

Resumen

Debido a la evolución tecnológica, los dispositivos móviles están empezando a
sustituir a las soluciones de escritorio, predominantes hasta hace unos años, gracias a la
movilidad, portabilidad, y potencia que proveen sus últimos avances. Día a día, los
desarrolladores implementan nuevas aplicaciones, que permiten que servicios que
hasta ese momento eran impensables, sean accesibles vía Smartphone o Tablet,
aumentando las capacidades de estos, pero a su vez convirtiéndoles en objetivo para los
hackers. Este proyecto, centrado en los dos principales Sistemas Operativos Móviles en
la actualidad: iOS, y Android, trata de concienciar a los usuarios sobre los principales
riesgos, en materia de seguridad y privacidad, que entraña este nuevo paradigma
tecnológico, así como para presentar un taller que disponga de las herramientas
necesarias que permitan a los profesionales realizar cómodamente análisis de seguridad
sobre este ecosistema, así como a los usuarios sin conocimientos técnicos, les sirva
como plataforma de aprendizaje y apoyo.

Abstract

As a result of technological evolution, mobile devices are beginning to replace
desktop solutions that were prevalent until a few years ago, thanks to the mobility,
portability, and power of their latest advances. Day by day, developers are implementing
new applications, which allow services that were unthinkable until then, to be accessible
via Smartphone or Tablet, increasing their capabilities, but at the same time making
them a target for hackers. This project, focused on the two main Mobile Operating
Systems at present: iOS, and Android, and it aims to make users aware of the main
security and privacy risks involved in this new technological paradigm, as well as to
present a workshop with the necessary tools to enable professionals to carry out
security analysis on this ecosystem, as well as users without technical knowledge, serve
as a learning and support platform.

Máster Universitario en Investigación en Ciberseguridad Página 1

Outline

Index of figures ... 3

Index of tables .. 5

Glossary .. 6

1. Introduction .. 8

2. Objectives ... 11

 2.1. Main objectives ... 11

 2.2. Secondary Objectives .. 11

 2.3. Transversal Objective .. 11

3. Methodology and Materials .. 13

4. Related work ... 17

 4.1. Mobile Operating Systems .. 17

 4.1.1. Security Mechanisms on Mobile Platforms .. 17

 4.2. iOS Security Infraestructure .. 21

 4.2.1 File System ... 23

 4.2.2. Structure of an iOS Application .. 24

 4.3. Android Security Infrastructure ... 26

 4.3.1. File System ... 28

 4.3.2 Structure of an Android Application ... 29

 4.4. Some typical flaws on Mobile Environment ... 30

 4.4.1. OWASP Mobile Risks last years .. 31

 4.4.2. Types of threats: Inducted by the user or Triggered 34

 4.5. Latest Threats on Mobile Platforms .. 37

 4.5.1. Last Threats on iOS infrastructure.. 37

 4.5.2. Main Threats on Android in the last years ... 40

 4.6. Vulnerabilities on both platforms .. 43

 4.6.1. Vulnerabilities on iOS .. 43

 4.6.2. Vulnerabilities on Android .. 45

 4.7. Need of a Security and Forensic Analysis ... 46

 4.7.1. Security Analysis on Mobile Platforms ... 46

 4.7.2. Forensics Analysis on Mobile Platforms ... 49

 4.8. Procedure to perform an Analysis ... 51

 4.8.1. Obtaining the Source Code .. 52

 4.8.2. Repackaging .. 54

 4.8.3. Analysis of Permission System ... 56

 4.8.4. Evaluating Network Connectivity ... 59

 4.8.5. Additional Elements .. 61

 4.8.6. Extracting data on Mobile Platforms ... 63

 4.8.7. Extraction of information stored in RAM memory 66

 4.8.8. Analysis over Sensitive Information ... 67

 4.9. Security Mobile Analysis tools ... 75

 4.9.1. Utilities for Android .. 75

 4.9.2. Utilities for iOS ... 76

 4.9.3. Tools for Network connection in both platforms .. 77

 4.9.4. Database Managers .. 79

 4.9.5. Tools for a Mobile Forensic Analysis ... 80

5. Results: Security Analysis Workshop (SAW) .. 82

Máster Universitario en Investigación en Ciberseguridad Página 2

 5.1. Proposal ... 82

 5.2. Minimum Requirements .. 82

 5.3. How to install “Security Analysis Workshop”?__ .. 83

 5.3.1. How to login? .. 84

 5.4 Tools installed in “Software Analysis Workshop” ... 84

 5.4.1. Integrated tools .. 87

 5.4.2. Tools developed for this Master Thesis ... 87

 5.5. Metrics ... 103

 5.5.1. Limitations found____________ .. 104

 5.6. Real Cases of Security Analysis .. 104

 5.6.1. Security Analysis over iOS app: DVIA ... 104

 5.6.2. Metadata Analysis over Multimedia Assets .. 109

 5.6.3. Downloading automatically applications .. 115

 5.6.4. Permission classification from a Manifest file .. 117

 5.6.5. Updating apk_tool easily ... 119

 5.7. Limitations ... 120

 5.8. Budget .. 120

6. Conclusions .. 121

References .. 122

Annexes .. 141

 A. Usage on both platforms .. 141

 B. Android Permissions Table .. 142

Acronyms ... 149

Máster Universitario en Investigación en Ciberseguridad Página 3

Index of figures

Figure 4.1. iOS Secure Boot, InfoSec (2003-2017), USA……………………………...…….... 20

http://resources.infosecinstitute.com/understanding-ios-security-part-1/

Accessed: 29/11/2017

Figure 4.2. iOS Security Architecture, Apple (1987-2017), USA …………………………...…22

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Accessed: 29/11/2017

Figure 4.3. Plist configuration file………………………………………………..…………..…25

Figure 4.4. Android Framework, Google (1997-2017), USA……………………………......….27

https://source.android.com/security/

Accessed: 29/11/2017

Figure 4.5. Main Android app components, Google4Tech (2013-2017), USA……….………...29

http://www.google4tech.com/2015/05/android-components-activitiesservicesbr.html

Accessed: 29/11/2017

Figure 4.6. OWASP Mobile Risks 2016…………………………………………...……………32

Figure 4.7. Comparative between OWASP Mobile Risks 2014 vs. OWASP Mobile Risks 2016,

Security Innovation (2003-2017), USA……………………………………………..…………..34

https://blog.securityinnovation.com/page/3

Accessed: 29/11/2017

Figure 4.8. iOS vulnerabilities from 2007 to 2017, CVE Details (2003-2017), USA………...…44

http://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49

Accessed: 29/11/2017

Figure 4.9. Android vulnerabilities from 2009 to 2017, CVE Details (2003-2017), USA……....45

http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

Accessed: 29/11/2017

Figure 4.10. Hopper Disassembler used in iOS analysis…………………………………..........54

Figure 4.11. Wireshark, Linux Secrets (2003-2017), USA…………………………...............…78

https://www.linuxsecrets.com/home/304-top-10-security-tools-for-penetration-testing

Accessed: 29/11/2017

Figure 4.12. Burp Suite…………………………………………………………………...……79

Figure 5.1. "Security Analysis Workwhop" first glance………………….………………….….84

Figure 5.2. Organizational Chart for CheckAPKTool………………..…………………………91

Figure 5.3. check_apktool execution………………………….……………………………….. 91

Figure 5.4. Organization chart for APKDownloader …………………….……………………..94

https://source.android.com/security/
https://blog.securityinnovation.com/page/3
http://resources.infosecinstitute.com/understanding-ios-security-part-1/
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://www.google4tech.com/2015/05/android-components-activitiesservicesbr.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49
https://www.linuxsecrets.com/home/304-top-10-security-tools-for-penetration-testing

Máster Universitario en Investigación en Ciberseguridad Página 4

Figure 5.5 apk_downloader execution ……………………………………...………………….94

Figure 5.6 Organizational Chart for Manifest Interpreter …………………..……………..……98

Figure 5.7 Manifest Interpreter running …………………………...…………………………..98

Figure 5.8 Organizational chart for Metadata Extractor …………………….……...…………102

Figure 5.9 Metadata extractor collecting private information ………………………...……….102

Figure 5.10 Exiftool extracting metadata from a certain picture information…….……………110

Figure 5.11. List of exiftool parameters ………………………………………………….........111

Figure 5.12. Searching a place by its GPS coordinates …………………………………….….113

Figure 5.13 Execution of metadata_extractor ……………………………………………........114

Figure 5.14. Results of metadata_extractor …………………………….…………………..…115

Figure 5.15. Downloading an app via apk_downloader……………………………….........…116

Figure 5.16 Initial execution of manifest_interpreter ………………………...……………….118

Figure 5.17. Results of manifest_interpreter …………………………………….……………118

Figure 5.18. check_apktool executed with normal user privileges …………………………… 119

.

Figure 5.19 check_apktool executed sucessfully …………………………………………….. 120

Figure 5.20. Latest apk_tool version already installed ……………………………………….. 120

Figure A.1. Android Distribution on November 2017, Google (1997-2017), USA …….......... 141

https://developer.android.com/about/dashboards/index.html?hl=es-419

Accessed: 29/11/2017

https://developer.android.com/about/dashboards/index.html?hl=es-419

Máster Universitario en Investigación en Ciberseguridad Página 5

Index of tables

Table 3.1. iPhone 4S specifications …………….....………………………………..……......… 15

Table 3.2. iPad Air 2 specifications ………………….……………………………..…………..15

Table 3.3. Motorola Moto G4 specifications ……………………………………..…………….15

Table 3.4. Sony Xperia Tipo specifications ……………………………………...……………..16

Table 4.1. Distribution of iOS vulnerabilities ………………………………….....…………….44

Table 4.2. Distribution of Android vulnerabilities ……………………..………...……………..45

 Table 5.1. “Security Analysis Workshop” Minimum Requirements ……………….....……… 82

 Table 5.2. Tools instegrated in “Security Analysis Workshop”…………………......………… 86

 Table 5.3. Source code snippet from check_apktool ……….…………………….....………….89

Table 5.4. Source code snippet from apk_downloader .……………….......................…………92

Table 5.5. Source code snippet from manifest interpreter……....................…………..………. 96

Table 5.6. Source code snippet from metadata_extractor ……………........…………..……….. 99

Table A.1 iOS Distribution (December 2017) ………….......……………..………….…….…141

Table B.1. Android Permissions Classification ……………………...………………..……… 142

Máster Universitario en Investigación en Ciberseguridad Página 6

Glossary of terms
 Jailbreak: is the name of the mechanism to unlock iOS devices, specifically

iPhone. Generally, the user who wants to jailbreak his/her cell phone, He/She needs to

download and next install a tool to his/her personal computer. When iOS dispositive is

connected, the software detects it and starts a process of installation of the jailbreak which

exploits some bugs found by researchers. Although, the iOS device now is capable of

installing app from third-party stores, and even pirate software, some investigators claim

this procedure is dangerous, and make your iPhone/iPad more vulnerable and unsafe to

future attacks.

 Root: a process in Android devices to get root access (super-user privileges), and

unlock completely the cell phone or tablet. Users need to download and install a software

in their computer, and when connecting the Android dispositive, following a few simple

steps, they achieve to root the system. When system is rooted, users can install apps from

third-party stores, which sometimes produces security issues, and They can even install a

new and customized OS for their device, also named: ROM. In some terminals, users

would be able to unlock their sim card, using their dispositives in any OSP (On-Line

Service Provider), they choose.

Máster Universitario en Investigación en Ciberseguridad Página 7

Máster Universitario en Investigación en Ciberseguridad Página 8

1. Introduction

 Nowadays, we are living in a world where developments in mobile technologies

are marking our day-to-day. Without leaving aside the desktop environment, the mobility

and easy-to-use features which provide modern devices like: smartphones, tablets, and

smartwatches, they have created a new business model, and a brand-new approach to the

IT (“Information Technology”) scenario. With all of this in mind, the number of different

sources of information to consider, it has been increased substantially.

Day after day, the number of these dispositives are growing exponentially,

bringing to the public all-new abilities to the palm of their hands, like for example: instant

messaging applications to communicate with other people around the world, cloud

computing solutions, even currently, they are deploying a way for making online

payments through mobile platforms, among other new ideas under development. All this

is possible, because cell phones, and portable gadgets have evolved, turning into a kind

of small pocket computers, incrementing the complexity of the software inside them, and

creating a new way to surf on the Internet.

In order to put in situation about this topic, we need to stand out the dominant

mobile technologies which are ruling today, which are: iOS, and Android. These two

Operating System (from now on OS), monopolize more than 95% (See smartphone

market: [1]) of the market place in 2017, and are meant to maintain this position in future

years. Lately, the companies behind these systems have incremented their area of action,

introducing new state-of-art technologies like: Home Automation (also known as:

Domotic), Augmented Reality (AR), or Online Banking.

 Therefore, the nature of information present in these sort of dispositives is very

diverse, so it needs to be treated differently according its origin, for preserving the privacy

of the user. Like every piece of software, iOS and Android have bugs and different issues

which may use by crackers and other malicious users to compromise these systems,

exploiting vulnerabilities, and collecting sensitive data for different purposes.

Furthermore, previously written, sometimes, these information leakages are produced by

neglect, or deception techniques in order to get some private information, which is used

to extort the user.

 Hence, if we use these devices to save our personal information, and communicate

with each other, it is paramount to improve these systems to achieve what was previously

mentioned.

In order to assess the main risks that threaten these mobile platforms, there is a set

of tools on the market that can be used by users to carry out these actions. Among the

main existing utilities, we can highlight: apktool which allows the user to decompile

mobile apps for Android, dex2jar that transforms the. dex files typical of Google

Operating System into a. jar container for further processing, JD-GUI a graphical solution

that provides the source code of the Java decompiled class, wireshark whose aim is to

analyse network traffic, among others.

Máster Universitario en Investigación en Ciberseguridad Página 9

The problem with these software solutions is that most of them require a high level

of technical knowledge in order to be able to use them, and their usage in many cases,

even for professionals, is tedious and confusing. If global awareness is to be improved, a

set of tools must be available that are accessible to novice users, while at the same time

provides some kind of advantage to those with technical knowledge, allowing them to

automate certain tasks or speed up their technical procedures

For all the above, we propose the creation of a workshop/platform called:

“Security Analysis Workshop” that allows the user of these mobile devices, evaluate, test,

and even learn about the main threats that put these platforms at risk, providing a free

virtual unified environment thanks to the benefits of the Linux distributions, and in which

will be installed by default a set of advanced tools that are used by the main analysts in

security throughout the world, as well as a compendium of others developed for this

project, whose main function is to automate certain processes that could be tedious and

complicated for a user without technical knowledge, in addition to presenting in some

cases the resulting information in a more visual and closer way to the public.

The existing tools mentioned above, among many others which will be described

when the platform will be presented, they have been included to supply the user with a

complete experience, which will provide the best and most used solutions on the market,

in addition to serving as a professional platform for experts in security and privacy

analysis on mobile platforms.

One of the limitations of this work is: the set of tools incorporated in the workshop

for iOS analysis is smaller because Apple's system is much more closed than Google's,

and also many of the utilities available on the market, are designed for the Desktop

Operating System: macOS, so they are outside the scope of this project. However, a list

of them, and their use is attached in the fourth section of this writing, corresponding to

the current state-of-the-art, and entitled: "Related Work".

Moreover, due to one of the objectives of this project is to make the general public

aware of the risks involved in the use of mobile technologies, an attempt has been made

to develop a series of tools that facilitate, speed up, and even support the learning process

for those users who choose to use them, showing the information in a clearer and more

structured way than some of the tools available so far.

 Therefore, it will be presented: manifest_interpreter. a solution that allows

classifying the permissions associated with an Android app according to their degree of

danger, showing clear descriptions of what each of them implies, as well as a more

structured visualization than other tools. Next, we will introduce: check_apktool whose

main function is to keep the Android analysis software updated to the latest version,

avoiding the tedious process of doing it manually. The utility: apk_downloader will allow

the user, or technician, to download an Android application for a later analysis through

an external repository and in a more automated way than the options currently available.

To end the section of tools specially developed for this project, it will be included:

metadata_extractor, which aims to extract and export sensitive information associated

with certain multimedia resources created on these mobile devices. Every of these tools

will be equally integrated in the platform developed for this Master thesis.

Máster Universitario en Investigación en Ciberseguridad Página 10

 With all this, the goal is to build a complete and robust platform, which allows

security analysis to be carried out on mobile platforms with a guarantee of success.

 Finally, it is important to note that this work will be organised as follows: in

Section 2 will be presented main and secondary objectives of this work in addition to

some objectives achieved transversally. Next in section 3, we are going to list the different

materials, bibliography, and other resources used for this Master Thesis. In section 4, it

will be developed the Related Work about the two mobile platforms to study: iOS and

Android. In this long section, we will relate the architecture of both systems, apart from

the main threats and vulnerabilities found in mobile ecosystem. Besides we will explain

why a security and forensic analysis is necessary for this work, and what kind of tools we

propose in order to perform this sort of analysis. Furthermore, in section 5 we will

describe the platform created for this Master Thesis called: “Security Analysis

Workshop”, and tools integrated and developed within it. As well, in this same section

we will show some real cases in order to enlighten the user about the usage of the tools

included, and we will introduce some metrics in order to allow users to evaluate, whether

or not the platform fulfills its objectives. Finally, the last section of this document is for

the conclusions reached after the completion of the work.

Máster Universitario en Investigación en Ciberseguridad Página 11

2. Objectives

In this section of this document, we will describe the main and secondary

objectives associated with the accomplishment of the former, which are expected to be

achieved with the realization of this work.

2.1. Main objectives

1. To elaborate a system (Linux distribution) that has the main tools used to carry out a

security and privacy analysis in the mobile ecosystem, as well as others developed

especially for this project, whose objective is to automate and speed up certain areas that,

due to their complexity or because they are tedious, can slow down or make it impossible

to develop a security analysis for the main mobile platforms.

2. To raise awareness among users and professionals of current mobile platforms of the

risks involved in their use, providing them with the necessary resources (documents,

multimedia content, other types of tools), to enable them to learn how security and privacy

analysis is carried out in a mobile ecosystem, as well as to assess the potential threats to

which they are exposed.

With the achievement of these objectives, there is also a set of milestones, directly

related to them, which enrich and broaden the final scope of the Master’s thesis.

2.2. Secondary Objectives

1. Develop a state of the art of the current situation, in terms of security on the most used

mobile platforms: iOS and Android.

2. To make a list of the main software solutions present in the market.

3. Think about the features and other resources that can increase users' awareness of the

main threats that mobile devices can pose.

4. Develop new tools which are able to improve the experience for professionals and

novice users.

5. Implement every tool into the platform.

6. Check if the evaluation metrics are met.

7. Implementation of a series of real cases of use of the tools integrated and developed

for the platform.

2.3. Transversal Objective_____________________________________

After all these goals accomplished, other types of them related to the

implementation of this work could be triggered such as:

Máster Universitario en Investigación en Ciberseguridad Página 12

1. To create a unified environment that allows security professionals to perform their

work comfortably and quickly

2. In addition to acting as a learning platform for all those who want to get into the

intricacies of security in iOS and Android systems.

Máster Universitario en Investigación en Ciberseguridad Página 13

3. Methodology and Materials
This work can be framed in the field of research, and experimentation since it

includes an initial part which is the collection, summary, and explanation of the state-of-

the-art in both mobile platforms, as well as material to instruct users on how to perform

a security and privacy analysis, but also provides added value as a workshop that can not

only serve as a learning platform, but also as a useful solution for professional users,

integrating some tools which help them to carry out their job.

Timing

- Selection of the topic (later October 2016): at the end of this month, the subject of "iOS

& Android: Security and Privacy in Mobile Platforms" was selected, because it was

considered to be a hot topic, very attractive, and of which we wanted to learn and research.

-Previous Documentation (November 2016): research is beginning on the current

situation of these two platforms, in order to be able to elaborate a state-of-the-art in

security and privacy matters of both iOS and Android, which can serve as an introduction

to the Final Master's Thesis to be submitted.

-Elaboration of a Paper (December 2016): a Paper is developed on the risks that exist in

the mobile platforms under study, trying to formalize the state-of-the-art developed in

previous phases.

-Presentation of the Paper (early January 2017): the Paper is presented at the University

of León, making a brief presentation in which the main risks posed to users by the use of

these mobile devices are listed.

-Brainstorming (later January 2017 - later February 2017): these months are dedicated to

thinking about what we want to do as a Final Master's work. It is clear that we want to do

something to raise awareness among the general public, since the user is always

considered to be the weakest link, but at the same time we do not want to leave the user

with technical knowledge outside the scope of this project.

- Initial Analysis (March 2017): we want to make a thorough documentation of the current

security and privacy situation in iOS and Android, therefore it is decided that in order to

be oriented to: non-technical public and professionals, we have to try to develop a series

of sections that serve to instruct on how to perform a security and privacy analysis for

non-experienced users, but at the same time we have to look for a way which allows them

to test what they have learned.

-Structure of the Work (April 2017 - early May 2017): in order to solve the lack of

practical content, we are thinking of developing a workshop that will serve not only to

practice for users who wish to use it as a learning platform, but also serve as a solution

that combines the main tools in security that exist today, and therefore be a quality

application for the most technical users.

- Collection of Information (Later May 2017 – early July 2017): once it has been decided,

what will be developed in the Final Master's work, we proceed to look for documentation

Máster Universitario en Investigación en Ciberseguridad Página 14

via: books, websites, papers among others, in order to offer a quality and updated

information to the readers of this work.

- Filtering of Information (mid July 2017): all information considered outdated or not

directly related to the work is rejected.

