2jjðsÞD2jkðsÞds ¼ 〈D2jj;D
2jk〉.

The smoothing parameter l can be chosen subjectively if

we have some a priori knowledge of the relationship between

the response and explanatory variables; alternatively, it can

be chosen bymeans of cross-validation, that is, byminimising

a cross-validation score defined as:

CVðlÞ ¼
XN
j¼1

0
@yj � a

ð�jÞ
l �

Z
S

XjðsÞbð�jÞ
l ds

1
A

2

(12)

where N is the sample size, and where a
ð�jÞ
l and b

ð�jÞ
l are the

estimates of a and b obtained by minimising the penalised

residual sum of squares based on all the data except ðxj; yjÞ.

2.5.2. Ordinary least squares regressions
Using vegetation indices, Cw was estimated by OLSR, a linear

regression model that can be used to model a single response

variable that has been recorded, at least, at an interval scale.

The relationship between Cw and vegetation indices can be

represented using an equation that indicates the best fitted

line.

2.5.3. Validation
The regression models were compared using observed and

predicted values. They were validated by means of the leave-

one-out cross-validation method, using two comparison

criteria, namely, the highest cross-validated coefficient of

determination (R2) and the least error (root mean square error

(RMSE) and %RMSE (RMSE expressed as a percentage of the

mean value of the variable) as per Equation (13):

%RMSE ¼ ðRMSE=xÞ � 100 (13)

where RMSE is the root-mean-square error of the cross-

validation calibration and x is the mean of the predicted

values for Cw, Cfm and Cdm. Accuratemodels should reduce the

RMSE by at least 2% (Clevers, Kooistra, & Schaepman, 2008).
Table 3 e Leaf variables statistics.

Cabernet Mencı́a

Cw Cdm Cfm Cw Cdm Cfm

SD 0.017 0.010 0.021 0.017 0.008 0.02

Mean 0.156 0.072 0.228 0.162 0.062 0.22

Range 0.100 0.051 0.111 0.087 0.046 0.10

Variables: Cw: equivalent water thickness (kg m�2); Cfm: total specific lea

standard deviation.

Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
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3. Results

3.1. Spectral and leaf data

Leaf disk mass for the different varieties was not very

different in terms of fresh and dry matter and water content

(Table 3). For this reason, it was difficult to correlate spectral

information and leaf water content.

Spectral signatures for the leaves with highest, medium

and lowest Cw for the studied varieties showed similar trends

for all four varieties (Fig. 1). The differences in reflectance

values in the visible region (350e650 nm) were small, but were

greater for higher wavelengths. Since differences were great-

est in the range 650e1400 nm, these were the most suitable

intervals for detecting variations in water content. Tempra-

nillo was the variety which showed the greatest differences,

followed by Mencı́a, Merlot and Cabernet, in that order.

3.2. Vegetation indices

R2 values and errors (RMSE and%RMSE) obtained in estimating

Cw using the vegetation indices as spectral data indicated that

R2 values were higher than 0.5 only for Tempranillo, for the

shortwave infrared water stress index (SIWSI) (R2 ¼ 0.53) and

for the normalized difference infrared index (NDII) (R2 ¼ 0.52)

(Table 4). No vegetation indiceswere suitable for predicting Cw

for Mencı́a, Merlot or Cabernet, which would suggest that

these indices are not suitable for estimating water content.

3.3. Functional linear regression

Regression values obtained for prediction of Cw using FLR as

the fitted method showed d as with the vegetation indices d

that Tempranillo was the variety that gave the highest

regression values d notably the models for Z3 and Z4, both

with R2¼ 0.7 (Table 5). Both thesemodels had the same%RMSE

(8.485), but the model based on Z4 had a smaller smoothing

parameter (Sp) than that based on Z3 (2.5 and 4, respectively);