- Workshop Infrastructure (later July 2017): it is decided that in order to develop a

platform that will serve for both learning and technical use, a distro Linux (Ubuntu) will

be used, which will allow its free distribution, as well as ensuring that it can act as a basis

for the installation of the main tools that currently exist for analysis on mobile ecosystem.

- Writing Related Work (August 2017): we begin writing what is considered "Related

work", or state-of-the-art in iOS and Android, besides more research on how to analyze

both environments.

-Development of the Workshop (early September 2017): during the initial process of

installing the tools, we realized that some of them, due to their start-up or display of the

information, they could be complicated to use by users without knowledge, so we thought

about a method to resolve this important issue.

-Programming of new tools (later September 2017 - mid October 2017): in these months

the new tools specially created for this work are developed, with the aim of facilitating

their use by novice users, as well as speeding up certain tasks that could be tedious for

more experienced users.

-Documentation of what was done in the workshop, and correction (November 2017):

this last month, prior to the presentation, it was dedicated to document the tools

developed, in addition to correcting the structure of the documentation, apart from

debugging on the programs and scripts integrated in the platform.

-Delivery and presentation (December 2017): finally, the work is deposited and

presented.

Materials

Next, we will list the devices I have used throughout this master thesis to conduct

my research on major threats to mobile platform security and privacy. Because this Final

Master's Work focuses on the two currently most used Mobile Operating Systems (iOS

and Android), I have needed the use of a series of devices, in order to be able to carry out

the study with guarantees that will be reported throughout the rest of the sections of this

document.

Máster Universitario en Investigación en Ciberseguridad Página 15

For iOS ecosystem [2] research, I've needed the materials described in Table 3.1

and 3.2:

Smartphone iPhone 4S

Operating System

iOS v9.3.5

CPU Apple A5 2x800MHz

RAM 512MB DDR2

Storage 32GB

Tablet iPad Air 2 [3]

Operating System

iOS v11.0.3

CPU Apple A8X 3x1.5GHz

RAM 2GB

Storage 128GB

When we made the research for the section dedicated to Android we used the materials

showed in Tables 3.3 and 3.4.

Smartphone Motorola Moto G4 [4]

Operating System

Android v7.0 (Marshmallow)

CPU Qualcomm Snapdragon 617

RAM 1GB

Storage 32GB

Table 3.1. iPhone 4S specifications

Table 3.2. iPad Air 2 specifications

Table 3.3 Motorola Moto G4 specifications

Máster Universitario en Investigación en Ciberseguridad Página 16

Smartphone Sony Xperia Tipo [5]

Operating System

Android v4.0.4 (Froyo)

CPU Qualcomm Snapdragon 51

RAM 512MB

Storage 8GB

Besides this smartphones, and tablet we used some books in order to improve our

knowledge about the platforms to study. This set of books could be seen in the Section:

References, in the part entitled: Bibliography.

Furthermore, in Section: 5 and subsections, we will list the minimum requirements

need for installing and deploying the platform developed for this work: “Security

Analysis Workshop”.

With all these dispositives, in addition to a computer to install the image of

"Security Analysis Workshop" described in next section, a research will be developed to

show the main tools used by a security researcher in mobile environments, in order to

analyze and evaluate the security architecture of the platforms under study, through the

analysis of some apps present in their official stores.

Table 3.4. Sony Xperia Tipo specifications

Máster Universitario en Investigación en Ciberseguridad Página 17

4. Related work
Throughout this section, there is a detailed description of the current state of the

art in the two main mobile platforms: iOS and Android, describing the main security

flaws, explaining the reasons that lead to the need for a security and forensic analysis in

these environments, as well as available tools to carry out these jobs, along with a detailed

description of its functionality and usage.

4.1. Mobile Operating Systems

 Nowadays, computer systems are moving from the desktop to the mobile

environment, which is why making a presentation of today's main mobile operating

systems is essential, in order to know the fundamentals on which this project is based.

Due to the increase of capabilities of the new smartphones, day after day these mobile

devices are becoming like a pocket computer which allows the user to perform a lot of

actions which were impossible before. This increase in possibilities has meant that

nowadays much of the personal information of each user is stored on their smartphone or

tablet, making it a very valuable target for hackers and other malicious users. This is why,

first of all, we will mention the main security mechanisms offered by mobile operating

systems in order to guarantee the security and privacy of users, and then provide a detailed

description of the main current mobile operating systems (iOS and Android), along with

the main features that determine each one.

4.1.1. Security Mechanisms on Mobile Platforms

From the beginning, when both Google and Apple decided to design their

Operating Systems for mobile platforms, they decided that one of the pillars on which

they would build their entire infrastructure would be: security above all. Every day

smartphones are growing in number, and their capabilities and possibilities seem to make

these new solutions that provide mobility and portability to users move more and respect

the desktop architecture that has prevailed until now. Because of the need to store personal

information on mobile devices, it is necessary to provide hardware and software with

mechanisms to safeguard it from computer attacks, which due to the success of these

platforms are increasingly targeted for crackers.

 In order to guarantee the security of its users, today's main mobile operating

systems (iOS and Android), provide a series of features aimed at protecting them against

the main threats that exist, from those caused by software vulnerabilities of the systems

themselves, to everything that has to do with infections through malware, and loss or theft

of the device.

 In order to achieve all of the above, although each system performs a different

implementation, in general, the series of mechanisms offered to protect mobile users are

(See more information in [6]):

- Sandboxing of Applications.

- System of Permissions.

- Access Control.

Máster Universitario en Investigación en Ciberseguridad Página 18

- Signed Apps.

- Safe Booting.

- Data encryption for apps.

- Remote Wipe and Block.

 Next, we will briefly describe how each of the systems implements these features,

to give an overview of how companies not only have configured their security

architecture, but also know how our mobile OS protect us against the main risks to which

we are exposed day after day.

a) Sandboxing

 To improve the intrinsic security of the system, and prevent possible intrusions

make a privilege escalation, getting access to system assets that should be restricted by

default, the main Mobile Operating Systems, work by assigning users an account with

very limited privileges, in order to control the degree of action of these users, and the

impact they may cause the system.

 This is why, in order to access of the system's resources, each OS uses a

permissions system that determines if something is accessible or not for a certain user. In

addition of improving the overall security of each of the system's applications, and its

scope, the system establishes a kind of software cage called: sandbox (a detailed

description in [7]), which prevents other apps from accessing its resources, as well as

limiting its range of action to the sandbox in which it is enclosed.

 For iOS deployment (a more detailed information about iOS sandboxing in: [8]),

this feature causes each of the applications that the user installs on the system to install a

directory with a random name that is generated through the unique UDID (Unique Device

Identifier) that Apple associates with each device during its manufacturing process. In

addition, in order to limit the user's impact on the system, it assigns a virtually

unprivileged user, called "mobile". From the internal point of view, the app is only able

to access everything that is inside its directory, and due to checks carried out by the system

on the application signature, the access of each app is also limited to its area of action,

which due to their importance, are restricted for the user's access.

 In the case of Android, and due to their Linux nature, applications are run inside

a virtual machine, whose user has a certain id, as happens in desktop distributions based

on the Linux kernel. Applications, like Apple's system, only have access to their root

directory, and not to the resources of other apps installed on the system. Since a few years

ago, and after the arrival of Android 4.3, another component aimed at improving the

security of the Linux world was included: SELinux (further information about this feature

in: [9]), a system that provides a mechanism for user access control, through the

implementation of various security policies, in order to restrict the actions that each user

can perform.

b) Permission System

 Complementarily, to the deployment of sandboxing in the Mobile Operating

Systems, a system of permissions (information about UNIX permissions: [10]) has been

implemented, which guarantees that a user cannot access system resources, which have

Máster Universitario en Investigación en Ciberseguridad Página 19

access privileges. Due to the common origin of both systems (UNIX), each system file

has three types of permission: read, write and execute, thus controlling the actions that

the owner of the same, and the rest of users of the system can do with them. But not only

the permissions system affects software, because it is basically aimed at controlling the

resources and hardware sensors that populate our mobile devices today.

 Hence, the system provides the user with the ability to control that other apps of

the system have access to the camera, its list of contacts and messages, as well as

photographs or videos stored in its multimedia library, giving the owner of the mobile

device, the ability to control the access that other applications have to the set of resources

of your mobile device. In the case of both Android, and iOS, the responsibility for

providing the ability to configure these permissions, comes from the developers of the

applications, but while for many years Apple's system had a control center that allowed

the owner of the mobile device, enable or disable individually each permission that

requested every app installed on the system, in the case of Android was not until version

6.0 when it was provided. For a long time, the lack of this mechanism was the entry point

for many malware, and other malicious software to Google's Operating System.

c) Access Control

 To prevent other users from accessing the user's device, both iOS and Android

implement a set of locking mechanisms (further information about “Unlocking

mechanisms in [11]) that allow the device's content to be protected from external access.

 The main methods used, chronologically described from oldest to most modern

are:

- Four-digit or more code for unlocking the smartphone.

- Alphanumeric password.

- Graphic pattern, used as an alternative to the Android system.

- Fingerprint unlocking.

- Iris' scanner.

- Facial recognition.

 All of these mechanisms are susceptible to being violated by malicious users, and

although methods such as fingerprints or facial recognition seem to be the safest a priori,

in recent times it has been shown that with the use of latex prostheses with the imprint of

the owner of the cited device, or in the case of facial recognition, with a photo of the

owner of the smartphone, has been able to infringe these security mechanisms, which

seemed to provide so many guarantees.

d) Signed Apps

 In order to upload the applications to the official store, as well as to be used by

users of each of the platforms under study, developers must sign (details about signing

Android apps in [12]) them beforehand. This mechanism makes it possible to identify not

only the developer, but also the platform where it is installed, and prevent other unofficial

stores from impersonating a legitimate entity, deceiving the user to install apps that

include malware and may violate their security.

Máster Universitario en Investigación en Ciberseguridad Página 20

 In the case of the iOS operating system (further information about iOS signing in

[13]), it takes this feature a little further, not allowing apps to be installed on the user's

device that have not been approved with the Apple certificate. Although this policy may

seem very restrictive, it's one of the main reasons why malware is not as extensive on the

Apple platform as it is on Google.

e) Safe Boot

 One of the main characteristics that determine the security of an electronic system

is to guarantee the integrity of all the information stored in it. In order to do this, the

Operating Systems divide the boot process of the system into a set of stages that make up

what is called: Safe Boot. This set of steps carried out inside the system, are performed

with the sole objective of ensuring that the code executed inside the system, has not been

tampered in any way during the boot process, and can alter the normal execution when

the entire OS is loaded.

 If by any chance, this procedure determines that the code has been modified in

some way, the devices usually enter a mode called: "Recovery Mode", which requires the

device to be restored so that it can be reused.

 To illustrate this important safety feature implemented in mobile systems, we can

cite the Secure Boot (more information about this procedure in [14]) by iOS devices, which

is made up of this set of different steps in order to guarantee the security in all the process

of booting the system:

 Finally, we show a Figure 4.1 which summarize the process of booting in an iOS

mobile device.

f) Data Encryption

 Due to the enormous amount of various types of information stored on our mobile

devices, in order to ensure that it is protected against any intrusion, it is encrypted so that

only the owner of the device can access it when he/she unlocks his/her mobile device.

 Initially, encryption was an optional feature on the Android system, but as time

has passed and the importance of this mechanism has become apparent, it has become

mandatory (Android 5.0 onwards). Currently, Google's system uses a symmetrical-key

encryption method called: AES (Advanced Encryption Protocol) 128 CBC (Cypher Block

Chaining) (further information about this encrypt algorithm in [15]). The encryption key

that is used by the system is created randomly, and is used to sign all other encryption

operations in the system. In this way, all system data remains encrypted, or at least those

Figure 4.1. iOS Secure Boo. Source Infosec

Máster Universitario en Investigación en Ciberseguridad Página 21

related to the internal memory of the mobile device, since in the case of external memory

such as SD cards (Secure Digital cards), their contents are not encrypted by default.

 In the case of the Apple Operating System, encryption has been a feature provided

almost since its inception. Currently, all information stored in flash storage is encrypted

to: AES 256 (more detailed information about iOS encryption in [16]). In addition, as a

special feature, the iDevices incorporate an internal co-processor optimized to perform

all encryption/decryption operations within the system, which in fact saves the encryption

key of the device, which is generated during the manufacturing process of the device, and

which is protected so that other system resources do not have access to it.

 Additionally, iOS allows each app separately to be encrypted with a key that is

created randomly when installed. This key is stored, and only allows access with the

owner of the mobile device unlocks their system.

g) Remote Wipe and Block

 Due to the possibility of loss or theft of these mobile devices by thieves, both

mobile Operating Systems provide features that allow the system to be blocked remotely

to prevent criminals from taking advantage of it. Once the deletion or blocking procedure

(information about this process in [17]) is performed, a completely new encryption key is

generated in the system, preventing the information that is currently stored in the system

from being accessible by malicious users.

 Both Apple, and Android provide a default application called "Find my iPhone",

and "Find my Device" (an overview of these apps in [18],[19]) respectively, which provide

an interface from which if you have the location activated, the user can geo-locate

approximately the location of their stolen device, in addition to being able to perform a

set of quick actions, such as: remote deletion, and the complete blocking of the device.

Access to these capabilities is not only accessible from another device to which the lost

device is linked and synchronized, but also allows access via cloud services through a

web browser. Once the user has been identified with their credentials, he or she will be

able to take the same set of actions in the event of an emergency, and thus have another

mechanism to protect his or her privacy, when this is clearly violated.

4.2. iOS Security Infraestructure

As I mentioned in previous chapters, iOS mobile infrastructure is based on a close-source

model, therefore sometimes it is really complicated to explain every part of this system

in detail, because although the inner procedures are explained, some parts of themselves

are unknown, and its code is not accessible to the public.

If we read carefully the security model used by Apple (“iOS Security Guide” [20])

when they created the OS, we can see, iOS is a system with a well foundation focus on

security, not only the system but also the information stored in the OS itself. One of the

main goals for Apple engineers is: to protect user information, thus privacy become in

one of the principal pillars for iOS. To achieve these objectives, Apple used encryption

to ensure chiefly the structure of system which is divided in several layers to improve

security, but they also use encryption protocols (AES [21]) to protect all the information

Máster Universitario en Investigación en Ciberseguridad Página 22

saved in the dispositive powered by iOS,

because they know: smartphones, tablets, and

the rest of mobile devices have become in a

sort of pockets computers, so they stored a lot

of different information which cannot be

compromised.

To improve overall performance in

these dispositives, mostly of Apple chips has

a particular co-processor dedicated to make

all encryption operations (Security Enclave),

and generate random numbers which are

necessary to operate with these algorithms,

besides a memory to collect all this

information generated, and work with it. In

Figure 4.2, we attach an overview about what

it has been previously mentioned.

 Since 2013, they have also added

some improvements to their dispositives, in

order to increment the overall security of

these kind of systems. For instance, since

iPhone 5S and newer, they include a

fingerprint recognition sensor which is

called: TouchID (a detailed description about

this sensoris presented in: [22]). This

characteristic works like a master password

which can be used like a way of univocal authentication by user, because his/her

fingerprint is a personal feature which can be useful for purchases, log in services, and

unlocking the device itself. Like user fingerprint is a something private, and its theft could

probably lead to violate user rights, it is encrypted like practically every place and every

data inside the OS.

 We should also mention the inclusion of two new technologies by Apple, in their

new terminals presented in September 2017, and that were: iPhone 8/8 Plus and iPhone

X. These devices mount a new processor called: "A11 Bionic", which has a neural engine

capable of executing up to 6000 million operations per second, and be responsible for

controlling the new machine learning procedures implemented in the system that will now

serve to improve the processing of natural language by the system, improving and

processing images, in addition to learning from the habits of the user. In addition to all

that has been specified, this new engine is responsible for controlling FaceID (further

information about this new method of unlocking in [23]), included in the iPhone X, which

is the new method for unlocking the terminal, and payment through mobile terminals

included in the platform, and which becomes the substitute for TouchID, which was the

solution used by Apple's devices until now. This new technology has eight sensors

including an IR camera, a dot projector to create a virtual map of the user's face, as well

as a light emitter to identify the carrier of the mobile phone, even in low visibility or no

visibility conditions. All the information processed by these sensors allows to identify the

face of the owner of the device, and claims to be more secure than the TouchID, and as it

has been used with the latter, does not process its information in the cloud, or on external

Figure 4.2. iOS Security Architecture. Source: iOS
Security Guide.

Máster Universitario en Investigación en Ciberseguridad Página 23

servers, which endanger the privacy of the user, but that all this information is stored in

the "Security Enclave" described above, it is therefore stored locally on the user's device,

and this personal information is kept encrypted, to preserve the security and privacy of

the user. For more information about “iOS Authentication”, see: [154].

 We cannot end this section without speaking about the AppStore (“AppStore

Guidelines” [24]), surely another pillar of iOS security infrastructure. The AppStore is a

central virtual market specially designed for Apple’s products, which contains around

2200 millions of applications (regarding sources from June 2017 [25]). This number is

increasing every day, despite the latest Apple policy of removing apps with no 64 bits’

support, forcing developers of upgrading their apps to support the newest SDK (Software

Development Kit) launched by the company. Until now, nothing is different respect other

stores like: Google Play in Android, but there is one thing which makes a difference: The

control. After a developer who enrolled in Apple developer program upload an

application, a team inside Apple itself tests the app sent by the app developer, searching

some flaw, bugs, vulnerability, and even malware, and it is detected they reject the app

until the developer solves the issue. This process is not immediate, it takes around 2-3

days depending on the complexity of the app, but it has become in a great way to avoid

the presence of malware and other malicious software in Apple devices, and so far, it

works. To see more information about “iOS Security” check out: [155].

4.2.1 File System

Apple's system, keeps a tree structure similar to Android's, as both mimic the

structure implemented by UNIX decades ago, but despite this the way of organizing its

content, in addition to the format in which this information is stored on the system differs

greatly from Google's system.

 Until years ago, iOS used its own proprietary file system called: HFS+

(Hierarchical File System plus) (more information about Apple former file management:

[26]), which was an adaptation of its counterpart for its desktop systems (macOS). Due to

the need to adapt to new technologies, in 2017 they included a new file system called:

APFS (Apple File System) (further information about this new file system in [27]), with

the release of version 10.3 of iOS. APFS has a special feature with respect to the previous

system, which is optimized for flash and solid-state drive storage, and which has as its

primary focus the encryption of the information stored in them, an aspect that since its

beginnings, Apple has made an effort to polish. As it was the case with its predecessor,

APFS has a file structure similar to the one implemented by UNIX although it has its own

differences, and in it, the main directories that compose it are:

 -/Applications: is the main directory where the applications are installed by default

on Apple's mobile devices.

 -/private/var: is a partition oriented to store data referring to the user of the device.

 -/private/var/mobile/Applications: directory where the rest of third-parties’

applications are stored, which the user can download from the AppStore.

 -/boot: place where OS updates are saved.

Máster Universitario en Investigación en Ciberseguridad Página 24

 -/private/etc: this directory stores the entire compendium of system configuration

files.

 -/Library: The software libraries that are used by the different apps installed on

the mobile device.

 -/Developer: stores the development libraries, used during the programming of

apps for the Apple platform, through the development IDE: Xcode.

 As with Google Android, in Apple to improve the overall security of the system,

each app is installed in a particular directory with a random name derived from the UDID

of the device, and that by means of a sandboxing mechanism, isolates the scope of each

of the applications installed on the device, to the internal environment of the directory

where they are installed.

4.2.2. Structure of an iOS Application

Like every Desktop Operating System, iOS has its compendium of software which

is designed to be installed in the Apple Mobile OS. As with Android, Apple provides an

SDK (Software Development Kit), which has a series of software components that allow

developers to build applications for their system, quickly and conveniently, through their

own development IDE (Integrated Development Environment), in this case: Xcode.

 For iOS, the software components are called: Views, specifically UIView (more

information about UIView in [28]), which is a class from which all the other

subcomponents with which a programmer can create the application under development

inherit. Once we have introduced the UIView class, they inherit from it another type of

classes such as: UIWindow which, as its own name indicates, allows to build the window

itself where the set of subcomponents that compose a view will be located, in addition to

another more common type of objects such as: UITextView, UIButton, UISpinner among

others. As can be seen, each and every view has the predicted UI (User Interface), which

is a way for the iOS SDK to identify that effectively the specified set of components is

intended to build a user interface. iOS's framework for designing UIs in iOS is called:

Cocoa, and is specially designed to work optimally on mobile devices with a 64-bit

architecture.

 What has been mentioned so far is only the way to build graphical interfaces, but

apart from UIs, developers must be provided with a way to generate the logic that

developed each mobile application. In iOS, the programming languages that allow this

are: Objective-C (description about former programming language in Apple system in

[29]), and Swift. Until three years ago, the only alternative to develop on Apple's system

was Objective-C, a rather outdated C++ extension despite its upgrades, which although it

complied efficiently with the development of apps, had remained a little outdated in the

present times. That's why Apple decided to create a modern language called Swift, which

is also open-source, and allows applications to be developed more quickly and with a

much cleaner syntax.

As with the Google Operating System, we have to cite the configuration files,

which in the case of iOS, are called: plist configuration files, and which are a fundamental

Máster Universitario en Investigación en Ciberseguridad Página 25

part when defining the global configuration that will have a certain development in

Apple's mobile platform.

Plist configuration files (further information about these files in [30]), is a

structured text file, as we can see in Figure 4.3, that contains essential information for the

binary that makes up the mobile application. Internally, it is encoded in UTF-8 (Unicode

Transformation Format), and its structure is a dictionary created from XML (eXtensible

Markup Language), in which there is therefore a set of key-value tuples. When it is

generated, by convention is always associated with the name of: Info.plist, and is hosted

in the contents folder of each application, which is automatically generated as it is

developed from the official IDE (Integrated Development Environment) of the platform:

Xcode.

 This file includes, among other things, a description and how the set of

components that make up the app in question of behavior, as well as being the place

selected by iOS to store the path of possible extensions that may be added to the app under

development, since it specifies some usual addons on the Apple platform such as the

"Share" tab, or the integration with the company's official smartwatch: Apple Watch.

 Moreover, this small configuration file is also in charge of providing a URI

(Uniform Resource Identifier) through which the mobile application will be able to

communicate with others, because through it will be able to receive and interpret all types

of data that have been sent by other applications of the system, which greatly enriches its

functionality, and manages to jump somehow one of the main security measures of the

platform: Sandboxing, which did not enable the apps themselves to access. This

mechanism is used to ensure that the app does not remain completely isolated from what

is happening outside.

Figure 4.3. Plist configuration file

Máster Universitario en Investigación en Ciberseguridad Página 26

4.3. Android Security Infrastructure

 As Apple does, Android's internal architecture is built to provide the highest level

of security to its users, since currently the information stored by them on mobile platforms

is private, and therefore requires a number of mechanisms to ensure their privacy.

 From the beginning, Android has been designed to be an open platform that is

enriched every day. Specifically, its architecture is based on a multi-layered model, which

is directly created so that developers can implement the security controls provided by

Google's system. In turn, there is a team called: Android security team in charge of

searching for potential vulnerabilities in apps, and ways to correct them. For example,

updates were recently provided for the latest OpenSSL (Secure Socket Layer) issues,

making system users secure against emerging threats using this Internet-based

communications technology.

 In addition, from Android 6.0 Marshmallow onwards, Google allows its users to

control the permissions requested by all apps when installed on the system, thus ensuring

that the user has full control over the information that accesses each of the apps installed

on their device, and therefore minimizing the impact that may have some malicious

applications, plus infecting the device with malware that affects overall system

performance.

 As it can be seen in Figure 4.4, the Android Security Stack is divided into different

layers, each of which assumes that all components below it is properly secured. In

addition, being an operating system built on the Linux kernel, ensures that only a small

number of internal processes run with root privileges, while the rest work under a sandbox

whose permissions are very restricted, to prevent an application can affect the system if

a security problem is discovered, which does not yet have a patch.

 Some of the main features that define the Android operating system (much more

information about “Android Framework in [31]), are as follows:

 - Hardware of the device: Android is processor-agnostic, although it takes

advantage of the ARM (Advanced RISC Machine) architecture, which allows it to work

in multiple devices, among which we can highlight: smartphones, tablets, TV, among

others.

 - Android runs on a custom Linux kernel, which is responsible for controlling each

of the various sensors and technologies of the devices governed by the system.

 - The majority of Android applications are programmed in Java, and work thanks

to ART (Android Runtime), although there are also other types of native applications that

are programmed in C/C++, and coexist with the rest of the system apps contained in a

sandbox, thus maintaining the same security controls as the rest. This type of applications,

have a private space in the file system, to write in their databases, and store important

information.

 In order to be able to extend the bulk of system applications, Android has two

fronts:

Máster Universitario en Investigación en Ciberseguridad Página 27

 - Pre-installed set of applications: these depend on the OS version itself, and even

on the provider of the device (Android, unlike Apple, is used as OS of several brands,

among which are: Samsung, LG, HTC or even Xiaomi). In addition, in order to

differentiate their devices from the competition, many providers install a User Interface

(UI) independent from Holo (Google's official UI), as Samsung does with TouchWiz, or

Xiaomi with: MiUI.

 - User applications: applications that can be installed from official or non-official

markets, and that make the number of apps in the system grow to hundreds of thousands.

 In addition to all of the above, Google provides a number of cloud-based services,

which are included in a multitude of devices that work with Android. Some of them are:

 - Google Play [32] (also called

Play Store), includes the set of mobile

platform applications classified by

type. It is the main platform that

developers have available to sell their

applications, and has security

mechanisms as well as other stores to

prevent the inclusion of malware, and

other malicious software, which can

harm users.

 - Android updates: through

OTA (On-The-Air) updates, Google

provides the latest changes of its

system to the devices that officially

support the company. It should be

noted that in this case, each hardware

provider provides the updates it

considers necessary to users, which

causes one of the major problems of

the Google system, and that is

fragmentation, which consists of a

wide variety of versions of the same

operating system, many of which are

outdated.

 - Application services: provides backup service for applications that implement

this framework.

 - Apps verification services to prevent malicious content from passing through

the official store's security barriers.

 - SafetyNet: A privacy preserving intrusion detection system to assist Google

tracking and mitigating known security threats in addition to identifying new security

risks.

Figure 4.4. Android Framework (Source: Android Security)

Máster Universitario en Investigación en Ciberseguridad Página 28

 - Android Device Manager: a mobile and web app, which can locate a lost or

stolen Android devices.

 Finally, with the release of the latest version of Android (Android 8.0 Oreo)

(what’s new in the latest Android version [33]), have been included new features to

improve user security in this system. Some of these new improvements are: removal of

SSLv3, in favor of the protocol TLS, a new restrictive permission called:

TYPE_APPLICATION_OVERLAY, which prevents other applications pop-up to

deceive the user, and therefore cause some security error. the inclusion of a new "Google

Play Protect" service, which verifies and analyzes the third-party apps downloaded from

the store, and in order to control the source from which the apps are installed, the "Allow

from unknown sources" option has been removed, becoming a special permission to be

implemented by the developers, and then accepting by users who want to install

application from different stores respect from Google Play.

4.3.1. File System

 Android is an operating system based on the Linux kernel, which gives it an

internal architecture when dealing with files and directories, which comes directly from

UNIX. It follows a hierarchical structure in tree, which has a main or root node, and from

which hang the rest of files and folders of the system. One of the fundamental

characteristics of this model is that everything is a file from the point of view of internal

representation in the system, which confers a certain degree of homogeneity when it

comes to accessing the resources provided by today's mobile devices.

 Google Android supports several file systems (a detailed overview about Android

file system in [34]), such as: ext4, or JFFS2, and it is generally the responsibility of

manufacturers to choose one or the other. Although ext4 is the choice when mounting

desktop systems, in general for the mobile panorama is usually used by default, the so-

called: Journal Flash File System 2 (JFFS2).

 Once the format for organizing the data stored in the internal storage of the mobile

device has been decided, the internal structure in which the most important directories of

the system are distributed, although with some variations depending on the manufacturer,

usually follows this model.

 -/system: This is the main directory where the operating system is stored. It is

characterized by being read-only, in order to avoid its modification for malicious

purposes, which could endanger the security of the user, as well as the integrity of the

system itself.

 -/proc: saves information about the main running processes.

 -/mnt: is the single mounting point for the different types of removable media that

exist.

 -/sdcard: is where the SD card is mounted which is used in some models to expand

the main memory.

 -/cache: The application cache is stored, and the system itself.

Máster Universitario en Investigación en Ciberseguridad Página 29

-/data: Probably one of the most important directories, and one that any mobile

security researcher has to research with special care, since the apps installed by the user

are stored in it. Each one of them, is installed in a separate directory, which through

sandboxing mechanisms as explained in previous sections, allows to isolate the scope of

each app, to each of the system resources.

4.3.2 Structure of an Android Application

 So far we have talked about the security infrastructure in Android and its file

system, but now it is really paramount to describe in detail one of the main pillars that

take part of any Operating System allowing it to increase its functionalities, we mean: the

software. The software in mobile applications is called: apps and it is important to know

its structure in depth in order to be able to carry out a security analysis with sufficient

guarantees of success.

 In the following paragraphs, it will be detailed the set of main parts that compose

an application for the Operating Systems: iOS, and Android in addition to developing the

main tasks to be performed in any analysis of source code. That parts are cited next:

 -To determine the set of software structures that compose the mobile application

under study.

 -Research, discover, and list the entry points available to that application, and how

the information is processed, and stored on the mobile device.

 -Locate, and limit the main risks caused either by a poor development of the

application under study, or by negligence and misuse due to the security mechanisms

provided by the two mobile platforms under study.

 The internal architecture or structure that imposes an Android application, allows

application developers to make attractive apps for the rest of the users, that perform a

certain functionality, and improve the

capabilities of their mobile devices. In

order to describe how an Android app is

implemented, we can say that it consists

of a well differentiated series of blocks,

which are called: components. There are

five different types (Figure 4.5) of

components, which are:

-Activities.

- Services.

- Broadcast Receivers.

 - Intent

- Content Providers. Figure 4.5. Main Android app components. Source:
Google4Tech

Máster Universitario en Investigación en Ciberseguridad Página 30

- Manifest File

Each and every one of them has a specific purpose, and together they form an

inner structure that communicates with each other, and allows to develop the set of actions

that have been encapsulated in the internal logic of the application (for more information

about these system components: [35]).

4.4. Some typical flaws on Mobile Environment

 As we mentioned in Introduction, every software has its bugs, and vulnerabilities

which a malicious user may exploit or violate, sometimes trying to disturb the user (i.e.

DoS “Denial of Service”), but most of the time to get different kind of user information

destined to other purposes. Because we live totally connected to the Internet, and with

much of our information stored in our personal computers, and mobile devices. Due to

the necessity to protect our personal data, it is very important to know the possible attacks,

to prevent them. Next, we are going to summarize the most common threats on the mobile

ecosystem in our time (for a further research about this, check out: [36]).

 - AdWare: is probably the most usual menace in our days, in desktop and mobile

environment. It consists in advertisement included in apps or other software installed in

our devices, in which sometimes there are a sort of fake apps which are capable to collect

personal information from our devices. This information contains not only sensitive data,

but alto our browser default configuration, and other settings of our dispositive.

 - Trojan-SMS: is a fraudulent way used by hackers or other types of users to hide

a method of sending SMS (Short Message Service), generally to unknown services

created by malicious users and with fees imposed. These Trojans are usually concealed

inside legitimate apps and not always share only our mobile phone number but also other

usual information saved in our mobile dispositives. It affects particularly to Android

devices. This risk vector is also known as: Premium SMS.

 - Cloud-based services: used today to upload our personal data like: pictures,

documents, calendars, etc to a remote server, freeing up our mobile storage and allowing

the synchronization among other sort of devices. Many times, these servers have some

kind of bugs, or vulnerability which is used by hackers to get personal information of the

clients of that cloud service.

 - Zero-day: is probably the most dangerous threats, because it is a recently

discovered bug in software which has not been fixed yet, therefore it may be exploited (If

it is critical), to obtain user information in a fraudulent way.

 - Weak-encryption: is not a bug at all, but it is a negligent way to store information,

or communicate with each other through Internet. Sometimes, companies which create

software use weak functions to encrypt our personal information, or even methods

currently unsafe, because the algorithm is easily cracked. This fact may possibly take

advantage by hackers to violate our privacy.

 - Phishing: likely, it could be a type of “Social Engineering”, but it is necessary to

emphasize in it, because it is very popular above all in desktop panorama, and of course

today is spreading to mobile environment swiftly. It is an attempt to get personal

Máster Universitario en Investigación en Ciberseguridad Página 31

information like: names, credit cards among others, masquerading all this process through

a trustworthy electronic entity. This threat is present in desktop and mobile ecosystem.

 - Social Engineering: probably one of the most famous attacks used today by

hackers to exploit booth systems: desktop and mobile architecture, it consists in the use

of techniques orientated to imitate certain resource, with the interest of deceiving the

users, for collecting private data like: their user id, name, passwords, or even more private

information. It’s really difficult to detect because user himself/herself granted access of

this information to the attacker.

 -Botnets: Through a Command & Control server (C&C), they allow remote

execution of commands on those infected devices. On many occasions, exploiting

vulnerabilities on the affected devices, they even allow attackers to access personal

information.

 - Ransomware: it consists in encrypting files stored in the device and after doing

that, an attacker demands a random in order to decrypt the content of the affected mobile

device. Generally, this transfer is carried out via untraceable transfers through: Bitcoin,

or another crypto-currency platform.

 - Applications Vulnerabilities: are bugs that affect libraries, or software that is

shared between mobile platforms. They are usually very dangerous, since by their nature

they are usually multiplatform. One of the best-known cases, he was informed by the

company: "TrendLabs" was the vulnerability of UPnP (Universal Plug and Play) library

that is used for video streaming between different devices. This vulnerability allowed the

remote execution of code on a device that had an app that used this library.

 See more information about main threats on mobile platforms in: [153]

4.4.1. OWASP Mobile Risks last years ______________

 Practically every end of the year, OWASP (Open Web Application Security

Project) compiles a ranking of the main vulnerabilities found in the web landscape. For a

few years now, (specifically in 2014), they have been developing a list of the main threats

that have occurred in the mobile ecosystem, on their dominant platforms. In the ranking,

OWASP shown in Figure 4.6 [37] includes the risks to which users of these technologies

are exposed, along with a brief explanation of the danger of this incident, and why it is

included in this classification. During 2016, the main threats to Apple's Operating

Systems and Google’s were:

 - M1 - Improper Platform Usage: in this category is covered the misuse of a

platform feature, in order of using the different security controls of the system. These

controls include: Android intents, all kind of permissions, TouchID neglect, Keychain

among others. It is a security risk very versatile, and it could appear in many situations.

 - M2 - Insecure Data Storage: is a combination of category M2 and M4 respect

the previous OWASP Mobile Security Risks in 2014. Besides, insecure data storage, it

includes the unintended data leakage.

Máster Universitario en Investigación en Ciberseguridad Página 32

 - M3 - Insecure Communication: this section includes: improper or poor

handshaking process, incorrect SSL versions, weak negotiation between emitter/receiver

of communication, send sensitive information in clear text, and others.

 - M4 - Insecure Authentication: is about insecure negotiation with the end-user or

managing the session improperly. Some of typical situations in this case are: failing in

identifying the user when it required, failure maintaining user identification, or weakness

in session management.

 - M5 - Insufficient Cryptography: in general, it is

recommended to apply cryptography in every communication

in the Internet, but sometimes this mechanism is applied

wrongly, or to encrypt the assets is used a weak cryptography

function.

 - M6 - Insecure Authorization: this category is about:

failure in the process of authorization by a user. For instance,

an app is not authorizing users how it should be, granting

access of anonymous when it should reject the connection.

This is the main difference regarding the M4 - Insecure

Authentication.

 - M7 - Client Code Quality: Although It could seem

one of the least dangerous categories so far, but it is one of

main indicatives of bad coding in mobile platforms. It is

completely different of server-code issues. This section

includes: buffer overflows, format string vulnerabilities, and

other kind of mistakes while coding which require a

refactoring process to correct them.

 - M8 - Code Tampering: when an app is installed in a

mobile device, its code and data is stored within it. If an attacker modifies the code,

change the memory dynamically, change or replace the APIs used by the system, or

modify the resources used but certain application, then this malicious user could change

the normal behavior of the software, and even use it for monetary gain. This category

includes: binary patching, local resource modification, method hooking, dynamic

memory modification and method swizzling.

 - M9 - Reverse Engineering: it consists in analyzing the binary through special

tools like: IDA Pro, Hopper, radare2, otools and others, in order to find new

vulnerabilities without a fix (Zero-day), gather information about server used for

communication, or even find some strings, or private keys in order to decipher the

information send by the app. Another objective of reverse engineering is to know how an

app is built (external libraries, resources like: images, scripts, among others).

 - M10 - Extraneous Functionality: is the last category and is about the inclusion

by some developers of backdoors, or other sort of functionalities which should not be

released when the app reaches the production process. For example: comment string not

deleted from the code which are passwords, not enable two-factor authentication, or even

not removing server

Figure 4.6. OWASP Mobile Risks 2016

Máster Universitario en Investigación en Ciberseguridad Página 33

 If we make a review of the risks that according to the OWASP classification

existed in 2014, to see how threats have evolved in two years for the mobile sector, we

find that although some of the threats have increased or decreased in importance over the

years, generally two years ahead we find the same types of risks that could be found in

2014.

The TOP 10 2014 OWASP [38] ranking consisted in this group of risks:

- M1 - Weak Server Side Controls

- M2 - Insecure Data Storage

- M3 - Insufficient Transport Layer Protection

- M4 - Unintended Data Leakage

- M5 - Poor Authorization and Authentication

- M6 - Broken Cryptography

- M7 - Client Side Injection

- M8 - Security Decisions via Untrusted Inputs

- M9 - Improper Session Handling

- M10 - Lack of Binary Protections

A comparison between the OWASP Mobile Risk 2014 which is shown in Figure

4.7, and the current 2016 ranking can be seen in the image below:

Máster Universitario en Investigación en Ciberseguridad Página 34

 Despite all appearances, the position of some risks has changed its name and

position, but with the exception of the former (M1 - Improper Platform Usage) and the

latter (Extraneous Functionality), the rest are the same as those specified two years ago.

The most noteworthy aspect of this new classification is to see how the incorrect

management of the platform's resources has become the most dangerous from the point

of view of mobile threats, which indicates that in many cases the user, or developers are

unaware of the capabilities to safeguard the security provided by the platform, and

negligently acts to cause the risks and /or threats that may increase exponentially.

 Apart from the new risks, it should be noted that threats such as "Insecure

Authentication" have significantly increased their activity, becoming one of the main

ways by which an attack can obtain information from mobile platform users. Therefore,

it is necessary, a quick action on the part of the developers, to implement the latest

technologies in security matters, which provide the necessary guarantees to protect the

communications of users of their applications.

 Last, but not least, the increase in the risk hazard of: "Insecure Data Storage" again

denotes that in the field of development, programmers must implement the latest and most

secure cryptographic methods to encrypt the information that their applications store on

devices, for each day the data stored on smartphones are more personal, and therefore

require some kind of safeguard.

4.4.2. Types of threats: Inducted by the user or Triggered

The type of risks that can be faced by all users of any mobile platform can be of

several types: those that are caused by ignorance or inexperience of the user, due to a lack

of knowledge of the platform itself which conditions that can be deceived by malicious

users who want to take advantage of it, or those that either by physical or remote access

Figure 4.7. Comparative between OWASP Mobile Risks 2014 vs. OWASP Mobile Risks 2016 (Source: Security Innovation)

Máster Universitario en Investigación en Ciberseguridad Página 35

allow an attacker to violate the security infrastructure of a particular device, in the interest

of some criminal activity. Next, the previous problems will be described in more detail.

a) User inducted threats

As has been demonstrated on many occasions, the weakest link in the chain is

always: the user, and this makes it one of the main targets of hackers, and other malicious

users, when they want to breach security on mobile devices. That is why, nowadays, one

of the most used attacks is the so-called "Social Engineering" that seeks to deceive the

victim, so that without needing to violate the security of their electronic device, users

themselves gives access to their personal information.

 In addition to this type of techniques so used today, another of the main risks

caused by the user himself, is the ignorance of the security mechanisms offered by each

of the mobile platforms, resulting in misuse of mobile devices.

 Some examples of this behavior are: having the automatic blocking of your mobile

device disabled, using your smartphone in unprotected public WiFi networks,

downloading applications from unofficial stores or unknown sources, storing private

information in memory, or not even activating the blocking and remote deletion in case

of theft. All this set of risks can be remedied by educating users about the facilities

provided by the different platforms, besides: restricting those activities that can be carried

out by the user to avoid possible disasters.

 Another of the risks caused by the user is when he/she accepts the call: BYOD

(Bring Your Own Device), in the company where he/she works. Once your device is used

to store corporate information, such information can be filtered through coexistence with

other user-specific means. For example, the user could use corporate emails by mistake,

or even if infected by any malware, cause important company information to be leaked to

the network.

 Within the iOS ecosystem, and also in Android you can find other types of threats

called: Jailbreak, and Root (information about these two procedures in [39],[40])

respectively. In both cases, the user uses a software that takes advantage of vulnerabilities

found in the Operating Systems of their devices, to make an escalation of privileges, and

allow to install applications, or access certain functions that are blocked from the factory.

Many times, this procedure is performed to install applications through unofficial stores,

or for purposes such as piracy, but despite the benefits that may seem to have unlocked

your smartphone, many times the user himself only gets to create an entry path for

malware, infecting your mobile device.

 In addition to all of the above, it can also become a risk for the user to install

applications for recording telephone conversations. If you use the Google Operating

System, this type of apps requires the user's permission to access the microphone on your

smartphone, while iOS requires the device to have jailbreak. When these applications are

installed, they store user-conducted conversations in the storage of the mobile device, and

if the application is malicious it may use these data for criminal purposes. In addition to

the above mentioned, in many occasions an attack can even listen to the communications

carried out by user, by means of "Phone Cloning" methods, which consist of cloning the

victim's SIM (Subscriber Identity Module) card, and so on, provided that if the user is

Máster Universitario en Investigación en Ciberseguridad Página 36

connected to a 2G/3G network, an attack can be carried out that allows the interception

of their calls, SMS, and all type of information sent through their mobile device.

2. Attacks with physical access to the device

 In general, when we talk about the main threats on mobile devices, people tend to

think of attacks remotely carried out by hackers, or malicious users, but on many

occasions these attacks are physically perpetrated and can even become much more

harmful than those carried out over the network.

 Some examples of attacks of this kind in Android and iOS are the following:

 - Android Cool Boot Attack [41]: it consists of taking advantage of how RAM

works in this type of mobile devices, and in general in any computer. After switching off

the device, the electrical current stops flowing and the data is then gradually removed.

Temperature is a fundamental factor in the speed at which this information is erased,

gradually increasing the amount of time that this information is lost as the colder the

temperature is in the RAM memory of the mobile device. You know this, an attacker can

place the Android smartphone in the fridge for an hour, and then connect it to a computer

with a Linux distribution via USB. During the loading process of the Operating System,

a module containing RAM memory information is loaded, thus enabling the retrieval of

all types of information (including user credentials) that are stored in the memory.