hence, the model for Z4 was easier to interpret than themodel

for Z3. The suitability of Z3 and Z4 for determining Cw was

confirmed for the other grape varieties. Z4 was the most

appropriate interval for Merlot, with R2 ¼ 0.61, the smallest %

RMSE and the same Sp as Z3. Mencı́a gave the highest

regression value in Z4 (R
2 ¼ 0.54), but since the difference in %

RMSE between Z3 and Z4 was greater than 2%, Z3 was the most

appropriate interval. On the other hand, Z4 gave a lower Sp

than Z3, so Z3 and Z4 were both suitable for predicting water
Merlot Tempranillo

Cw Cdm Cfm Cw Cdm Cfm

1 0.018 0.008 0.021 0.025 0.012 0.033

4 0.142 0.062 0.203 0.165 0.066 0.231

0 0.087 0.043 0.125 0.133 0.062 0.192

f fresh mass (kg m�2); Cdm: specific leaf mass (kg m�2). Statistics: SD:

water content estimation by functional linear regression of field
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Fig. 1 e Spectral signatures for three leaves with high ( ), medium ( ) and low ( ) equivalent water thickness values (Cw)

for (a) Mencı́a, (b) Merlot, (c) Cabernet and (d) Tempranillo.
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content for Mencı́a. Cabernet gave R2 values lower than 0.5 for

all the spectral intervals, indicating that this variety was not

suitable for estimating water content.

Plots of Cw versus wavelength were created to investigate

the relationship between measured water content and leaf

reflectance. The results varied depending on grape variety and

the smoothing parameter applied to the functional algorithm.

Since the best results were obtained for Tempranillo, these are

the only results reported here. In Figs. 2 and 3, the continuous

line represents the regression coefficient value bðlÞ obtained
for the Cw estimate with respect to the reflectance value for
Table 4 e Determination coefficients (R2) obtained by ordinary
spectral information (vegetation indices).

Cabernet Mencı́a

R2 RMSE %RMSE R2 RMSE %RMS

fWBI 0.23 0.017 10.897 0.42 0.013 8.025

NDII 0.25 0.016 10.256 0.43 0.013 8.025

NDVI 0.00 0.019 12.179 0.00 0.017 10.494

NDWI 0.18 0.017 10.897 0.29 0.014 8.642

PRI 0.00 0.019 11.999 0.00 0.017 10.534

RGI 0.01 0.019 12.179 0.15 0.016 9.877

SIPI 0.01 0.019 12.179 0.03 0.017 10.494

SIWSI 0.25 0.016 10.256 0.43 0.013 8.025

SRWI 0.28 0.016 10.256 0.46 0.013 8.025

WI 0.25 0.016 10.256 0.44 0.013 8.025

ZTM 0.00 0.019 12.179 0.00 0.017 10.494

R2: coefficient of determination (cross-validation); RMSE: root mean squar

(cross-validation) in relation to the average value of the variable. Variabl

floating position water band; NDII: normalized difference infrared index

difference water index; RPI: photochemical reflectance index; RGI: red/gr

infrared water stress; SRWI: simple ratio water index; WI: water index; Z

Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
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each wavelength, and the broken line shows the confidence

interval for the regression coefficient.

bðlÞ values obtained for Cw estimates for the Tempranillo

variety, using CR-transformed reflectance values as the pre-

dictor variable (from 860 to 2240 nm) and using FLR as the

fitting method, indicated the largest absolute regression co-

efficient values for wavelength intervals near 1500e1900 nm

and 2100e2250 nm, although with opposite signs (Fig. 2).

Higher water content was associated with lower reflectances

in the first interval and with higher reflectances in the second

interval. The lowest wavelengths, especially those in the
least square regression between water content (Cw) and

Merlot Tempranillo

E R2 RMSE %RMSE R2 RMSE %RMSE

0.31 0.015 10.563 0.40 0.018 10.909

0.33 0.014 9.859 0.52 0.016 9.697

0.03 0.017 11.972 0.01 0.023 13.939

0.13 0.016 11.268 0.14 0.022 13.333

0.04 0.017 12.016 0.00 0.025 14.968

0.04 0.017 11.972 0.06 0.023 13.939

0.02 0.017 11.972 0.01 0.023 13.939

0.33 0.014 9.859 0.53 0.016 9.697

0.37 0.014 9.859 0.43 0.018 10.909

0.35 0.014 9.859 0.42 0.018 10.909

0.01 0.017 11.972 0.01 0.023 13.939

e error (cross-validation); %RMSE: percentage root mean square error

e: Cw: equivalent water thickness (kg m�2). Vegetation indices: fWBI:

; NDVI: normalized difference vegetation index; NDWI: normalized

een index; SIPI: structure intensive pigment index; SIWSI: shortwave

TM: ZarcoeTejadaeMiller index.

water content estimation by functional linear regression of field
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Table 5 e Determination coefficients (R2) and RMSE values obtained by functional linear regression to estimate water
content (Cw) from spectral information for specific spectral regions (see Table 2).