 -Although security at WhatsApp, probably the most widely used messaging app

in Spanish-speaking countries has improved its security in recent years, adding peer-to-

peer encryption to communications over the Signal protocol, and adding encryption to

the local database where user conversations are stored, some critical vulnerabilities to

user security and privacy have been discovered in recent years. One of these

vulnerabilities is that even though the conversations database is encrypted, the user's

database encryption key is created during the app's first run and stored as a parameter

within the program. This key can be extracted by programs created by some developers,

thus allowing the user to have physical access to the phone, or get the user by Social

Engineering methods to pass their conversation database, the ability to decrypt and read

communications that have been established on the victim's mobile phone.

 Another of the best-known attacks that were carried out until the appearance of

the methods of mobile unlocking by fingerprint, were: the obtaining of the code through

brute force, or attacks called "shoulder surfing" to discover the pattern of unlocking the

device, and so if there was physical access to it, be able to extract their information easily,

bypassing that safety barrier. Specifically, within the Apple platform appeared two

solutions (one hardware and another software) that allowed to discover the unlocking

code of the iPhone, in order to unlock it. The distressing hardware called: ScreenLock

(more information about these device [42]), tested four-digit combinations when

connecting the device via USB. If ScreenLock detected that the code was wrong, it would

turn off the iPhone to prevent the failed attempts counter from having any effect, and then

try another code again until it found the correct one. Although the attack could last more

than a hundred hours, in the end it succeeded in successfully violating phone security. In

the case of the software application, it had a similar operation, but as the only

disadvantage it was indispensable that the device had Jailbreak.

Máster Universitario en Investigación en Ciberseguridad Página 37

In short, as has been demonstrated, threats on mobile platforms can come from

several fronts, and physical access is certainly not one that should be underestimated.

4.5. Latest Threats on Mobile Platforms

 Once it has been stated that today's threats on mobile platforms exist, and affect

users, due to the nature of this project which focuses on the two main OS that dominate

the mobile ecosystem today, the latest and most dangerous attacks suffered by users on

these platforms will be described.

4.5.1. Last Threats on iOS infrastructure

 There has been much activity in recent years on iOS devices, with some cases with

great impact and very commented in press and some forums, and other cases lesser known

but equally important. These issues have compromised the personal information of many

users in the world, have received generally a lot of attention, and in the case of Apple

have been fixed relatively quick, but despite of it, the sensation of insecurity while using

these mobile devices to save our personal data remains. Next, we are going to relate

chronologically the troubles suffered in this platform in the latter years.

 We started the year 2014, with a study conducted by IOActive (see [43]), on the

status of major mobile banking apps, and came to very discouraging conclusions for the

privacy of its users, as it was found that half of the apps analyzed were vulnerable to

Cross-Site Scripting (XSS) attacks on the client side, which a quarter had hardcoded in

the code of the app, almost half had hardcoded credentials in the code of the app, almost

half were storing, almost half of them stored sensitive information in their logs, and that

slightly more than a quarter of the apps analyzed either did not use SSL certificates to

protect their communications, or they did not encrypt sensitive information.

 But the most famous case happened in August 31st, 2014 and It was called soon:

“The Celebgate scandal” [44]. It consisted in the leak of more than 500 private pictures

from celebrities all over the world but specially actresses from U.S.A. This incident was

committed by a little group of hackers who hacked into celebrities iCloud accounts

revealing during the last day of August, and first of September a large amount of

photographs uploaded in Apple cloud system. At the beginning, many people blame

iCloud for not having enough security to store user files, but finally after an investigation,

Apple claimed that the problem was the weakness of the passwords used by the affected

users. That proved the need to strengthen passwords for our online accounts, to prevent

future hacks.

 In November 2014, FireEye a mobile security research team, reported to Apple a

new vulnerability called: Masque attack [45]. which allowed an attacker to bypass the

security system designed by Apple, installing malicious software, pass itself off as

legitimate. This substitution may provoke the exfiltration of personal information, saved

by the user in his/her device, if this attack was successful. Generally, this issue affected

users with iOS developer accounts who had special permissions to install certain apps for

debugging and developing.

 Also in late 2014, an advanced Chinese malware called: Xsser mRat [46] appeared,

which was reported by Lacoon Mobile Security researchers. This dangerous Trojan horse

Máster Universitario en Investigación en Ciberseguridad Página 38

was theoretically able to obtain any kind of information stored on the mobile device,

including: phone contacts, precise location data of the user, instant messages and SMS,

as well as logs and credentials stored in the device's internal memory. Using "Social

Engineering" methods, the attackers used messages for the distribution of this malware

through WhatsApp, which included a link that would be clicked by the user in question,

downloaded an app that if installed on a jailbreak device, the smartphone was then

infected.

 Speaking of malware, 2015 was a very busy year for iOS. Firstly, it was the ability

to access the contacts number from the lock screen, simply commanding Siri to tweet

through the official Twitter app. In September 2015, a malware named: YiSpecter [47]

which affected users from China and Taiwan. This software changed the settings of the

user dispositives, installed apps without asking for permission, and sent personal

information to third-party servers. Almost a month after this issue, another malware

named: XcodeGhost [48] showed up. This malicious code was provoked by the installation

of a modified Xcode (IDE to compile iOS apps) from unknown sources. That version was

modified and when developers created an app, it contained a code which was able to send

personal information of the user like: IP address, credentials from the device and other

kind of data. The worst thing about this problem was these apps managed to overcome

the limitations of the AppStore.

 In 2015, there was also a significant leakage of information from some mobile

applications, specifically one of the most notorious was the obtaining of credentials and

location of some users using parking payment applications in the United Kingdom. The

protocol used by these apps, despite being TLS, did not check the certificate used by the

server, which allowed malicious users to make a Man-in-the-Middle attack, and therefore

intercept all data sent by users of those mobile applications.

 Another problem which accompanies iOS practically since the first version is the

process to unlock the device called: Jailbreak (See “Glossary”) (a more detailed current

situation about jailbreak can be seen in [49]). Thanks to this procedure, users manage to

install apps from different sources other than AppStore itself. Sometimes, if the origin is

not reliable, it brings some troubles like: the installation of malware, trojans or another

annoyance to the system. Nowadays, there is no jailbreak for the last version of iOS

(version 11.0.1), but the last version of the jailbreak which works on iOS 10.x was

developed by a Chinese group called: Pangu team. The latest versions of iOS that can be

used for Jailbreak are: 10.3 and 10.3.1. Once again, the procedure was carried out by

Chinese researches: Pangu Team and TaG team, and is compatible for iPhone 5S and

higher, and for iPad Air and upper tablets. Although some security researchers reported

problems found in later versions of iOS, such as vulnerability to processing large text

strings (CVE-2017-7047), no tools were released that could exploit these issues with

guarantees. One of the latest milestones in the jailbreak panorama for Apple devices was

shown at the "Def Con 25" in July 2017, where a jailbreak for the smartwatch Apple

Watch was presented, which would be functional in watchOS3 and above. Following the

release of the latest version of the iOS 11 operating system in September 2017, there is

no news of a jailbreak release adapted to this latest compilation soon.

 Following with the threats, it was reported the appearance of a new malware

called: AceDeceiver [50], which unlike other malware that originated in the installation of

applications from unofficial stores like Cydia, this affected non-jailbroken devices. To

Máster Universitario en Investigación en Ciberseguridad Página 39

access these types of devices, malware used a desktop application that exploited a design

flaw in the Apple-implemented DRM (Digital Rights Management) to download a

malicious app from the AppStore. What was really novel about AceDeceiver was that

even after it had been removed from the system, it was able to download that malicious

application from the official store, and it didn't even require negligence in the use of

enterprise certificates, which had been the gateway to infections on other occasions.

 In early September 2016, when Apple released its final revisions for its current

mobile OS, one of the biggest problem in the iOS ecosystem ever, appeared. The malware

in question is called: Pegasus [51], which was presumably developed by an Israeli

company named: NSO Group. This group claimed that its mission is: to create advanced

tools to help authorized government, to fight against crime and terrorism. It is believed

that this malware works since iOS 7, that is two years ago, and It allows to the hacker: to

record sounds, collect passwords, track the device, read messages, e-mails, contacts, and

even the call registry. Therefore, Pegasus is a high-level spyware that takes advantage of

three iOS vulnerabilities which were fixed in the latest version of nine series: iOS 9.3.5.

 More recently, in late September 2016 when the final version of iOS 10 came out,

Elcomsoft a russian company specialized in security, discovered that the encryption for

backups in iOS got worse respect the previous version [52]. Specially, the current method

of encryption in iOS 10 uses: SHA256 (Secure Hash Algorithm), a cryptographic hash

function which is a lot easier than PBKDF2 (Password-Based Key Derivation Function

2) algorithm used in previous version of the OS. Researchers said: if the iOS device

backup in iTunes is protected with a password, it is approximately 2500 times faster to

find it out, compared with the old mechanism. It may look like very dangerous, but if an

attacker had physical access to the machine, or got the iTunes backup, doing brute-force

attacks with a pen-testing tool, then it might recover the original password, decrypt the

backup and retrieve all the information stored inside it. After the knowledge of this fact,

Apple pronounced saying that: They are aware of this situation, and promising a coming

update to solve it. When the release in later October of iOS v10.1 [53], Apple solved this

issue, removing the weak hash method used, and replacing it with another hash function

not vulnerable to this type of attack.

 Following the trend imposed in 2016, 2017 has also been a year of security

incidents on the Apple platform. As reported by Motherboard in February 2017,

Cellebrite [54], an Israeli firm specializing in mobile phone information extraction, for law

enforcements agencies. Cellebrite managed to extract more than 900GB of information

from smartphones, making use of exploits that were used when developing tools to

perform jailbreak on iOS devices such as: limera1n or QuickPwn, with some additions

such as the addition of code to perform brute force attacks on the PIN (Personal

Identification Number) code of the mobile device in question. This exfiltration of

information, reminiscent of the incident with Pegasus in September last year, shows how

exposed users are to this type of attack, and the need to keep mobile devices updated, in

order to solve the possible vulnerabilities that have been found in them.

 Later, in March 2017, as reported by Lookout, they warned that some scammers

had taken advantage of the possibility of showing pop-up windows in the Safari browser,

to block the web browser and prevent users from using it in the future. The attack in

question demanded money from the user, in the form of iTunes Gift Cards [55], if he/she

wanted to see the browser unlocked, and be able to use it again, threateningly and trying

Máster Universitario en Investigación en Ciberseguridad Página 40

to scare the affected user, so that he would pay the imposed fee. As often happens on

these occasions, an Internet user succeeded in unlocking Safari by simply deleting the

browser cache from the iOS settings, demonstrating that this annoying attack does not

encrypt any information as it does with ransomware, and was simply meant to annoy the

attack victim. However, with the output of iOS v10.3, Apple changed the behavior of

pop-up JavaScript windows, isolating their action per tab, to prevent them from collapsing

the web browser.

 In addition to the previous paragraph, in March of this year, Wikileaks released

some CIA (Central Intelligence Agency) documents called Vault7 [56], dated from 2013

to 2017, which among many other systems, included information on tools for hacking

devices with iOS operating systems. The filtered documentation included research to

discover new ways of exploiting devices with iOS, as well as a list of exploits classified

according to the version of Apple's system they affected.

 One of the most recent vulnerabilities, which in fact was corrected in the last

update of the iOS 10 series (v10.3.3), was the possibility that an attacker within the WiFi

reception radio was able to execute arbitrary code by corrupting the device's memory, and

was corrected by improving the system's memory management. Although it was a

hardware vulnerability, this time caused by Broadcom's WiFi chip [57], hackers were able

to bypass chip control and access the system, which proves once again the ingenuity and

variety of ways threats can be presented today.

 With all these examples, you can see that even though Apple's system has always

had a reputation for being safer than Android, and in fact establishes more restrictive

security controls than Android. is not free from threats, and these can be equally harmful

to their users, since they have proven to be advanced enough to exfiltrate personal

information from the infected devices, and affect the privacy and security of their mobile

devices.

4.5.2. Main Threats on Android in the last years

 Because it is the most widely used mobile operating system in our days, the

proliferation of malware and other malicious software for Android, has increased

substantially in recent years, and today the Google system is one of the main objectives

of hackers, surpassing Windows that had been, by its volume of users, the main focus of

attacks in recent decades.

 One of the first cases of security flaws in Android occurred in 2013, specifically

to the company Moonpig [58], a greeting card vendor. In particular, the API (Application

Programming Interface) used by the company in Android app, does not verify credentials

by allowing access to personal information, to any user. Although the failure was reported

in 2013, it was not resolved until 2015, which shows the lack of interest that some

companies put in security, and the privacy of their users, and also its users were not

informed of this serious security breach that compromised their personal data.

 Since its very beginning, due to a more permissive control over apps that were

accessible from the Play Store, Google has had problems because some malicious users

have managed to break the barriers imposed by the company, uploading malware to the

official store of Android. In fact, one of the most dangerous and most damaging

Máster Universitario en Investigación en Ciberseguridad Página 41

vulnerabilities (affected nearly 95% of Android users by the end of 2015) was the

malware called: "Stagefright" [59], which allowed a malicious user to take control of the

victim's terminal remotely, unnoticed by the victim. Although Google quickly offered a

patch for this vulnerability, and most manufacturers were quick to adopt it, it showed how

vulnerable mobile users are today.

 Already in 2016, according to a study carries out by TrendLabs Security

Intelligence in July, there are more than 400 potentially dangerous apps that could affect

our device. The main cause of this massive infection was a virus called: DressCode [60],

whose primary objective was to obtain clicks and benefits in advertising websites, but

according to the researchers, it could not be ruled out that its use could spread to more

harmful purposes for the user. Google opened an investigation, and DressCode was

removed from the store, but many users were infected in that time.

 But before the end of 2016, Android was again hit by a new malware called:

Gooligan [61], which affected all versions of the mobile system until: Lollipop. Unlike

other malware, Gooligan took advantage of hacked devices not to collect personal

information from them, but to download third-party applications that could generate

advertising revenue. The main danger of this malicious software is that once it was

installed, it gained full access to the device, becoming a great danger for privacy and

security for the user.

 In addition to the Play Store, another of the main malware gateways in Android,

has been by terms of malicious software installed in some cheap mobile phone

manufacturers, which specifically came from China. The ability to install the system on

other dispositives not controlled by Google, has always been one of the main weaknesses

of the platform, not only causing the usual fragmentation of the system, but also causing

the installation of unwanted content in the system, which is aimed at infecting the user's

device. According to DrWeb research, many of the Chinese mobile firmwares, including

brands such as: Lenovo, include malwares and /or Trojans whose only goal is to exfiltrate

personal information from users. The Trojan was installed under the name of: Android.

Downloader.473.origin or Android.Sprovider.7, and after its execution proceeded to

download and install apps loaded with ads, which worsened the user experience, and that

in many occasions gets harden the process of uninstallation, and removal of the system.

 Another of the main threats within the Android panorama is phishing, which is the

same thing to supplant the identity of an entity, in order to obtain personal data of the

users to whom this dangerous attack is destined. In general, phishing is aimed at

supplanting financial organizations, and usually done via e-mail, but lately with the

proliferation of smartphones, apps like WhatsApp are used to send files with malicious

content, which imitate the entities, ask for personal information from users as their PIN

number, which is then used not only for information theft, but also for scams.

 Along with all that described above, another of the main sources of infection in

Android, is the installation of apps from non-official store, which do not have the control

that Google has over its official store, and can therefore include malware whose goal is

to infect the user's mobile devices. Although 2016 was a year full of security and privacy

issues in Google's system, 2017 did not start better.

Máster Universitario en Investigación en Ciberseguridad Página 42

 In early 2017, a dangerous Trojan named: Tordow [62] began infecting certain

Android terminals. The Tordow's modus operandi consists on identifying the terminal's

brand, and then using a series of exploits discovered in Android, to achieve root

privileges, to have total access within the system, and steal data bank information. Some

research on this malware also suggested that it might even act as: ransomware, a threat

increasingly present in the mobile world. This proves once again, that in order to protect

yourself on any mobile platform, a fundamental recommendation is to download apps

from the official store, because other alternative stores may include fake apps, including

viruses, or any other type of malicious software.

 But problems of Android had only just started, because also at the beginning of

this year, appeared a new malware called: Skyfin [63], which was able to download and

install applications, without asking the user's permission, which were usually apps full of

advertisements, so that the authors of the malware described would benefit by clicking

on such ads.

 January was a month full of threats, and at the end of January 2017, it was released

a ransomware hosted in an app called "Energy Rescue" [64], which aimed to improve the

battery life of the mobile device. Once the application was downloaded, it was able to

access the contacts, and SMS sent by the user, and after doing this it proceeded to block

the device, and display a message, warning the user, that if he did not pay, his information

would be sold to the black market, and could not unblock his smartphone.

 And more or less at the same time as the end of this threat, an evolution of an

ancient Android malware called: HummingBad, made its appearance under the name of:

HummingWhale [65]. According to the security company: CheckPoint, HummingWhale

infected more than 20 apps inside the Play Store, proving once again that even the official

store is not safe. The malware in question used a complex procedure that consisted of

creating a kind of virtual copy of the installed application, which could benefit the creators

of the software through advertising. In addition, without user intervention, I was able to

write positive ratings in the official Android store, to encourage other users to download

the apps, and thus spread the malware more quickly.

 In mid-March 2017, again the company specialized in security: CheckPoint,

warned of one of the most advanced malwares that have affected the Google platform,

which was called: Skinner [66]. This malware would be able to track the user's location,

as well as log all actions performed by the user whose device is infected by Skinner, and

allow remote control of the infected device. Following CheckPoint's warning, Google

removed the affected app from the Play Store, but did not prevent it from already infecting

more than 10,000 users. Once installed, Skinner used binary obfuscation methods to

prevent system antivirus software from identifying it as a potential threat. After running

the app, the malware sent information about the user in question, as well as information

about which applications were open at that time, to a remote server. Skinner then deploys

ads on the app, in order to obtain benefits for the malware authors.

 In April 2017, a rare case of iOS malware evolved into a variant directed at the

Android system, which was called: Chryasor [67]. This dangerous malware was able to

spy on calls, as well as send information about the user's location, read SMS messages on

the device, record through the device's microphone, and even turn on the camera. This

Máster Universitario en Investigación en Ciberseguridad Página 43

software was created by NSO Group as well as Pegasus malware in iOS, and was so

advanced that it could also be deleted itself to avoid detection.

After a few months of peace and quiet, in June 2017 two more threats appeared in

the Android ecosystem. The first was a malware called: Xavier [68], which according to

the security company TrendsLab, was able to collect personal information from users. In

that same month, another malware called: GhostCtrl [69], discovered by Trends Micro

researchers, was able to collect information through the microphone of the mobile device

and its cameras. This malware camouflaged itself in trusted and popular applications such

as WhatsApp, or Pokémon Go, and after being run by the user, it acquired super-user

permissions, and had the ability to block it completely.

 Finally, in September 2017, a new multiplatform malware detected by Armis Labs

appeared, capable of affecting several systems, among which it is necessary to stand out:

Android, Windows, iOS, macOS and Linux. By taking advantage of a Bluetooth

vulnerability, it allows a malicious user to connect to and remotely control the device that

has it turned on, without the need for the user to be connected to the Internet. Although

this extremely serious vulnerability has already been corrected in the latest versions of

the system, the fragmentation present in the platform, makes billions of devices that do

not have access to the latest versions of the OS, and therefore they are exposed to infection

irremediably. Also in September 2017, a new and dangerous malware has appeared in

environments: Android, called: "BankBot" [70], which camouflaged in a game: "Jewel

Star Classic", gets through Social Engineering techniques to collect the bank details of

the app user. To achieve the deception, the application requests after a while playing the

game asks the user to enable access to accessibility options by impersonating Google

service, and allowing from that moment onwards to install applications without the user's

consent. The next time the user access the official Android store, he/she will be prompted

for his/her credit card details, which will go directly to the malware-enabled servers.

 After everything described in this section, it is clear that threats on mobile

platforms such as Android are increasingly present, and that they require a rigorous care

on the part of users of this platform.

4.6. Vulnerabilities on both platforms

 We use the web page of CVE Details [71], which provides information about the

number of vulnerabilities on desktop and mobile platforms to enumerate, and show an

evolution about the software issues on iOS and Android during the last years.

4.6.1. Vulnerabilities on iOS

According to CVE Details, and as shown in picture below, vulnerabilities on iOS

have surpassed last year's vulnerabilities, which is not only a worrying fact, but also

indicates the enormous popularity of today's mobile devices

Máster Universitario en Investigación en Ciberseguridad Página 44

Regarding to this table in Figure 4.8 and Table 4.1, the distribution of

vulnerabilities of iOS, from its first version until now, is as follows:

iOS

Version Number of vulnerabilities

1.x 1943

2.x 1458

3.x 2300

4.x 2992

5.x 938

6.x 592

7.x 879

8.x 334

9.x 274

10.x 287

11.x TBD

Total: 11997

When iOS was the first OS for smartphones and mobile devices of new generation,

we can see the number of vulnerabilities are about a thousand, but as time goes by, and

Android devices appear, the number of issues has been decreasing, until being around a

two hundred per year approximately.

Figure 4.8. iOS vulnerabilities from 2007 to 2017 (Source: CVE Details) [72]

Table 4.1. Distribution of iOS vulnerabilities [73]

Máster Universitario en Investigación en Ciberseguridad Página 45

4.6.2. Vulnerabilities on Android

In the case of Android, we observed an even higher increase, becoming the most

vulnerable mobile phone of the moment, due not only to a security strategy more

permissive than the Apple System, but also to its greater number of users, and its degree

of fragmentation, which means that most devices that use it are not updated with the latest

security corrections. In the Figure 4.9 and Table 4.2, we can see a brief summary.

As same as the iOS section, Android’s vulnerabilities since its inception is:

Android

Version Number of vulnerabilities

1.x 50

2.x 241

3.x 87

4.x 3601

5.x 1536

6.x 1090

7.x 1052

8.x 20

Total: 7677

The distribution of vulnerabilities on Android (Figure 12) is completely the

opposite of iOS. It started with a half of a hundred issues, but year after year its number

have increased, being today around a thousand of vulnerabilities. The reason for that, it

is because today Android is the most used Mobile Operating System in the world, and

therefore is the main target for hackers and other malicious users. One more thing, we

can see in this table is also the fragmentation on Android ecosystem, because the latest

and more up-to-date version have less vulnerabilities than an obsolete, but one of the most

used version on Android devices is: version 4.0 (Froyo).

Figure 4.9. Android vulnerabilities from 2009 to 2017. (Source: CVE Details) [74]

Table 4.2. Distribution of vulnerabilities in Android [75]

Máster Universitario en Investigación en Ciberseguridad Página 46

4.7. Need of a Security and Forensic Analysis ______

After presenting in previous chapters, the internal architecture of the main Mobile

Operating Systems, and as in spite of all the mechanisms that are available to developers

and users, issues continue appearing which endanger the security of global users; because

one of the main objectives of this project is to make users aware of the main threats that

are present in the mobile ecosystem, we will proceed to create an infrastructure that can

allow the user, whether it has technical knowledge or not, to perform security analysis on

mobile applications, in order to assess whether there are threats that endanger the user of

these applications or not.

To this end, throughout this extensive section, the concepts of Security Analysis

and Forensic Analysis will be developed, as well as the types in which both can be

classified, to show how, when combined, they can help a user to determine the main risks

to which they are exposed using mobile platforms.

4.7.1. Security Analysis on Mobile Platforms

Mobile security analysis is a procedure by means of which a security researcher

determines and checks the security mechanisms available in a mobile platform, in order

to discover whether the implementation of these security methods is achieved, for

protecting its users.

 The requirements that are demanded, vary substantially depending on the type of

platform, the group of people to whom it is directed, and even in the current legislation

of each country. This is why, before carrying out the analysis itself, any researcher must

make a detailed assessment of all the aspects mentioned above, as well as an exhaustive

study of the environment in which he or she is going to work. Only a detailed knowledge

of the hardware and software to be worked on provides the necessary guarantees, that the

job will be carried out successfully.

 In addition, care should be taken to perform the analysis on final software versions

and to avoid alphas, betas or other early development software stages at all costs. Once

this analysis is completed, it should not be considered that the procedure has been

completed, as due to the current diversity of the software and its complexity, it is

extremely complicated to perform a seamless analysis. Therefore, priority should be

given to the use of automated tools, which save time and avoid errors for mobile security

researchers, and it is also highly recommended that all professional analyses carried out

on any software platform, whether desktop or mobile, be carried out by several people,

so that they can help debug the possible errors that their respective investigations may

entail.

 This section of the project cannot be completed without listing and briefly explains

the different existing techniques for developing a mobile device analysis, which are

equivalent to the methods used in desktop environments, and which provide information

about the intrinsic security of the platform, as well as possible errors that may have

occurred during its development stage.

 Classified according to the information accessible by the researcher, we can

highlight (see [76]):

Máster Universitario en Investigación en Ciberseguridad Página 47

a) White box testing: source code and some documentation of the system to be analyzed

are available. Whenever there is the possibility of accessing the source code of the

application, an exhaustive review should be made in order to search for errors and/or

vulnerabilities that could endanger the security of users. In order to develop this, with

guarantees, it is necessary to determine precisely what the internal structure of the app is,

its functionalities, what elements of the system it affects, and which errors during its

development, can be the gateway to attacks by malicious users.

 In order to look for vulnerabilities of any kind, the investigator should focus on

all those that according to the main standards, and specialized entities are more harmful

to the user, such as: lack of validation of input parameters, weak encryption algorithm

in communications, lack of encryption in personal data stored within the system, among

others. Even with this set of procedures, it should never be forgotten that many of the

errors can occur during the execution phase of the software to be analyzed, so it should

not be concluded in any case after all the actions carried out in this phase, that the software

has a specific number of issues, since in later phases this number should vary

considerably.

b) Black box testing: although there is a final version of the software available, the

documentation provided to the analyst is certainly very limited, which does not guarantee

that the researcher has full control over the system to analyze. Using other techniques

such as Reverse Engineering, can access the source code of the application, which could

help greatly, to do a more rigorous analysis.

 This type of analysis without knowing information, generally, will lead to the

performance of a penetration test, also called: Pentesting [77], which implies that the

researcher since there is a partial or total ignorance of the system, decides to test it from

the outside. In order to guarantee this procedure, automated tools are usually used to carry

out a battery of tests on the system under analysis, as well as in some cases, and whenever

possible (the code is not obfuscated), the researcher could use techniques of "Reverse

Engineering", which, in the absence of detailed knowledge of the application, can help to

improve their knowledge about its internal functioning, and even to discover

vulnerabilities in it, that can enrich the overall performance of the application.

 In addition, and due to the great variability and portability of the mobile

environment, compared to the desktop ecosystem that has been the predominant one until

a few years ago, it should be taken into consideration that both the entry routes: wireless

connections, as well as Bluetooth, NFC (Near Field Communication) among others can

be the entry point for many malicious users, who can take advantage of exploiting their

vulnerabilities to violate the system, such as the information stored by this set of sensors,

which must be taken into account, to do a rigorous security analysis.

 Therefore, in order to deal with this varied ecosystem, the main resources to be

investigated will be: how these devices are transmitted through and if they are properly

protected, research into data leaks risks due to the use of certain applications installed in

the system, as well as permissions and what resources the set of system apps have access

to, in order to limit the scope and impact of the them.

 In order to perform this set of actions in the appropriate way, there are two types

of security analysis [78]: Static Analysis (which is performed without the application

Máster Universitario en Investigación en Ciberseguridad Página 48

running on the system), and Dynamic Analysis (which cannot always be performed, and

is the one that gives more information because it consists of evaluating running

applications).

 In the next sections, we will look at what they are, and the main features of these

two important methods of analysis in mobile technologies.

 When performing a mobile security analysis, as in the rest of the environments,

there are two different types depending on the characteristics and status of the application

to be analyzed by the researcher. These types are static analysis [79], and dynamic analysis

[80]. Each of them are described in detail below.

a) Static Analysis

 This first type of analysis, is the most limited and from the point of view of an

investigation the one that less information can give to a security researcher, since it

implies to carry out an evaluation on the software without executing, simply using the

source code (if it is available, since many times it is not open-source), and if not, using

techniques of "Reverse Engineering", in order to study the binary of the application, and

to be able to obtain a representation of it.

 In order to be able to carry out this type of analysis, the analyst must take into

account not only the source code mentioned above, but also and more important in our

days that most of the applications are connected to the network, in the set of metadata that

these apps send when they are communicated in a normal way in order to be able to carry

out the task for which they have been programmed, since many times in this information

there are private and very sensitive data of the user, that if they are not handled with the

minimum guarantees of security, could end up in a serious risk for the security of the user

of a mobile platform.

 In addition, both in iOS (configuration files) and Android (Manifest files), special

care must be taken when analyzing, as these files store the routes to the main resources

consumed by the app itself, such as: databases of sensitive information or not, stored by

the user, set of resources: images, audio, or other multimedia content, as well as other

information, and other types of data, that after a rigorous analysis can constitute for a

researcher if it is done with good ends, or for a malicious user if it does with bad, a great

source of information when it comes to knowing how a certain piece of software stores

its data.

b) Dynamic Analysis

This second type of analysis is a way to be able to identify the behavior of a mobile

application in a more real way, since the main difference with respect to static analysis is

that it is done on the app while it is running in the system. This mainly provides a very

valuable set of information, since the analyst does not have to infer how it acts, nor what

the role of an app is, but observing it, analyzing it, and collecting this information in real

time, which is a great advantage over the previous type of analysis, since it is possible to

do a more legitimate analysis, in spite of the fact that the security analyst does not have

the source code of that binary.

Máster Universitario en Investigación en Ciberseguridad Página 49

 The main characteristics of the dynamic analysis are that they allow the researcher

to obtain information from the memory of the system when the application is loaded into

it, being one of the main reasons why the information obtained in this analysis is of great

value, since the content that an application stores in RAM memory, once it is dumped, if

the information has not been sufficiently protected, can be one of the main sources of

information that a researcher uses when carrying out the analysis.

 As if this were not enough, the dynamic analysis gives other advantages more,

such as: the study of the program's execution flow, as well as its communications through

the Internet, so it can give a global view of the activity performed by a certain app in the

system, allowing to discern if it performs some kind of strange behavior or activity, when

the user decides to run it on his smartphone or tablet.

 But not everything could be advantageous, since in order to be able to carry out

this type of analysis, the security researcher requires a hardware device or an emulator as

the first essential requirement, in order to be able to execute the set of applications under

study.

 Moreover, in Apple's platform, this type of analysis is often not possible on a

conventional iOS device due to the level of encryption of the platform, but Jailbreak must

be applied in order to install some software in the tool, which allows to carry out the

procedures that this analysis requires. In the case of Android, many times it is also needed

a device with root, so as a first approximation, although the benefits of dynamic analysis

are many, we show a scenario that is often very complicated to replicate. However, once

these barriers are resolved, the researcher can access practically all the information that

could be obtained in its static counterpart.

4.7.2. Forensics Analysis on Mobile Platforms_____________________

Although it may seem that forensic analysis (for a further see on [81]), is not one

of the objectives of this project based on security and privacy in the main mobile

platforms of today: iOS and Android, during the course of this chapter will explain the

reason for the decision to include it in this Master Thesis, in addition to presenting a series

of tools that will help the security analyst during its research on a mobile environment,

besides to understand why these tools will help to substantially enrich the security analyst.

 Forensic analysis within the world of computer science is a work methodology

that allows us to investigate by obtaining information and evidence of an incident, the

causes of it as well as what or who originated it.

 The main purposes of forensic analysis, which make it a very attractive

mechanism to include in any research project, and which make it a fundamental part of

this thesis are:

-It allows to collect the information left behind after a criminal activity in order to

be able to present it to the interested parts. In this case, the target audience of this process

will be all users of the mobile platforms under analysis, since one of the main objectives

of this thesis is to raise awareness about the risks in these environments.

 -Due to the collection of evidence, it is useful to classify the degree of damage

and action that a given attack has taken, also allowing the identification of the source that

Máster Universitario en Investigación en Ciberseguridad Página 50

caused the incident, whether a person or group of them (criminal activity), or a botnet or

other type of digital threat.

 -To extract information from a given device, in order to observe the method of

storage with which it has been stored in the system under study, as well as whether the

most appropriate encryption mechanisms have been applied to preserve the privacy of

users of that mobile platform.

 -Identify the set of errors, problems, and other vulnerabilities present in a system,

as well as categorizing them in order to determine their dangerousness, and thus be able

to deploy the possible methods of action, in order to mitigate them.

 -Determine whether the developer of a given mobile application has implemented

appropriate security mechanisms to preserve the security and privacy of its users, as well

as whether it correctly uses the mechanisms provided by a given operating system, to

ensure and facilitate that application developers can implement these features in their

development.

-To locate the source or origin of an incident is a person, or software issue in order

to elaborate a strategy that allows to prevent future problems originated by this cause,

besides that in the case that it is a vulnerability of software type, to clarify its origin, and

to help to the investigation and implementation of a patch that corrects it.

 Forensic analysis in information systems inherits the main steps with which it

must be deployed from conventional forensic analysis, so the fundamental characteristics

[82] that identify and determine any analysis of this type will be:

-Repeatability: this is the ability to recreate the same results, under the same conditions,

by another researcher or group of analysts, provided that the same methods are

scrupulously followed, and the same tools used by the security analyst who has performed

this procedure are used.

-Reproducibility: is the ability to obtain the same results under the same conditions. In

other words, if another forensic analyst were to use other tools, and other methods for

analyzing the information obtained from a given electronic device, he/she should be able

to obtain results as close as possible to those highlighted in the analysis presented by a

given forensic analyst.

-Integrity: the last but perhaps the most important characteristic of any forensic analysis

is that it must be ensured that all those resources that have been manipulated in the process

of conducting a certain investigation, have not undergone any change, over their initial

state before starting the research, and their final state after presenting the results of it,

remains unchanged.

Barriers on Mobile Forensic Analysis

 Because one of the main fundamentals of the architecture design of today's main

mobile operating systems has been to protect the security of its users, the extraction of

information referring to personal data (credentials) as well as other types of data stored

in the devices under study becomes really complicated, due to mechanisms such as

encryption and the need for authentication.

 In order, the main problems that a security researcher will encounter during the

commissioning of a forensic analysis are as follows:

Máster Universitario en Investigación en Ciberseguridad Página 51

-Locking mechanism: since from the most primitive mobile devices that used multi-digit

numerical codes, or graphical patterns for unlocking the system, such as the newest ones

that use methods such as fingerprint or facial recognition, the main stumbling block that

every mobile platform researcher must overcome when having physical access to a

smartphone or tablet, is discovering how to unlock the system in order to be able to

interact with it.

-Internal encryption: since both iOS (almost from its inception) and Android (from

version 5.0 onwards), priority is the encryption of information stored on the internal

storage of the mobile device in order to protect its content by ensuring its security,

integrity and helping to protect the privacy of users of its platform. Therefore, in order to

circumvent this phase, software tools must be available to help decipher the information

gathered in the early stages of forensic analysis.

-Remote erase and blocking: iOS and Android, both systems provide the ability to allow

the user of this device, in case of theft or loss, to be able to perform a blocking of the

smartphone remotely through an application intended for this purpose, or by identifying

the user to a web page developed to allow displaying this functionality when required. In

addition to the resulting blocking, the user may also proceed to erase the information

stored instantaneously, in order to protect their privacy, and that the set of personal data

or not, saved cannot be used for malicious purposes by criminals, or other types of

malicious users. For this reason, it is necessary that when performing any forensic

analysis on a mobile platform, the first thing to do is to put the “Airplane Mode” on the

smartphone or tablet seized, in order to avoid that through network connectivity, any of

these procedures can be carried out, which would make the development of security

analysis by the security researcher, almost impossible.

-Portability: since what is a benefit for users, which makes these portable devices so that

they can be transported comfortably to any place, makes it a serious inconvenience for

any analyst, because to ensure this fundamental feature coupled with any mobile device,

there is a battery.

 Because one of the main resources inspected during a security analysis is the

memory of the device, and because it is volatile, it must be avoided that under no

circumstances will the mobile device shut down or run out of battery power, since the

data stored in memory would be irreparably lost. To this end, all safety analysts should

carry a charger or external batteries to prevent the devices to be analyzed from becoming

inactive.

4.8. Procedure to perform an Analysis

When carrying out a security investigation, it is essential for the investigator to

make an adequate structure of the steps into which he or she will divide it, in order to

have the maximum guarantee of success. To do this, the strategies to be followed must

be classified according to the type of analysis, whether dynamic or static, that he/she

wish to undertake. If the type of analysis is static, the analyst should follow the

following procedures in order to perform a proper analysis:

- If the accessible source code of the application is available, it will be necessary

to use a development IDE (in the case of Android: Android Studio, and for iOS: Xcode),

Máster Universitario en Investigación en Ciberseguridad Página 52

to display the available code so that it can be treated, evaluated and studied comfortably

by the security analyst. This first procedure corresponds to a white box strategy, since we

have the source code of the application, which is one of the most important assets to

evaluate any type of software.

-If the source code is not available, the necessary "Reverse Engineering" methods

must be used, in order to extract the source code from the application and analyze it. Once

extracted, this code will be imported as a development project, imitating what was

described in the previous step. In this case, since we don't know the source code and have

to extract it using another type of methodology, we could include this procedure within

the black box techniques.

-Finally, to see the structure of the app once installed, it should be installed on a

mobile device, although it would not be executed since it is not a primary objective of

this type of strategy, to evaluate the performance of the application in execution.

4.8.1. Obtaining the Source Code

Even though this set of stages is well differentiated, when starting the analysis, a

researcher usually encounters a rather well-defined problem, and that is both in iOS and

Android, their apps are usually encrypted. In order to solve this problem, the security

analyst will have to unpack and decrypt these applications, which in the case of Android

involves decoding the java classes from its encrypted and signed dex files [104], and then

taking into account the particularities of the programming language, through a

decompilation process to obtain the set of classes that make up the app under study.

 For iOS, the process is often much more complicated, as their apps are usually

compiled in languages such as Objective-C and Swift [105], and then encrypted using a

unique key associated with each device. Most of the time this is usually an insurmountable

hurdle when it comes to conducting an investigation, so unless Jailbreak is available on

the mobile device, the steps that the analyst can take from this moment on the Apple

platform, are very limited.

a) Android Procedure

There are many tools, which allow the mobile security researcher to perform the

process of extracting source code from an app in Android, but the best known are:

-dex2jar: that allows to convert the app signed for the Android device into a jar container

that includes the set of java classes that compose the application under study. To do that,

it is only necessary to run this command: sh d2j-dex2jar.sh classes.dex

Once you get the java classes, you can use:

-JD-GUI: which is a tool that has a graphical interface that allows, comfortably decompile

the set of java classes, to see an approximation as real as possible to the source code that

has been programmed during its development.

b) iOS Procedure

 As explained in previous sections, once the applications are downloaded from the

AppStore (official store), they are encrypted. In order to access this source code, the

Máster Universitario en Investigación en Ciberseguridad Página 53

researcher must find a method to extract this app from the mobile device once it has been

installed, which requires Jailbreak.

 One of the main features that allows the Jailbreak in Apple devices, is the

installation of an alternative application repository to the AppStore, which contains all

those apps that for their purpose, or features are not available in the official store, but that

in the case of a mobile security analysis, are strictly necessary to carry out it with

guarantees.

 This store is called: Cydia [106], and once installed it gives the mobile user access

to a set of applications of different types (sometimes it can include malware), through a

simple installation.

 The first package to be installed is called: OpenSSH [107]. This software allows

you to install an SSH (Secure Shell) server on your Apple device, so that once your

credentials are entered over the Internet, they can be accessed remotely from another

device that acts as an SSH client. All these procedures maintain encrypted

communications, so that their security (provided by this protocol), is guaranteed.

 Once installed this useful tool, it is highly recommended to give access to a

repository called: BigBoss (http://apt.thebigboss.org/repofiles/cydia/), which includes

useful command-line tools for any hacker or security researcher, and that will greatly

facilitate interaction with the Apple device in future stages of research.

 Following these simple steps, the researcher needs to discover the IP address

through which the iOS mobile device connects to the Internet. To do this, go to:

Settings>WiFi and look at the IP address specified there. Once this address has been

determined, the machine with an SSH client will proceed to identify itself on the SSH

server installed on the iOS device. The default authentication credentials (which we

recommend changing) are:

-username: root

-password: alpine

 After accessing the device remotely, we will have access to the file structure itself,

so we can install and all thanks to having it with jailbreak, tools such as: Clutch, whose

github repository is the following:

https://github.com/KJCracks/Clutch

 This software, allows from command line, to list the set of applications installed

in the mobile device [108] (Clutch -i), which shows a menu ordered of the apps of the iOS

device to analyze, and once decided that app is to be decrypted you must execute the

command (Clutch -d number_of_selection), which will carry out the decryption process,

dumping the content of the application. This tool is a great help for any security

researcher, since we should remember that apps in iOS are not saved with the name of

the application itself, but are installed in a directory whose name is a random identifier

obtained from the key of each mobile device, so that their identification becomes really

complicated, if not for tools of this type that improve the experience of a mobile security

researcher.

https://github.com/KJCracks/Clutch

Máster Universitario en Investigación en Ciberseguridad Página 54

 As we have described, when apps are compiled and encrypted, after deciphering

the app in the previous step, and by the structure of the programming languages:

Objective-C and Swift, many times and in order to check how the mobile application has

been developed, we must use techniques of "Reverse Engineering" [109], which will help

us to know the structure of the source code used during the compilation of the software

to be analyzed.

 One of the most popular tools used by reverse engineers on Mac platforms is the

disassembler Hopper shown in Figure 4.10 [110]. Hopper is a shareware tool, which allows

a limited number of tests, but for the topic of analyzing an application, which are usually

relatively small pieces of software compared to their desktop counterparts, it will be

enough to proceed to study the source code of an iOS application.

4.8.2. Repackaging

Another of the processes most performed by any security analyst, once it has the

source code of the applications to be analyzed, is what is called the: repackaging of the

application, which has often been modified by the researcher himself to evaluate some

theorical issues during the analysis of a certain mobile application.

 The reasons that can lead a security analyst to want to modify the code of an

application, are usually very different, but among the most common include: exploitation

of some security vulnerability of the application itself, which with the right knowledge

could lead to obtaining personal information from the user of a mobile device, add other

libraries software that expand or add some functionalities presents in the mobile app,

remove all anti-piracy methods, anti-copy, and DRM, or even develop some mechanism

that allows them to log and monitor the network communications carried out by that

software once it is installed on a mobile device.

 After performing the repacking process, it is important to remember for both iOS

and Android that it will be necessary to sign the app with the certificate provided by Apple

and Google respectively to install on mobile devices under study. In turn, and due to what

Figure 4.10. Hopper Disassembler used in iOS analysis.