Cabernet Mencı́a Merlot Tempranillo

R2 Sp RMSE %RMSE R2 Sp RMSE %RMSE R2 Sp RMSE %RMSE R2 Sp RMSE %RMSE

Z1 0.27 1 0.016 10.256 0.49 4 0.012 7.407 0.47 1 0.013 9.155 0.65 1 0.015 9.091

Z2 0.33 �1 0.015 9.615 0.50 4 0.012 7.407 0.47 5 0.013 9.155 0.66 3.5 0.015 9.091

Z3 0.40 1 0.015 9.615 0.52 8 0.012 7.407 0.62 2.5 0.017 11.972 0.70 4 0.014 8.485

Z4 0.34 5.5 0.015 9.615 0.54 3 0.016 9.877 0.61 2.5 0.011 7.746 0.70 2.5 0.014 8.485

R2: coefficient of determination (cross-validation); Sp: smoothing parameter (cross-validation); RMSE: root mean square error (cross-validation);

%RMSE: percentage root mean square error (cross-validation) in relation to the average value of the variable. Variables: Cw: equivalent water

thickness (kgm�2); Cfm: total specific leaf freshmass (kgm�2); Cdm: specific leaf mass (kg m�2). Spectral intervals: Z1: continuum removal for the

860e1065 nm spectral interval; Z2 continuum removal for the 1114e1265 nm spectral interval; Z3: continuum removal for the 1265e1668 nm

spectral interval; Z4: continuum removal for the 1860e2240 nm spectral interval.

Fig. 2 e Regression coefficient values for equivalent water thickness (Cw) estimates for Tempranillo using functional linear

regression in the 860e2240 nm wavelengths (Z1 þ Z2 þ Z3 þ Z4). Dependent variable values multiplied by 1000.
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interval 860e1000 nm, corresponded to confidence intervals

around zero, so this region does not provide useful informa-

tion for estimating Cw.

Results for Z1, with the sign of the regression coefficient

changing from positive to negative depending on wavelength,

indicated that, for the first part of the Z1 interval (860e900 nm),

the bðlÞ values were not different from zero and, moreover,

remained low until 1100 nm, fromwhich point they increased

rapidly (Fig. 3(a)). This would indicate a strong variation in the

effect of reflectance on Cw according to wavelength.

Regression values obtained for Cw estimates for Tempra-

nillo, using FLR as the fitting method for Z2, showed that the

regression coefficient decreased as the wavelength value

increased, and became negative from 1140 nm (Fig. 3(b)). The

lowest confidence interval value was obtained at 1190 nm,

indicating less uncertainty in coefficient estimation. In the

interval 1114 nme1265 nm, the response for Cw was negative

when the wavelength value increased, mainly from 1190 nm.

This would indicate that Cw and reflectance were inversely

related.

Regression values obtained for Cw estimates for Tempra-

nillo, using FLR as the fitting method for Z3, showed a strong
Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.
increase in bðlÞ with l until 1375 nm (Fig. 3(c)). Thereafter, the

slope of coefficient of regression tended to decrease and its

absolute value was smaller, indicating a lower effect of

reflectance on Cw. Z3 appeared to be most suitable in relating

water content and reflectance by FLR, given the strong

response of Cw, especially in the interval 1265e1375 nm.

In the Z4 interval, the relationship between Cw and wave-

length was more sinuous and unstable (Fig. 3(d)), even though

R2 reached 0.7, as happened with Z3 (Table 5). This could

indicate a complex relationship between reflectance and Cw,

but may also be partially explained by overfitting. In this case,

using this functional regression coefficient with a new dataset

could produce a poor estimate for Cw.
4. Discussion

4.1. Spectral and leaf data

Spectral data collected with a field spectroradiometer were

used to estimate water content in four vineyard plots, given

the well-known relationship between leaf reflectance and leaf
water content estimation by functional linear regression of field
1016/j.biosystemseng.2017.08.017
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Fig. 3 e Regression coefficients for equivalent water thickness (Cw) estimates for Tempranillo using functional linear