Máster Universitario en Investigación en Ciberseguridad Página 55

has been described in previous sections, it will also be necessary to encrypt the

application, since it is worth mentioning that once installed, the content of the apps

remains encrypted in the mobile device for security reasons.

a) Android Procedure

 In order to carry out the repacking procedure on the Android platform, security

researchers often use the tool called: apktool. This software application allows whenever

the following command is executed [111]: apktool b folder_name, to repack the contents

of this directory in an application that can be used on any Android device.

 But before you can include it, and install it on a smartphone or tablet powered by

Operating System: Android, you must sign the application obtained, using another tool

supplied again by the Google Android SDK. This software tool is called: jarsigner, in

addition to a set of public and private keys that the developer will specify when

performing the signing process. The command required to sign an application is this:

 jarsigner -verbose -sigalg SHA1withRSA digestalg SHA1 -keystore

keystore_path app_name. apk app_name. (Lately, SHA1 hash function has been

compromised, and researches has found collisions [112], therefore developers are

switching this hash function for other stronger like: SHA256).

 After executing this command, the user will be asked to enter the passphrase that

unlocks his or her keystore, and if it does correctly, the application's signature process

will have been successfully completed. Although many people prefer to use this method

from command line, since the appearance of the IDE for developing apps for Android

(Android Studio), there is a toolbar access to everything which process it, in a comfortable

and fast way.

 Optionally, and in order to improve the performance of the repacked app and thus

optimize its RAM memory consumption in the mobile device, the researcher can choose

to align the arrangement of the data in memory. To do this, the tool must be invoked:

zipalign [113], as follows:

 zipalign -v 4 original_app. apk aligned_app. apk (v indicates the number of bytes

in which the information will be aligned. Default: 4 bytes).

b) iOS Procedure

 As with the procedure for obtaining the source code, and decrypting the binary,

the analog procedure for repacking apps for iOS is much more complicated. First, it

imposes a series of new requirements, among which it emphasizes that the recipient

device of these modified apps must have jailbreak applied.

 In order to modify the binary, the developer and security researcher must use

software such as Hopper among others, in order to change the execution flow of the

application that will be installed in the jailbroken device. To top it all off, the developer

must have an account that enables him/her as a developer of iOS apps.

Máster Universitario en Investigación en Ciberseguridad Página 56

 In the latest versions of Xcode [114] (6.0 onwards), this limit has been removed,

allowing any user with the Xcode IDE, and a free Apple user account, to install

applications, if only intended to run on the device associated with that account, or for

debugging purposes.

 Despite all these limitations, if all the requirements mentioned in the two previous

paragraphs are met, the codesign [115] command can be used to sign the modified app,

created by developing apps for iOS. The syntax of this command is:

 codesign -fs "Developer Name Account" folder_name

 Once the iOS application is signed, and in order to install it on the system, the

directory must be compressed in a zip file using any compression tool on the market that

allows you to work with. zip files. Once this has been done, the resulting file extension

must be changed from. zip to. ipa, which is the extension used by applications running on

Apple's mobile platform.

4.8.3. Analysis of Permission System

 One of the main tasks that every mobile security analyst has when analyzing an

Android and iOS application is to observe its permissions system in order to evaluate if

there is any risk in the privacy and security of the system user when using the app.

 For this reason, and in order to be able to observe an unnatural behavior of the app

to be analyzed, a researcher must use a series of software tools that will allow him to

extract and evaluate the set of permissions that an application requests during its

installation and execution.

 Next, we will describe the procedure followed when facing this milestone in the

main Mobile Operating Systems under study, iOS and Android.

a) Android Permission System

 The permissions system of the Google Operating System, has always been a

controversial issue since its inception, because although through a modular development

made it possible to classify the set of actions that could be carried out on a mobile device,

the ability to be defined only and exclusively during the development stage of the

application, turned it into a very restrictive and abusive system that was exploited for

many years by developers, and malicious users, to extend the use of the system. The main

reason for this problem is that when users of the Android Operating System downloaded

and installed an app from the official store: Google Play, they were asked via popup that

will accept a series of permissions in order of installing the app in their systems.

 If the mobile user wanted to install the application in question, he had to accept

all the privileges that were requested, since the rejection of them meant the impossibility

of installing it, and also there was no system capable of allowing the user to disable those

permissions desired, or whose use was not strictly related to the normal use of the

application. All this, together with the ignorance of most users of a mobile platform, about

the consequences of installing applications that are too permissive in terms of

Máster Universitario en Investigación en Ciberseguridad Página 57

permissions, meant that for years one of the main ways of malware entry into Android

was through the installation of applications from official stores, or alternatives. Some

examples of these incidents are those applications that subscribe to premium messaging

services through SMS, or that have access to different system resources, such as the

contact list or photo library, and share them through the app's access to network

connection.

 As described in previous sections, during the development of an Android

application, the developer specifies what permissions an app needs to request during

installation. These permissions are stored in the manifest file that is part of any Android

app existing in Android.

 Because of the above, it is advisable for any researcher to have access to the list

of these permissions used by an app, in order to know after a thorough analysis if their

use is justified, or could pose a risk to the security of the mobile platform user.

Therefore, permissions are a mechanism used by developers to provide or deny

access to each of the main assets of the mobile device, but if they are not used with

responsibility and knowledge, they can be the gateway for attacks, so a correct and

concise specification of them is essential, so as not to cause unwanted security flaws.

 One of these characteristics that every researcher must always check if an Android

app is being researched is whether the Android attribute: debuggable [116] has the 'true'

value associated with it, since many times by carelessly, sometimes deliberately, some

developers leave this important parameter in the manifest file of their application,

allowing an attacker to have access to some features that should generally be restricted,

such as: the ability to backup information, plus in the case of a security analyst make your

life easier, as it will give you the ability to perform a dynamic analysis of that

environment.

 In addition, there are certain system APIs that during the development of an

application are associated with some of the classes or interfaces that make up the same,

so in order not to allow these capabilities and behavior are accessible from other

applications, taking advantage of the communication between processes, all developers

must ensure that in the manifested file, export=true parameter is enabled.

 Although permissions are a very important feature in applications on any mobile

system, and one of the fundamental pillars of Google's security infrastructure, Android

does not provide a way to query permissions or see what they imply. For this reason, there

are some applications that allow to overcome this stumbling block, making a dump of the

same ones, and allowing its later analysis. One of these tools will be: manifest_interpreter,

a program developed in Go that will be presented in later sections, and that has been

developed as one of the jobs to present in this Master Thesis, but in addition to it there

are others that have been pioneers in security analysis in the Android platform, among

which stand out: Androguard [117]. Specifically, Androguard has a script developed in

Python called: androlyze [118] that makes it easier to analyze security on this mobile

platform.

To download Androguard, we can go to its repository in github:

https://github.com/androguard/androguard and from there clone it in our system.

https://github.com/androguard/androguard

Máster Universitario en Investigación en Ciberseguridad Página 58

 In order to invoke it, it is necessary to launch the command: androlyze -s. Once it

has been executed, a text console type interface will be available, from which it will be

possible to load a specific app downloaded on the researcher's computer, as well as to

access information of different types.

 An example of how this tool works is as follows:

app = apk. APK ("android_app_path") -> Declare a variable in Python with the content

of the Android application loaded in memory.

app.get_permissions() -> If this method is called, the set of permissions declared in the

application to be analyzed will be returned.

dalvik = DalvikVMFormat(app. get_dex ()) -> It will allow us to get the system API calls

with which this application was developed.

dex_analysis = VMAnalysis(d) -> In order to analyze the dex file (the signed Android

application), we will invoke the following action. In this way, we will see an association

between the required permission and the interface or class that invokes it.

b) iOS Permission System

 In the case of permission analysis, and some unrestricted access resources from

Apple's Operating System apps, the tools available to a researcher are much more limited.

In general, all available solutions need to have a jailbroken mobile device, and besides

that, access to dispositives that have the latest versions of the iOS system installed is

limited or not supported. That is why, in this case, if the analyst in mobile security has a

device with jailbreak, and a version lower than iOS 10, you will be able to check the

permissions, and even the calls that the system makes to certain APIs of restricted access

such as: file access, application of cryptographic methods, Internet access among others,

through a tool called Instropy [119], whose github repository is as follows:

https://github.com/iSECPartners/Introspy-Analyzer

 These calls to sensitive APIs by the system, are called within Apple's system

nomenclature as: hooks [120], and correspond to a kind of software link between the app,

and an external resource to access media out of reach of the sandbox established in each

application.

 In the case that the researcher does not have jailbreak (which if it is the latest

versions of iOS is the most common), their path to discover these important assets in the

privacy and security of users is severely complicated, and should analyze the apps through

a disassembler such as Hopper, and try to search within their disassembled code for

strings that refer to some sensitive resource accessed by the app.

Some of the most important strings that should be searched whenever an analysis

is performed using "Reverse Engineering" techniques are: CommonCryptoHooks (look

at the encryption process), CommonDigestHooks (creation of the digest associated with

the cryptographic method), CommonHMACHooks (creation of the Hash Message

Authentication Code (HMAC) [121] which is used in some cryptographic operations),

CommonKeyDerivationHooks, DelegateProxies, KeychainHooks (associates to

Keychain, the password store for iOS) and SecurityHooks.

https://github.com/iSECPartners/Introspy-Analyzer

Máster Universitario en Investigación en Ciberseguridad Página 59

 With a detailed search of these system asset names, the security researcher will be

able to discern whether the analysis app asks for access to certain parameters that are

sensitive, or that their use depending on the purpose of the application, can endanger the

security and privacy of the user of that mobile application.

4.8.4. Evaluating Network Connectivity

Due to the possibilities offered to users by the new smartphones and tablets, and

their ability to act as small pocket PCs always connected to the Internet, it is necessary

that the next step when performing a security analysis on mobile platforms, is to observe

this type of network connectivity which is undoubtedly one of the most important points

that is carried out in this type of research, since most of today's threats, such as the

following, are the most common threats come the moment a computer or device connects

to the Internet, and either starts downloading different malicious software aimed at

infringing the recipient's computer, or suffers attacks by malicious users who use the ease

and anonymity provided by this network to carry out attacks with impunity.

 An analysis of network connections can be obtained by running a static analysis,

but due to the characteristics of the same, and that the application is therefore not running,

should not draw hasty conclusions about its results, since the variability, and all the jumps

that can occur in a connection to the network, makes them extremely variable, and

unpredictable under this scenario. For this reason, the performance of a study supervising

the execution of the mobile application under study (dynamic analysis) is essential if a

certain analyst in mobile security, wants to obtain results, as faithful as possible to reality.

 The main objectives to be pursued when reaching this point of research are as

follows.

- Assets what information is transmitted over the Internet by that mobile app, and

with what implications. Is it necessary to send this information in order to carry out the

activities for which the application is designed?

 - How this data is transmitted. Are the security mechanisms provided by the

Operative System used, such as encryption and obfuscation of sensitive user information,

or is this information sent in plain format and accessible to everyone?

 -This type of Internet communications, are they the result of some action of the

user, and are they controlled by him, or is it a strange behavior and hidden from the user

of this mobile application, which aims to filter data to the outside?

 -Are incoming and outgoing communications made with the privacy and security

guarantees that are required for this scenario?

 -Does the app connect to the cloud or any associated cloud service? If so, with

what purpose? Send user data without their consent?

 -Although we are generally familiar with the fact that Internet connections are

made through the HTTP/HTTPS [122] protocol, are there other types of protocols present

in the mobile application's communication with the outside world? If so, what impact do

they have on the security and privacy of the system user?

 As you can see, network connections are one of the most important points in a

security analysis, since they are not only the fundamental source of the greatest number

of threats, but they are also the main mechanisms by which various malicious applications

Máster Universitario en Investigación en Ciberseguridad Página 60

manage to circumvent the security measures of the system, in order to compromise the

security of the user of the main platforms of the mobile panorama.

a) Android Procedure

 In order to analyze the network connections in the Android ecosystem, it can be

done in several ways as described throughout this section, although the most common

ways are through a sniffer [123] that takes over network communications made by a

particular application when it connects to the outside. Even so, this procedure should be

done with a dynamic analysis, and in order to follow the logical order, a researcher will

always have to consume all the options available, first from a static point of view, and

then from a dynamic one with the execution of the mobile application itself.

 From the standpoint of a static analysis, there are several options but in one of the

best known and most effective, it is through the tool: Androguard, which was presented

in previous chapters of this project.

 Below is a normal analysis performed through this powerful Android application

analysis software [124].

 -app, d, d, dex = AnalyzeAPK("app_name. apk") -> this command analyzes the

Android mobile application, loading its content, and extracting the dex file for later

analysis.

 - strings = dex.tainted_variables. get_strings () -> next and because it is a static

analysis on the source code of the application, we proceed to extract its strings, in order

to check if there is any text string, which refers to network connections with the outside.

-for value in strings:

if "http" in value[0. get_info():

 print value[0]. get_info()

 print value[0. show_paths(d) -> This command searches the whole

set of strings found inside the mobile app, and shows those that have some kind of

reference to the use of the HTTP protocol, to make network connections.

 Another more advanced way to make this query that returns much more

information, is once you have done in step 1 in which you get the analysis of the Android

application. In order to run this command, the researcher can proceed as follows:

-showPaths (d, dex. tainted_packages. search_methods (".","getInputStream",".")

 In this way, we will get a list of the following values (for incoming connections)

with this format:

[Class that executes the call to a network connection, App method that executes the call,

and Name of the particular method]

 If you want to obtain a similar result, for outgoing connections, you should

execute the showPaths method with the getOutputStream parameter in the following way:

-showPaths (d, dex. tainted_packages. search_methods (".","getOutputStream".")

Máster Universitario en Investigación en Ciberseguridad Página 61

 With the results obtained by this analysis, every researcher will be able to get an

initial idea of how a determined mobile application communicates with the outside world,

and thus have a first approach when consulting the methods involved in this process, of

what is the purpose of this type of Internet connections.

b) iOS Procedure

 In the case of iOS, the mobile security analyst will also have to exhaust all the

possibilities offered by the static analysis of a given app, but in this case with the full set

of limitations and complications involved in working on the Apple platform when doing

this type of analysis, since previously it will be necessary to extract and decrypt the

application, in order to disassemble it, and therefore to be able to investigate those

chains and methods that make reference in previous sections.

 It should be noted that in the case of the iOS ecosystem, the names of the interfaces

that refer to this type of connections are three: NSURL [125], NSURLConnection, and

NSURLRequest, which serve to declare a certain URL (Uniform Resource Locator),

establish the connection, and then make a request, respectively.

 In addition to the above mentioned, it is also necessary to highlight that there are

other types of names, referring to calls to network connections that need to be searched

when analyzing the source code of a given application, and that are:

-NSHTTPCookieHooks

-NSURLConnectionHooks

-NSURLConnectionDelegateProx

-NSURLCredentialHooks

 Which correspond to how the connection is made via HTTP, and what security

parameters are set for that connection. In addition, due to the development structure in

iOS, it would also be necessary to consult certain methods, which are very likely to be

used whenever the app makes use of network resources, and which ones are:

-sendSynchronousRequest: returningResponse:error:

-initWithRequest:delegate:

-initWithRequest:delegate:startImmmediately:

-continueWithoutCredentialForAuthenticationChallenge:

 All this set of text strings, should be searched by a researcher once they load the

application into the disassembler Hopper, thanks to its integrated strings and labels finder.

 Currently, and due to the proliferation of HTTP secure (HTTPS) protocol, we

should also consult those strings that refer to this type of connections, or those elements

that have some kind of relationship with them, such as SSL certificates, TLS protocol,

SSL Pinning between certificates and CAs (Certificate Authorities) among others.

4.8.5. Additional Elements

 Thanks to the evaluation of the strings [126] carried out in a static analysis of

mobile applications, you can obtain really interesting information when it comes to

Máster Universitario en Investigación en Ciberseguridad Página 62

categorizing the security and privacy of a mobile app, regardless of the platform to which

it belongs, so using everything described in the previous section, this section will relate

some of the possible text strings that can be searched to access other resources included

in the system, which contain interesting information.

a) Android Procedure

 Due to the ability of some apps to store their information either in a personal

database enabled for that application, or in the SharedPreferences [127] area of shared

preferences, some of the strings that should be searched using the tool quoted in previous

sections of this project are:

-username, user_id, login_name, login, among others, in order to know the name with

which a certain user is identified through this application. Also, don't forget to determine

the origin

- password, pass,token, auth_token, and others, which are strings with the password of

certain user account stored within an application, besides every analyst should search

information according the origin of the app, because the developer may name the option,

using names in his/her native language to categorize system elements.

 Moreover, all hints applied with the username should be extendible to this and

other features.

-Calls made to the shared storage space (getSharedPreferences [128]).

-Credentials, cred, or other types of strings, to try to search as its name indicates the user

credentials, grouped somewhere in the application.

-db, database, as well as its extensions db, sqlite, sqlite3, etc... In order to control the

accesses to databases created by the application, to store its important information.

-putExtra method, which has to do with information that is passed to the Intent class when

making any call.

-Comprehensive WebViews search, which are web containers that are generated within a

mobile app when you want to display a certain web resource hosted on the Internet.

 It is also highly recommended, in order to make a competent mobile security

analysis, to take into account that this set of data may, due to malpractice, have been

harcoded in the source code of the mobile application, often due to a neglect of the

developer when deleting the help comments with which he/she has populated the code,

or due to an insufficient encryption mechanism that has made this information accessible

to any user.

b) iOS Procedure

 The method of searching for text strings in Apple's Mobile Operating System is

very similar to that specified in Android, since both systems, after all, follow a similar

philosophy when storing their data within the system, and furthermore, the assets that can

affect security and privacy of the user of this platform are the same as those that would

affect an Android user, so only the particularities or new resources will be cited.

Máster Universitario en Investigación en Ciberseguridad Página 63

 Coupled with the search for credentials, which is one of the first and most crucial

steps in this research to extract additional information to enrich the security analysis

performed, will be added:

-Search for calls to NSUserDefaults [129], which is a store of iOS options, equivalent to

Android's SharedPreferences.

-Localization of calls to NSLog, which is in charge of saving logs of the application,

which are often used by the developer to debug the application during its development

process. The problem is when the programmer, (often inadvertently) save in these logs

information regarding user credentials, which due to the nature of the system logs that are

stored in plain text, making this sensitive information accessible to any type of user who

extracts such files.

 Because iOS, the use of the SQLite3 [130] database is very widespread, together

with the query of the following style strings: db, sqlite3 typical strings that should be done

to find this type of information, you cannot let pass the search for SQL sentences that

have been hardcoded in the system, not only to know the structure of the database itself,

but also to search for some kind of security problem when it comes to making the

database, or also during making a request using insecure method which allow a malicious

user to tamper the sentence, because the developer did not use precompiled request by

the time he/she programmed the mobile application.

4.8.6. Extracting data on Mobile Platforms

 Next, there will be a step-by-step explanation of how the information stored on a

mobile device would be extracted, in order to analyze the data obtained for checking the

security and privacy of the system, as well as to illustrate some of the possible methods

that could be used by malicious users, who decide to violate the system in order to invade

the privacy of the victim. This chapter of the project will be divided according to the

procedure is oriented to the Google Operating System, or Apple's, as the process in each

differs, and the prerequisites for developing such acquisition of information are more

limited in one than the other.

a) Android Procedure

 First of all, it is necessary to point out that a rooted mobile device is required in

order to be able to carry out this data extraction mechanism, in addition to installing the

SDK associated with the Android version installed on the smartphone or tablet. If these

conditions are met then the security analyst must connect the device via USB to the

computer in charge of carrying out this investigation, which after a short period of time

will make it be identified by the system, and can proceed properly at the beginning of the

procedure described in this section [131].

 First, the security researcher will need to open a command terminal, and type:

 -adb shell (which will start as its own name indicates a shell on the mobile device,

which will allow us to manipulate it as if we were inside the system).

Máster Universitario en Investigación en Ciberseguridad Página 64

 The next step is to check the file system block size, which is one of the crucial

steps when executing the command-line utility dd. To do this, the security researcher will

invoke the following command:

-df /data (which will show us information on the different partitions of the system,

with a series of parameters associated with them, including the block size applied to each

particular partition).

 Once we have completed these steps, we will need to have a sufficient amount of

storage to be able to host the information extracted from the system. In the case of

Android devices, it is easy to solve this problem, since you can add an external memory

such as: SD card to expand its capacity, so we will be ready to locate, in which partition

is mounted the SD card, to specify as dump path obtained at this stage.

 To be able to discern everything that is mounted in the system, you can do this

command:

-mount | grep sdcard (in the first place we list all the mounted devices, and then with grep

we filter only the partition associated to the SD card).

 After the discovery of this important route, we will proceed to extract the

information stored in the system, as described in previous chapters of this thesis:

-dd if=/dev/block/msm_scdc of=/storage/sdcard1/dump.img bs=4096 (as important

parameters, we can observe that in the case of of= we specify the path for a name image:

dump.img in the SD card installed in the system, and also that the block size is: 4096,

which is a typical value for the Google Operating System).

 After a few minutes of waiting, until the backup process is successfully completed,

finally, this created image can be exported to the analyst's computer, by means of the

command:

-adb pull /storage/sdcard1/dump.img

 In addition to the procedure, to call it in some way: official for backing up the

system, in Google Play, the official store for Android, there are many applications such

as: BusyBox [132], which allow this procedure to be performed automatically, and more

comfortable for the common user of this platform. These apps also have the peculiarity

that, in addition to allowing the creation of a copy, they allow you to select what

information will be exported in the copy, and which will be discarded, which could also

be an alternative for the advanced user, who does not want to use the command terminal

to work.

 Another noteworthy point, although it corresponds to an advanced procedure due

to its difficulty at the time of its execution, but due to the multiple scenarios that can be

found in a mobile platform it is necessary to take into account, is that the researcher does

not have a device with an SD card installed, or that it does not have enough space to first

store the backup obtained in the mobile device to be analyzed. In this case, Android

provides a solution that by means of sockets allows to send all the information to the

Máster Universitario en Investigación en Ciberseguridad Página 65

computer of the security analyst, without needing to save all the procedure in the

smartphone or tablet investigated. To carry out this complex method, we must:

 Creating a socket between the mobile device and the researcher's computer using:

-adb forward tcp:6666 tcp:6666 (This means that all traffic passing through port 6666 on

the device will be sent through port 6666 to the analyst's computer in security).

 Then, we run the image generation from the internal storage:

-dd if=/dev/block/android_storage | nc -l -p 6666 (using the netcat tool we create a socket

that listens to port 6666 specified above)

 As described when creating the bridge using adb, this information will end up in

port 6666 of the analyst's computer in security, so only one terminal must be opened on

the computer and type:

-nc localhost 6666 > external_image.img (this will create a socket that will collect the

information communicated in the previous step by the socket generated on the Android

mobile device, and will dump the content of that communication to an image called:

external_image.img)

Because Google Android is an open-source Operating System, the options that

exist to work with it are much greater than in iOS, and this is demonstrated by the

multitude of alternatives to perform forensic analysis on this platform. One of the best

known is: AFLogical [133], which can be shameless from its github repository:

https://github.com/nowsecure/android-forensics

Once compiled the app with the typical apk format, due to the possibilities offered

by adb, and as long as we have activated the "unknown origins", we can install by means

of this sentence the AFLogical:

-adb install AFLogical.apk

 After its installation, we will be able to run it from the Android mobile device as

any conventional app installed via Google Play, and from an austere graphical interface,

it will allow us to create a customized backup, selecting (as it could be done with:

BusyBox), what information: phone contacts, SMS/MMS, and others we want to export

from the device, and which ones we do not.

 As the only difference, it is necessary to emphasize that with AFLogical the

information will not be obtained in image format, but in separate csv files with the

classified information according to its nature, which is a great advantage for its later

analysis by the security researcher.

b) iOS Procedure

 The process to be carried out in the Apple Operating System, is quite similar to its

counterpart in Android, but is much more limited due to the features imposed on the

https://github.com/nowsecure/android-forensics

Máster Universitario en Investigación en Ciberseguridad Página 66

platform itself: it is much more closed than Google's system, and is also encrypted by

default.

 The main requirement that must be fulfilled in order to be able to backup the

information stored in the iOS device, is that jailbreak has been performed on it, and that

tools such as OpenSSH and dd have been installed on the system, which will allow this

procedure to be performed correctly.

 In addition, and because Apple mobile devices do not have the ability to add

external storage such as Android's, there should be enough space on the internal storage

to contain the backup that will be created at the end of this process.

 If all of the above is true, simply connect via SSH to your smartphone or tablet,

as described in previous chapters of this project, and then type this command:

-dd if=/dev/rdisk0 of=ios_image.img bs=1M (whose syntax is identical to that of

Android, and only differs in block size, which in the case of iOS is usually 1MB).

 Although this procedure is feasible, the latest versions of the system due to its high

encryption of the information stored in mobile devices that mount iOS, makes it advisable

to use other types of tools, such as: iTunes which will be able to perform this process in

an advanced way.

4.8.7. Extraction of information stored in RAM memory

 As described between the fundamentals and rules to be followed in any forensic

analysis, one of the most important points to be taken into account is RAM memory, as

it loads all the applications running on the system, and can therefore contain information

of enormous usefulness for a privacy and security analysis, as is the case of this project.

a) Android Procedure

In the case of dumping the information contained in the RAM memory of an

Android mobile device, you can use the tool called: LIME [134] (Linux Memory

Extractor). To proceed to download it, we must once again go to its github repository and

clone it: https://github.com/504ensicsLabs/LiME

 After compiling the kernel module to be added to the kernel of the mobile system,

the security researcher should upload using the tool adb:

-adb push lime.ko /storage/sdcard1/lime.ko (which will store it on the SD card of the

Android device).

 Once this process is completed, a socket must be created to redirect all information

sent to port 4444 of the mobile device, so that it is directed to port 3333 of the security

analyst:

-adb forward tcp:4444 tcp:3333

https://github.com/504ensicsLabs/LiME

Máster Universitario en Investigación en Ciberseguridad Página 67

 After doing this, a shell will open on the Android device using: adb shell, and then

do the following:

-su (we will identify ourselves as root. From this step, it is understood that in order to be

able to perform the dump of RAM memory of the mobile system, we need a rooted mobile

phone)

-insmod /storage/sdcard1/lime.ko "path=/storage/sdcard1/ram.lime format=lime" (the

previous command indicates where to dump the memory dump information into the SD

card, in addition to its format).

 Then, and as it has already been done in previous sections of this project, the file

obtained on the SD card will be downloaded to the security researcher computer. To do

this:

-adb pull /storage/sdcard1/ram.lime

 Finally, and although performing a complex forensic analysis of the Android

system's volatile memory is not one of the main objectives of this thesis, it is worth

mentioning that this RAM dump image can be analyzed by other advanced forensic tools

such as: volatility [135], which is installed by default in: "Security Analysis Workshop".

b) iOS Procedure

The analysis of the RAM memory of an app in iOS is much more limited than the

possibilities offered by the Android Operating System, since the main recommendation

in this regard, is a tool that is included in the "Developer Tools" of macOS, which is

called: "Instruments". Nevertheless, the tool is really powerful and allows to monitor:

Overall memory used by a certain app, as well as leaked memory produced by memory

space not dellocated, and even abandoned memory or zombies (code referenced, although

it is no longer necessary). Removing these problems corresponds to a developer's own

work, since although iOS has an ARC (Automatic Reference Counting), automating the

allocation and dellocation process, sometimes it is necessary to make this procedure

programmatically.

4.8.8. Analysis over Sensitive Information

 Once a complete image is extracted from the information stored on a mobile

device, it is important for the security analyst to have the necessary knowledge about what

type of information is usually stored in these devices, as well as where to find it.

 Due to the nature of the applications available in both: iOS and Android, we can

highlight this set of main sources of information:

 -Shared storage space (SharedPreferences on Android, NSUserDefaults on iOS).

 -SQLite3 databases that store the information managed by each of the mobile

applications installed in the system.

 -All types of plain text files that may not be taped in the system, and therefore

being visible if they include relevant information would be a risk to the security and

privacy of the user).

 -Binary files.

Máster Universitario en Investigación en Ciberseguridad Página 68

 -Passwords saved in the system.

 -Credit cards numbers, or any type of information identifying the mobile system

user.

 -Web browsing history.

 -Other possible information.

 Due to the large number of aspects to be taken into account in this analysis, and

the diversity of the information stored, the following chapters will specify the main routes

where to look for the information cited, in order to help the research work carried out on

these mobile platforms.

a) Android Procedure

As described in previous chapters, Android's file system is distributed in a set of

partitions, among which the following can be highlighted:

-bootloader: It is a read-only partition that includes the code that is executed for

the first time, when the Android device is booted. It is in charge of loading the operating

system kernel.

-boot: where the Android kernel is included, and other files needed for booting.

-userdata: includes all the information stored by the user, including: applications,

photos, and other multimedia content.

-system: includes the main system libraries, and basically the Android Operating

System itself.

-cache: contains temporary information stored by the applications installed on the

mobile device, in addition to storing temporary information generated by the Dalvik

virtual machine that interprets the code of the installed apps.

In addition to these directories that define the structure of Android at a global

level, it is also necessary to mention:

-system/app: which is where the applications that come installed by default in the

system (generally Google apps), perform their installation. For security reasons, as with

the bootloader partition, this is read-only, which prevents users from uninstalling this set

of apps that come by default installed on the system, unless they format and install an

alternative image or ROM such as LineageOS [136], which is not one of the purposes of

this project.

-data/data: The data that is created by the applications, and includes all types of

information entered by the user, or created during the process of installing the applications

themselves. In this folder, you can also find the sandboxes of the different apps, which as

specified in previous chapters of this thesis, is a mechanism that allows you to isolate the

degree of interaction between the applications installed in the system, with the resources

external to them.

 Within each of the sandboxes created for an app, it is necessary to highlight the

following structure:

-files: in this directory, the app creates the files that are necessary for the execution

of the app. It usually stores some multimedia resources such as images.

 -lib: it hosts links to the software libraries that are required to run the app itself.

Máster Universitario en Investigación en Ciberseguridad Página 69

 -shared_prefs: includes the SharedPreferences files created by the app.

 -databases: as its own name indicates, it stores SQLite3 databases created during

the process of installing and running a given mobile application.

 -cache: temporary information stored in the app.

-/data/app: is where the apk files are stored, so to speak the compressed container

that allows to install each app in Android, and which contain the source code of the app

compiled in classes.

 Apart from all the folders mentioned above, also and due to the multitude of

information they may contain, we must mention where the photographs, videos, and other

multimedia resources created by the user of the system are stored.

 The chosen directory, although it usually varies depending on the manufacturer,

has the following structure:

-/storage/[android/sdcard]/DCIM (whereas can be seen it can be either a system

path, or an SD card path. It is necessary to emphasize that in this file you can also store

the photos saved by some of the main messaging systems such as: WhatsApp, Telegram,

and also some of the most used social networks: Twitter, and Facebook.

 Other interesting folders are those where the unlock pattern is stored, widely used

in Android devices, until the appearance of fingerprint recognition. The path that this

pattern stores is:

 The information contained in this file is a numeric value that identifies each point

of the graphic pattern with an associated number, starting from upper-left dot which takes

the value of: 0.

 This combination is stored in the file by means of the hash: SHA1 function to

protect the information stored in the file. Because of how Google discovered in 2017, this

hash function has collisions, it is easy to identify by brute force which graphic pattern is

stored in this file.

 In the event that a numerical pattern is used for unlocking the Android mobile

device, the information of this key will be stored in:

-/data/system/locksettings. db (the contents of this file is the result of performing an MD5

hash on the unlocking code, concatenated with the associated jump when that function

has been executed).

 To consult the information stored in this database, we must execute this SQL

statement, from the SQL Manager included in the "Security Analysis Workshop":

SELECT value FROM lock settings WHERE name= "lock screen. password_salt"

 Once this data is obtained through the script also included in the workshop and

called:"android_password_cracker.py", or through another more advanced tool called:

hashcat, which is also installed by default in the "Security Analysis Workshop", it will be

possible by brute force to obtain the unlocking code of the mobile device with Android

Operating System.

Máster Universitario en Investigación en Ciberseguridad Página 70

 If you want to use the tool: hashcat [137], which has as advantages that can use the

GPU of the computer of the security analyst, to increase the calculation capacity and

therefore reduce the time it takes cracking the password, you must use this statement by

command-line [138]:

-hashcat -a 3 -m 100 file. hash -1? d? 1?1?1?1?1?1?1?1 (in which -a indicates the method

of cracking: forced shoot, -m 110 indicates the type of hash: SHA1 pass-salt, -1 allows to

create a custom search pattern which is this case is? d i. e. an integer number, and finally

a space of 8 possible spaces will be specified

 Due to the ability of these devices to be permanently connected to the Internet,

another parameter that every researcher should take into account is not only the cellular

connection, but also the ability to connect to WiFi networks of the mobile device.

The information associated with WiFi networks saved and identified on the

smartphone or tablet is stored in the directory: /data/misc/wifi. Within it, we find a very

important file called: wpa_supplicant.conf, which if you view its content, you can see

information such as: the SSID associated with the latest WiFi networks accessed, as well

as your password, and even the encryption associated with it: WEP (obsolete), or

WPA/WPA2-PSK (currently recommended).

 Another of the interesting data [139] to be taken into account by a security analyst

is to observe the information stored in calendars, since many users keep a schedule of

their inventions in them, and are a real source of great importance in order to know the

habits of the owner of the device.

 Although this information may differ from the manufacturing, it is generally

stored in: /data/data/com.android.providers.calendar/databases/calendar.db

The next step would be to check the text messages (SMS/MMS) sent or received, and

which have been stored on the Android smartphone. To view this information, the route

may change again depending on the manufacturer, but usually:

-/data/data/android. providers. telephony/databases/mmssms.db.

 With the data obtained on SMS and calendar events, the next procedure to be

carried out in a study of security and privacy on a mobile platform, is to know where the

user's contacts are stored, in addition to the calls you have made from your smartphone.

 The location of these resources is usually located at:

-/data/data/android.providers/contacts/databases/contacts2.db (within this database in

SQLite3 there is a table called call that includes, as its name indicates, the calls made by

the user of the mobile device).

 Due to the importance of email today, and that in addition to the fact that every

time we start a device with Android installed, the user must be identified with a gmail

account, the next step will be to identify where the information regarding this important

account is located, which is also the main one associated with the backup process through

a cloud service system.

Máster Universitario en Investigación en Ciberseguridad Página 71

 The path that contains the system user's account is usually: /data/data/com. google.

android. gm/databases/mailstore.[account_name].db

 Every database obtained in procedures described in previous steps of this section,

it can be checked via: SQLite Manager provided in the “Security Analysis Workshop”.

 Once this information has been evaluated, the next step is to take a look at the

user's web browsing history, which usually includes interesting information about the

mobile device user, but if obtained by a malicious user it could lead to a violation of the

privacy of the holder of such information.

 By default, the web browser installed in Android is: Google Chrome, and because

it is one of the most used in our days, and more in the Android ecosystem, if you access

the route where the web browser is installed (/data/data/com. android. chrome), you can

access information as diverse as: cookies, login data, bookmarks, browsing history,

among other interesting information.

 Finally, but not less important, other types of information that could seriously

jeopardize the security and privacy of the Android mobile device owner, is location

information stored by certain system services such as Google Maps that make intensive

use of it.

 If GPS (Global Positioning System) is enabled, a detailed itinerary of the

smartphone user is saved in the "My Places" section of Google Maps, as well as an almost

perfect identification of where your home is located. Therefore, one of the main

recommendations for a lost or stolen device is to disable this option in order not to give

more information than the attacker.

 In addition, and in view of the information that a security researcher can consult,

regarding the information extracted from the mobile device described in the previous

sections, if we access the path where the Google Maps application is stored

(/data/data/com.google.android.apps/maps), we can see a set of images stored in the cache

directory of that app, which correspond to portions of the map that represent the last sites

consulted by the user of that app.

 More information about “Android security” in: [157].

b) iOS Procedure

 Within the iOS ecosystem, information extraction is often complicated by the fact

that it is a closed operating system, which also imposes an encryption mechanism on the

data stored on mobile devices, which provides an extra degree of security and privacy to

the users of this platform, since from iPhone 3GS onwards, Apple included a co-processor

in its devices whose task, among others, is to perform crude operations. However, if the

mobile device to be analyzed has jailbreak, the possibilities of carrying out a safety

analysis increase exponentially, since there are fewer barriers to overcome than those of

a safety analyst.

 The following are the main routes within iOS for data extraction, which is one of

the first steps that any security researcher must take, and due to the above paragraph, the

Máster Universitario en Investigación en Ciberseguridad Página 72

device on which the study is being conducted will be considered to have jailbreak

performed, and it is unlocked, since if this were not the case, the information dump would

really be a very difficult task to perform.

In general, in order to observe the internal infrastructure of the applications

installed in the system, the first route [140] to be inspected is:

-/private/var/mobile/Library (which contains all the data of the applications installed by

default on the mobile device. These apps are generally the apps that come with an initial

iOS installation, and are created by Apple. They are common among all devices, and the

user, as with Android's default applications, which have been developed by Google, does

not have the possibility to uninstall them.

 In case you want to consult the data of the third party's apps installed in the system,

the path where all the available information of the same ones is stored:

-/private/var/mobile/Applications (it should be noted that due to the characteristics of iOS

that have been cited in previous chapters of this project, each app is installed in a directory

with a name that is randomly generated from the UDID of the mobile device (32

characters) during its manufacturing process, so that at first glance it will not be possible

to discern the association between the name of the mobile application and the folder

name).

 After this short introduction, how iOS apps themselves and third-party apps are

distributed, it should be borne in mind that the basic structure of any directory associated

with an application is as follows:

-Documents: contains the set of resources created by the application, and which are

necessary for its operation.

-Library: as its name indicates it maintains configuration files, and other software libraries

that are necessary for the execution of the analyzed app.

-tmp: is a directory that contains temporary files created during application execution,

and therefore has a limited durability, as they are usually deleted regularly.

In addition, and as with the Google Operating System, every researcher must take

into account one of the most reliable possible sources of information available on mobile

devices, and that leakage can seriously harm the users of this platform, and is photos,

videos, and other multimedia content generated by the owner of the mobile device, which

usually include information that can uniquely identify you, through the analysis of

metadata EXIF associated with these.

 This important multimedia directory in iOS is on the path:

-/private/var/mobile/mobile/media/DCIM/100APPLE (photos taken in JPG format

(before iOS 11) or in HEIF (from iOS 11 onwards) are shown here. In addition, this

directory will contain the screenshots taken by the user, or the set of recorded videos.

 Another of the fundamental points to consider in an iOS investigation is the

passwords stored in KeyChain, which is the password vault of the iOS ecosystem. This

Máster Universitario en Investigación en Ciberseguridad Página 73

information can be viewed locally from the mobile device itself, or from the cloud: iCloud

service, which, if enabled, saves a backup associated with your user account.

 Next, another of the main sources of information in this mobile platform, you can

use some of the default apps installed, such as: Notes. Notes is a simple app that as its

name suggests allows the user to take concise notes or reminders in order to serve as a

kind of digital notebook. The information stored in it, can be of very diverse nature, from

text, passwords, even photos, and location information so it is one of the fundamental

points from which the security researcher could draw more information.

The path where the Notes app data is stored is:

-/private/private/var/mobile/Library/Notes/notes.sqlite (It is therefore a SQLite3 database

that can be conveniently accessed from SQLite Manager. Even so, it is necessary to point

out that since iOS 9.3 version, this database can be encrypted if the user decides to do so,

so in that case if the password associated with it is not known, it would not be possible to

consult it, and this procedure would be greatly complicated).

 Later, another key source of information will be SMS/MMS sent or received by

the user. This data, as with Android, will be stored in an SQLite3 database, which this

time will be stored in this path:

-/private/var/mobile/Library/SMS/sms.db (In this database, the fundamental tables to

consult are: "Messages" as it includes the SMS sent and received, "msn_pieces" that

includes the attachments included in these messages). It is necessary to emphasize that

all information stored by the Apple messaging system called: iMessage is also stored in

the "Messages" table.

 If you want to consult the information created during web browsing made by the

user of a given mobile device, the most important routes that any researcher should

consult are:

-/private/var/mobile/Library/Safari (corresponds to the directory where the default iOS

web browser is stored. Since the platform allows installing other alternatives such as

Firefox, or Chrome, in order to extract all the information from this point, the security

analyst may have to search within the directories created by these other browsers, if they

exist.

 Within this directory, there is usually a vast amount of information, but in order

to observe the habits of a user, you could consult: the database: Bookmarks.db, which

includes the favorite pages, which have been visited by the user of the mobile device).

 Continuing with the compendium of information stored today, in our mobile

devices, the next stage of a conventional security analysis on this platform would be to

extract information from the user's contacts, in addition to calls made if that device is a

smartphone. In order to do this, the following directories should be considered:

-/private/var/mobile/Library/AddressBook (which contains the contact list, and contains

two interesting tables: ABPerson: saves the name of the contact, and personal information

Máster Universitario en Investigación en Ciberseguridad Página 74

associated with it, and ABMultiValue: which stores phone numbers, email addresses, and

other information).

If you want to consult the call history, it is stored in:

-/private/var/Library/CallHistory/call_history.db (In this database, not only the call list is

included, but also its duration, the direction of the call (incoming or outgoing), and the

telephone number and contact number of the list associated with it).

 Another feature, which might be interesting to consult, is the ability to create voice

memos (voicemails) within the iOS device. These voice memos may contain interesting

information that could compromise the iPhone user. The path to consult these stored voice

files is:

-/private/var/mobile/mobile/Library/Vociemail/voicemail.db (Inside this database is the

location within the device of the recorded audio files).

 Because of the inclusion of GPS devices on smartphones and tablets that have iOS

installed, they can be a huge source of information when enabled, and their malicious use

can seriously violate the privacy of the owner of such data.

 This kind of information is stored inside Apple's mobile operating system in the

path:

- /private/var/root/Library/Caches/locationd/consolidated.db (This SQLite3 database will

contain geographic information about where the device user has been, as well as

information about the WiFi APs (Access Points) to which he has connected).

 As we have commented in previous sections of this thesis, one of the fundamental

parts of any iOS application is its configuration files, or also called: plist file that can

contain information of interest to be analyzed.

Some of these plist files, which should be inspected by the security analyst in

charge of the investigation, are:

-com.apple.accountsettings.plist: contains information about the e-mail accounts

configured on the mobile device.

-com.apple.AppStore.plist: Last user searches in the official iOS store (AppStore).

-com.apple.facetime.plist: information associated with the iOS FaceTime app, which

allows VoIP calls and video calls between users of this mobile platform.

 Finally, it is also necessary to highlight the possible information that could be

obtained from the analysis of backups created in iOS, through the official tool: iTunes.

Prior to iOS 10.3, the encryption algorithm used was weak, so brute force could be used

to bypass the information stored in them, provided that physical access to it was available.

As of iOS 10.3, the encryption algorithm changed, and currently if you have an associated

password, there is no known method of discovering the data from these backups that is

feasible to use.

Máster Universitario en Investigación en Ciberseguridad Página 75

 Apart from the above, as long as there is physical access to the computer from

which the copy of the mobile device has been synchronized to analysis, another series of

plist files associated with iTunes could be consulted, and which could include interesting

information to enrich the investigation under way.