regression for (a) Z1 (860e1065 nm), (b) Z2 (1114e1265 nm), (c) Z3 (1265e1668 nm), and (d) Z4 (1830e2240 nm). Dependent

variable values multiplied by 1000.
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composition (Ord�o~nez et al., 2013; Xue & Su, 2017). The results

for Cw estimation differed depending on grape variety. Tem-

pranillo was the variety with the largest leaves and also had

the highest Cw and Cfm values, but not the highest Cdm value; it

was thus the variety with the greatest water content and the

greatest difference between fresh and dry matter content in

the sample. These resultswere confirmed by representation of

the spectral signatures for the leaves with the highest, me-

dium and lowest Cw values (Fig. 1). Spectral signatures for

Tempranillo showed the highest differences for Cw (Fig. 1).

Those results corroborate the conclusion that Tempranillo

was the most vigorous variety, as reported in studies of the

same vine samples (Gonz�alez-Fern�andez, Marcelo,

Valenciano, & Rodrı́guez-P�erez, 2012). Moreover, Tempranillo

gave the highest correlation values for spectral data and Cw.

This corroborates the findings of Strever (2005), who indicated

that water content determination was influenced by the va-

riety and its vegetative state. In this regard, Diago, Fernandes,
Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
spectroscopy data, Biosystems Engineering (2017), http://dx.doi.org/10.
Millan, Tard�aguila, and Melo-Pinto (2013) developed a method

for grapevine identification based on spectroscopy imagery

acquired with a hyperspectral camera, classifying the Tem-

pranillo, Grenache and Cabernet Sauvignon varieties as a

function of the reflectance properties of their leaves and

obtaining identification higher than 92% for all the varieties.

De Bei et al. (2011) also found different values for estimated

water content depending on the variety studied, while Strever

(2005) showed that low-vigour vines compared to high-vigour

vines produced spectral responses to water content estimates

in shorter wavelengths.

On the other hand, Cw estimations based on reflectance for

Cabernet Sauvignon were not feasible, possibly because this

variety is isohydric (Schultz, 2003), unlike Tempranillo, Merlot

(S�anchez de Miguel, De la Fuente, Linares, Lissarrague, 2007;

Guti�errez, 2014) and Mencı́a (Baeza et al., 2011), which are

anisohydric. In a water restriction period, Tempranillo, Merlot

and Mencı́a would continue using available water, whereas
water content estimation by functional linear regression of field
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Cabernet would vary growth and physiology to conserve

water, causing its leaves to be drier than in normal conditions.

This is corroborated by Table 3, which shows that Cabernet

was the variety with the highest Cdm, indicating that its leaves

containedmore drymatter than the other varieties. According

to studies by Strever (2012), this situation may be due to a

mixing of the water content and pigment signals, which

would change the wavelengths most suitable to estimating

water content.

4.2. Vegetation indices

In the regression performed with the vegetation indices, a

relationship between Cw and the vegetation indiceswas found

for Tempranillo. Zhao et al. (2009) and Wang, Hunt, Qu, Hao,

and Daughtry (2013) showed the usefulness of the NDII and

SIWSI for the determination of water content in leaves. The

WI, as one of the most studied vegetation indices, has been

demonstrated to correlate highly with leaf water content.

However, it has always been studied in crops cultivated in

controlled conditions (Serrano et al., 2012). Serrano et al. (2010)

also indicated that theWI is not an effective index to estimate

water content for non-irrigated vines.

The relationship between vegetation indices and Cw could

be improved by optimising the wavelengths when computing

spectral indices, as done by Verrelst et al. (2016) and Rivera,

Verrelst, Delegido, Veroustraete, and Moreno (2014). Verrelst

et al. (2016) obtained a suitable relationship to estimate the

leaf area index and leaf chlorophyll from an empirical spectral

index obtained by optimising wavelengths. Rivera et al. (2014)

demonstrated that Gaussian process regression band analysis

to optimise wavelengths could correctly predict leaf chloro-

phyll and the green leaf area index, because this tool identifies

the most informative bands for a variable and determines the

least number of bands that preserve a high predictive

accuracy.

4.3. Functional linear regression

Themodels obtained using spectral rangesweremore suitable

for estimating Cw than those obtained with the vegetation

indices, for three main reasons: (1) functional data obtained a

better prediction in terms of R2 and RMSE; (2) functional

regression coefficients allowed a better interpretation of the

relationship between water content and reflectance; and (3)

considering the spectral signature as a function enabled the

dependence between reflectance values to be taken into ac-

count. Our findings are corroborated by previous research, at

the same study site (Gonz�alez-Fern�andez, Rodrı́guez-P�erez,

Marabel, & �Alvarez-Taboada, 2015), that demonstrated that

using spectral ranges pointed to stronger relationships than

methods that use narrow bands.

The FLR results indicate that suitable spectral ranges for

water content estimation in grapevines were Z3 and Z4 (cen-

tred on 1465 nm and 2035 nm, respectively). This is consistent

with the findings of Santos and Kaye (2009) and Zhang, Li, and

Zhang (2012), who indicated that 1400 nm (Z3) and 1900 nm (Z4)

were the intervals most correlated with leaf water content.

These bands correspond to the first overtone of OeH excita-

tion for H2O and the combination of OeH and HeOeH
Please cite this article in press as: Rodrı́guez-P�erez, J. R., et al., Leaf
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deformation. Other bands associated with water content are

also associated with cellulose and other organic leaf compo-

nents (Shenk, Workman, & Westerhaus, 2001).

The FLR results were somewhat poorer for Z2, given the

values of R2 and RMSE. However, the regression coefficient

was smootherd evenmore so than those obtained for the rest

of the zones, especially for Z4. It could be said, nonetheless,

that the result for Z2 was satisfactory in terms of simplicity

and interpretability. What remains clear from Fig. 3(b) is that

longer wavelengths correspond to negative increases in water

concentration.

Regarding the use of spectral ranges for all the varieties, Z4

obtained a value for R2 that was similar to that for Z3, but the

regression coefficient distribution for estimates of Cw fitted

using FLR and Z3 was more stable and easier to interpret than

that obtained with Z4. As mentioned earlier, it is very difficult

to determine whether the regression coefficient reflects the

real relationship between reflectance and Cw or whether there

is a problem of overfitting. This is consistent with De Bei et al.

(2011) who, using an ASD FS3 spectroradiometer, identified

water absorption bands in the 1400e1450 nm region for

Chardonnay, Cabernet Sauvignon and Shiraz leaves.

We report R2 values of 0.70 for Tempranillo fitted by FLR to

estimate water content. Research conducted in the same

study area by Gonz�alez-Fern�andez et al. (2015), using PLSR as

the statistical method, demonstrated that the most suitable

models for predicting Cw obtained R2 values of 0.68. This

agrees with De Bei et al. (2011), who obtained lower values

using PLSR to estimatewater in vineyards thanwe obtained in

our study.

Finally, we suggest that models to estimate water content

in vineyards based on using FLR as the fitting method and

normalising reflectance using CR may be more suitable than

models obtained using narrow bands or other statistical

methods that use spectral ranges.
5. Conclusions

Using functional analysis regression, we analysed four

different reflectance bands between 860 nm and 2240 nm to

estimate the water content of leaves representing four grape

varieties (Mencı́a, Cabernet Sauvignon, Merlot and Tempra-

nillo) and to determine whether the results depended on

wavelength. Our research demonstrates that field spectros-

copy data processed by functional analysis regression was

better able to predict leaf water content than ordinary least

squares regression with vegetation indices. Furthermore, this

method enabled a better understanding of the relationship

between reflectance and leaf water content as a function of

wavelength.

The bestmodelswere achieved for bands Z3 (1265e1668nm)

and Z4 (1830e2240 nm), previously continuum-removal trans-

formed. However, the more complex relationship revealed for

Z4 made it more difficult to establish a simple interpretation of

this dependence. The suitability of themodels varied according

to the grape variety, with the highest R2 value obtained for

Tempranillo.

We suggest that the detailed information obtained from

the functional regression coefficients regarding the
water content estimation by functional linear regression of field
1016/j.biosystemseng.2017.08.017
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relationship between reflectance and leaf water content could

be the basis for future implementation of a precise, rapid and

non-destructive approach to detecting water stress in

vineyards.
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