These files would be: Status.plist (which contains information about when a

certain backup has been generated in the system), Manifest.plist (which includes

information from official applications, as well as third parties installed in iOS), and

finally: Info.plist (which contains private information associated with the mobile device

itself, such as: IMEI, serial SIM, among others).

 In short, if the security analyst manages to overcome all the obstacles imposed by

the platform, the information that can be obtained from the analysis of a given iOS mobile

device, be it smartphone or tablet, although more limited, will be comparable to that

obtained in the Google platform, thus allowing an analysis to be developed in this

ecosystem, of quality, and with sufficient guarantees that the security and privacy

associated with its architecture is being evaluated. For a more detailed information about

Android and iOS collection of information, see: [155], and [156] respectively.

4.9. Security Mobile Analysis tools

Throughout this chapter of the project, a set of tools will be listed that will allow

a security analyst on mobile platforms to perform static and dynamic analysis on mobile

apps on any of the platforms under study: iOS and Android. Accompanied by a

description, in addition to naming the tool, an attempt will be made to explain how to use

it, listing the commands if it is necessary, which should be typed in order to perform the

main actions allowed by the analysis software. This section of this thesis for the Master

in Cybersecurity will also serve as a guide to the tools that will be available in the

"Security Analysis Workshop" which is the distribution with tools for mobile analysis. In

order to see more detailed information about Android & iOS analysis, see: [152].

4.9.1. Utilities for Android ____

In this part, the set of tools used for analyzing Android applications are going to

be introduced one by one, in order to create a list of the different options a security

analyst has by the time he/she decides to make a security analysis.

a) Quark [83] is a tool developed by LinkedIn, which automates the analyses carried out

on Android applications, in APK (Android Package Kit) format. During its analysis, the

tool collects the entire set of vulnerabilities, errors, or problems of any kind that could be

used by malicious users or crackers, when violating the security of the system, and

compromise the security of the user, in addition to being able to help for the creation of

tools that exploit those specific vulnerabilities, and therefore it could serve to create an

exploit in the system.

b) apktool [84] is a software which is able to decode, decypher and build a normal apk

file which is the normal format for Android applications, when we are dealing with a

security analysis in this platform.

Máster Universitario en Investigación en Ciberseguridad Página 76

c) Androguard [85] is a set of tools which are meant to analyze the inner structure of an

Android application. To do this, Androguard provides the researcher with a great number

of different scripts which help the user to perform certain research of the different

elements which form an apk file. Every script in this group of security applications is

developed in Python, and therefore it needs at least a Python2.7 or over for working.

Python 3.5 and over is also compatible with these tools.

d) dex2jar [86] It is an application designed to interpret files in dex (Dalvik Executable)

format, which correspond to the content of the compiled java classes and which can be

later interpreted by the Dalvik virtual machine when executing any application on the

system by the user.

e) JD-GUI [87] It is a program with a graphical interface, and that has support for some

of the most famous development IDEs in the Java environment such as: Eclipse, IntelliJ,

or Android Studio, and which allows by means of a GUI, to load the jar container once it

has been obtained through tools such as: dex2jar to decompile the classes contained, and

show the source code in .java perfectly.

 The way to load these. jar containers are by using the toolbar by selecting File and

then opening the .jar file. After this, the JD-GUI sidebar will display a list of the set of

classes stored in the container, and if you select one by one you will see a display of your

source code in the side-view of it. This highly relevant information in a static analysis can

be exported, saved and modified whenever you want to change the app code in order to

test, add some functionality by creating an alternative version of that mobile application,

or in the case of investigating some kind of vulnerability whose use could damage the

user's security.

4.9.2. Utilities for iOS

Difficulties in analyzing applications on the Apple platform make the set of tools

exposed a fairly small number, most of them limited to use on iOS devices with

jailbreak applied. Because most of them must be installed on the jailbroken device, or

on a computer with Apple (Mac) accepted architecture, instructions for installation will

be specified, although they will not be included in the "Security Analysis Workshop"

included in this project, due to its impossibility of installation on this desktop

architecture.

a) Clutch [88] as mentioned throughout this project in reference to the iOS mobile

platform, once the user of the device downloads a given app to his or her mobile device

and installs it, it is encrypted. Because of that, the job of security analysts, or hackers

when trying to work with it to look for vulnerabilities or other types of problems, is really

weighed down.

 That is the main reason why in the iOS ecosystem there are tools such as: Clutch

that is no more than a solution to decrypt these mobile applications, without altering the

content of the device, since these dumped apps end up in a specific dump directory of the

utility.

b) cycript [89] it is a tool available in the unofficial store of iOS: Cydia when the iOS

device is jailbroken. In short, is a command-line tool which allows with a mix of a

Máster Universitario en Investigación en Ciberseguridad Página 77

Javacript-like and an Objective-C-like syntax, to inject code in the system, in order to

modify the behavior of application loaded in foreground in the Operating System.

c) Hopper [90] it is a powerful disassembler only available on macOS platform which

allows the researcher not only to disassemble the code, but also decompile it and debug

it. Thus, it is a very useful tool not only during the development process, because its

ability to decompile or disassemble make it one of the chosen utilities by the time a

security researcher, in order to discover the source code of an application for performing

a static analysis, he/she uses Reverse Engineering techniques to recover the code written

by the developer of a certain iOS app. Despite it is one of the best reverse engineering

utilities for macOS, it has one limitation: this tool is shareware. Therefore, its free version

only allows a short number of analysis at the same time, and it only allows 30 minutes of

research, plus it is not possible to export the result obtained, but to analyze an application

is perfectly capable, so when dealing with disassembling, if the security researcher owns

an Apple device, this will be the chosen selection.

d) iNalyzer [91] is a tool developed by AppSec Labs, and to install it, it is necessary a

jailbroken iOS device, and also adding this repository: http://appsec-labs.com/cydia, to

Cydia unofficial store, in order to install this tool for making a static and dynamic analysis

on iOS ecosystem.

e) idevicebackup2 [92] is a multi-platform utility that allows to a security researcher to

create and restore backups in iOS platform. This software is written in C programming

language and it is available from the official repositories of the most famous Linux

distribution. Therefore, its installation process is very simple, and it does not require to

clone any repository to install it (only if you want to get the latest version of the tool).

f) rvictl [93] by the time, a security analyst need to carry out a research about network

connections, it is necessary to have a tool which allow him/her to collect the network

packets (generally TCP/UDP) generated when a mobile device communicate outside. In

order to perform this sort of analysis, the researcher have to dealt with the creation of a

virtual network interface which is very simple, using rvictl (Remote Virtual Interface

controller). This tool allows the generation of this interface, passing the UDID of his/her

iOS device when is invoked, and after that a fully-functional network interface is created,

redirecting every packet forged in the mobile dispositive through it. Once this kind of

bridge is established, the only thing is necessary it is: to deploy a sniffer which is a

capturer of network packets in order to analyze the traffic produced in the device to

analyze. The election for a sniffer is more varied, because there are a lot of alternatives,

through command line or graphical user interface, but in general the two most used for

computer research are: tcpdump [94] (command-line tool), or a more sophisticated

solution called: Wireshark [95] (with GUI integrated, although it has a command-line

version: tshark).

4.9.3. Tools for Network connection in both platforms

Tools described in this section can be used for both mobile platforms (iOS and

Android), due to they are just utilities for collecting and capturing network packets, in

order to be analyzed lately by the security analyst.

http://appsec-labs.com/cydia

Máster Universitario en Investigación en Ciberseguridad Página 78

a) tcpdump: It is one of the most famous and common network command-line tools, and

generally it is installed, practically in every distribution of Linux, or UNIX-like system.

When a security analyst needs to deal with the analysis of network traffic, tcpdump offers

a professional way of capturing packets in any network communication, and the ability

to dump the results in a file for a future research. In order to use this software in the

analysis of privacy and security in both: iOS and Android devices, it is only necessary to

specify the interface to watch and let tcpdump running for several minutes (depending of

the detail of the research), in order to collect the information needed. For a complete guide

about how to use this command, visit: [96].

b) tshark: is the command-line version of Wireshark, and it allows the analyst to check

and filter certain things, tcpdump do not allow so easily. In this reference, we can see a

complete guide about it usage [97].

c) wireshark: It is basically the graphical interface (GUI) for tshark that delivers a

comfortable and visual way of analyzing network traffic from information collected

thanks to tshark. Although its operation is easy to use, it is very complicated to dominate

every characteristic this tool offers. For a conventional security analysis, the researcher

only needs to know how to select the interface (click on the toolbar over Capture,

Interfaces and then selecting the network interface wanted). After doing this process a

table with a list of packets will appear in Figure 4.11, and the researcher will have a top

texbox for filtering every piece of information collected by this network tool).

As in the case of sniffers, to provide a proxy for the security analyst, we will select

a single option, which will work for any platform, since a proxy (see more information

about what a proxy is: [98]) is neither more nor less than a kind of intermediary between

a device and its access to the network, allowing that before both incoming and outgoing

traffic arrives or leaves a certain device, it runs through the proxy allowing the researcher

to perform an analysis. The utility that will act as the chosen proxy for its power and its

enormous possibilities is:

Figure 4.11. Wireshark (Source: Linux Secrets)

Máster Universitario en Investigación en Ciberseguridad Página 79

d) Burp Suite [99] is a software for HTTP/HTTPS communications which provides to a

security analyst, the ability to stop the traffic before going inside or outside a computer

which acts like a: proxy, in order to analyze the content of the requests and responses

generated during the process of establishing a connection through the web orientated

protocols previously mentioned. In order to configure it, it is necessary to create a proxy

SOCKS in the localhost computer of the security researcher in the "Connection tab", and

next set up this option like the outgoing method for Internet connection on iOS system.

To do that in the iOS device to analyze, it is needed to go to Settings, WiFi, and finally

filling up the HTTP Proxy section with the date provided in the previous step. From now

on, all the Internet traffic generated in the mobile device will go through the proxy, so the

security analyst will be able to check and tamper this information in order to test the

mobile application.

 Once, all these settings are configured, the next step is setting up the intercept

options which the researcher can select what protocol to scan, and even the kind of

information of matching like: certain image format, get or post requests, and so on.

Finally, when iOS device starts its network traffic, the security analyst will be able to

watch the incoming and outgoing traffic, modifying it would be necessary, or just

checking if the information sent during any transmission, fulfills the security and privacy

measures needed to protect the user experience independently of the Operating System

used in all this process. In Figure 4.12, we can see the interface of the application.

4.9.4. Database Managers

 These software utilities are meant to be the main tools for managing and

modifying the structure of the information stored by a mobile application. Due to in

mobile environment, the main database used is: SQLite 3 thanks to its features which

made it the proper solution for iOS and Android. In order to manipulate this kind of

databases, the tool suggested for security researchers is:

Figure 4.12. Burp Suite

Máster Universitario en Investigación en Ciberseguridad Página 80

 SQLite Manager [100]: SQLite3 is a fast and very light-weight (Unlike other DB,

this one does not have an independent server and client part), and portable database used

in practically all mobile Operating System (in both, iOS and Android is the default option)

which allows the user of the mobile application and the app itself to save different kind

of information, in order to provide a store to recover data when it is needed, and develop

properly the activity for which the app was developed.

4.9.5. Tools for a Mobile Forensic Analysis

 In order to perform a proper forensic analysis, it is needed to know a set of tools

which help the security researcher to carry out this methodology successfully. Many of

these software tools are properly installed in any system (above all if it is a UNIX-like

Operating System), but some of them are not part of this group, so it is necessary to install

them, to run the different tests to do during the forensics stage of any security and privacy

analysis. Next, we are going to describe a collection of tools which will be used during

the analysis of iOS and Android mobile devices, in order to interpret the information

gathered in the extraction process.

a) dd [101] is probably one of the simplest and most common commands available in

practically any Linux, or UNIX-like Operating System, but at the same time one of the

more powerful, and less known by the users. This command-line utility allows the user

to carry out some interesting actions [102] over the file system of a certain OS like:

- Data transfer (from one device to another). This is used for moving information from

hard drive or storage to another external resource like: SD cards, CD, floppy disks, and

so on, and vice versa.

- Recovering and restoring the Master Boot Record (MBR): which is the first sector of

many storage solutions which contains information about active partitions in the system.

- Data modification: that carries out any update of information stores in a certain file in

the system.

- Data wipe: which performs an erasing over certain storage resources like: hard drives,

or in terms of mobile ecosystem: internal storage and SD Cards. This wipe operation can

be carried out in several ways, but the most common are: zero-based and random-based

erasing.

- Data recovery: from a disk image previously created, any user can restore certain storage

resource with the content of the previous image disk mentioned.

- Benchmark storing system: making read and write operations in order to check the

overall performance of the internal storage in this mobile system.

b) exiftool [103] Nowadays, not many people know the amount of information present in

the data stored in their mobile devices. In general, when talking about personal

information, people think: user credentials, credit cards number, password of e-mails

accounts, and so on, but there is a general ignorance about the metadata associated to any

file saved within the mobile system. The metadata EXIF (Exchangeable Image File

Máster Universitario en Investigación en Ciberseguridad Página 81

format) is just pieces of data which identifies in many occasions univocally not only the

resource where they have been generated, but also the user.

 Therefore, it is something to be particularly careful about, because this metadata

tags may contain information whose leakage could put in risk the user privacy of the

mobile system. From pictures, videos to documents, all of them have metadata associated

which could identify not only the device itself where these files have been created, but

also the user himself/herself, therefore these assets are one of the main targets by

malicious users, and also in terms of performing a security analysis of certain system,

because provides a great amount of useful information, in order to evaluate a system.

Máster Universitario en Investigación en Ciberseguridad Página 82

5. Results: Security Analysis

Workshop (SAW)
In this section of this document, we are going to develop, one of the main

objectives of this master thesis: the creation of a platform with every tool cited until now,

besides the addition of new utilities, created especially for this work

5.1. Proposal __________________________

In order to analyze mobile apps on the iOS and Android platforms, a “Security

Analysis Workshop” has been created, which includes a set of tools that facilitate the

development of tests and investigations by a security and privacy researcher in mobile

environments. The decision to build this platform is because the tools that are available

so far, may not be as clear and simple as possible to use, and even the way in which they

present the information to the user, is not clear and simple as it must be expected. In

addition, there is no distribution that brings together all the necessary tools in a single

package, to avoid that professionals in the sector have to look for and install these

software solutions when preparing a security and privacy analysis. All this, along with

the creation of applications to speed up the aforementioned procedures, it has been the

main reasons why it has been decided to undertake the creation of this practical learning

and professional analysis environment.

5.2. Minimum Requirements____________________________

The Security Analysis Workshop has decided to mount on a Linux distribution, in

its LTS (Long Term Support) version, to ensure not only stability, but also that the whole

set of packages and dependencies used, remains updated. The system is packaged in an

image intended to be used in a virtual machine such as: VirtualBox [141], or VMWare,

which gives comfort when installing this application. The following Table 5.1, describes

in detail not only the characteristics of the mounted system, but also the hardware required

to mount it, and the steps to be followed if the system is to be deployed, in order to

perform the research tasks.

Security Analysis Workshop

Operating System [142] Xubuntu 17.10 (Artful Aardvark) x86_64

Recommended RAM 4GB

Recommended GPU Memory 128MB or over

Recommended Disk Space 50GB or more

Tool’s Repository https://www.github.com/Hallec/SAWTools

Table 5.1 "Security Analysis Workwhop" Minimum Requirements

Máster Universitario en Investigación en Ciberseguridad Página 83

Download link for SAW

https://drive.google.com/file/d/1u0Yg4MfxS6pcCQzg6YbyOx87gXfZaywh/view

In addition to previously mentioned, it is necessary to install:

- Python 3.6.x (in order to run some scripts developed for this work).

- Java JDK 1.8 update 151 (to execute Android Studio, and other sort of software

created for Android ecosystem).

- Golang 1.9.2 for compiling source code of some program developed for this

Master Thesis.

5.3. How to install “Security Analysis Workshop”?__

 The installation process explained in this section in only for Virtualbox (the

method for importing and installing this image, is practically equal in other VM

solutions). It is important to follow these steps, in order to install, configure, and run the

workshop properly.

 Next, the necessary steps are described:

1) Download the Workshop image from Internet: link not available yet.

2) Open VirtualBox in your system.

3) Go to the tool bar menu and select File, and then import virtualized services…

4) When next window appears, you need to choose the OVF (Open Virtualization

Format) file, in order to import it.

5) Wait until the process of importation is done. It could take more than five minutes.

 Once the “Security Analysis Workshop” is imported, is very important of

rechecking some properties which are paramount for the best performance of the virtual

environment. For doing this process, the steps to follow are these ones:

1) Right click over the OS imported on the left column of VirtualBox.

2) Click over the first Option: “Configuration”.

3) Check in “System Section” if its base memory is not less than: 4096MB.

4) Make sure in the “Screen Section”, the video memory is not less than 128MB.

https://drive.google.com/file/d/1u0Yg4MfxS6pcCQzg6YbyOx87gXfZaywh/view

Máster Universitario en Investigación en Ciberseguridad Página 84

 After doing these verifications, the security analyst will be ready to launch the

workshop, and start working with it, in order of analyzing mobile apps. A picture about

the “Security Analysis Workshop” is shown in Figure 5.1.

Due to the size of the Linux distribution developed for this project, around 10GB,

it is not possible to distribute this solution for security and privacy analysis on mobile

platforms, through a removable media such as: CD/DVD, so we will choose to include it

in a USB memory, or host it on a web page for download by users, who want to use it.

5.3.1. How to login and update the tools?

The user credentials are: saw and password: saw123. It is recommended to change

the password (passwd a type new password twice), the first time the user logs in. To

update, the user must launch the command: update_tools in a terminal.

5.4 Tools installed in “Software Analysis Workshop”_______________

Based on the Related work, in order to create a platform for the analysis of security

on mobile platforms, efficient and competent, we believe that the following tools should

be present:

 - quark (Exist): It is a script to perform auto-analysis over Android apps.

 - apktool (Exist): an app for decompiling Android apps.

 - androguard (Exist): its aim is for analyzing the structure of an Android app.

 - dex2jar (Exist): for converting dalvik executable to jar.

Figure 5.1. "Security Analysis Workwhop" first glance

Máster Universitario en Investigación en Ciberseguridad Página 85

 - JD-GUI (Exist): graphical tool for displaying the decompiled source code.

 - idevicebackup2 (Exist): tool for backing up iOS app information.

 - tcpdump (Exist): tool for network analysis.

 - tshark (Exist): advanced command-line tool for network analysis.

 - wireshark (Exist): graphical interface for tshark.

 - Burp suite (Exist): powerful proxy for security analysis.

 - SQLiteMan (Exist): database manager for SQLite.

 - DVIA (Exist): Damn Vulnerable iOS app.

 - dd (Exist): powerful command-line for copying/converting information

 - exiftool (Exist): software for extracting metadata for mobile resources.

 The main limitations of these tools is in general they are software for

professionals, and in most of the cases there is no way to control its workflow. Plus, in

general these utilities display its information in a technical way, without taking into

account users without any knowledge about mobile platforms.

That is why, we think in order to improve the visualization and automation of

some tasks by the user, in addition to making certain tools more affordable to the novice

user, it should exist the following:

- androguard_downloader (Does not exist): script for downloading automatically

androguard tools.

 -apktool_checker (Does not exist): script for installing and setting up apktool.

 - apk_downloader (Does not exist): program for download automatically apps to

be analyzed, in Android platform.

 - manifest_interpreter (Does not exist): script for interpreting and extracting

permission information.

 -metada_extractor (Does not exist): script for extracting sensitive information for

mobile resources, which allows to interact with the resource itself.

Next, we attach a Table 5.2, with all the tools integrated and developed in this

platform (created or not developed for this project), which will be able to use to perform

security and privacy analysis over the mobile ecosystem.

Máster Universitario en Investigación en Ciberseguridad Página 86

TASK TOOL Nature Integrated SCOPE

Auto-analysis over Android quark E I Professional

Decompiling Android apps apktool E I Professional

Analyze structure of an app androguard E I Professional

Convert dex file to jar dex2jar E I Professional/User

Display source code of classes JD-GUI E I Professional

Decypher iOS apps Clutch E C Professional

Tweak iOS apps Cycript E C Professional

Disassembler for mac/iOS Hopper E C Professional

Perform backups over iOS idevicebackup2 E I Professional/User

Create virtual iOS network rvictl E C Professional/User

Network analysis tcpdump E I Professional

Networking over terminal tshark E I Professional

GUI version of tshark Wireshark E I Professional

Network proxy Burp suite E I Professional/User

Database Manager SQLite Man E I Professional/User

Learning iOS app DVIA E I Professional

Tool for copying/converting dd E I Professional/User

Metadata collector exiftool E I Professional/User

Update androguard suite androguard_downloader D I Professional/User

Update apktool apktool_checker D I Professional/User

Downloader of Android apps apk_downloader D I Professional/User

Display manifest info manifest_interpreter D I Professional/User

Extractor of metadata metadata_extractor D I Professional/User

IDE for iOS apps Xcode E C Professional

IDE for Android apps Android Studio E I Professional

Legend

- Nature: E (Existent).

 D (Developed).

- Integrated: I (Integrated)

 C (Complementary)

-Scope: Professional

 Professional/User

Table 5.2. Tools integrated in “Security Analysis Workshop”

Máster Universitario en Investigación en Ciberseguridad Página 87

5.4.1. Integrated tools

Some of the main utilities installed, and ready to use in the “Software Analysis

Workshop” are listed next (See section 4.9. Security Analysis Tools for further

information):

- quark

- apktool

- androguard

- dex2jar

- JD-GUI

- idevicebackup2

- tcpdump

- tshark

- wireshark

- burp suite

- SQLite Manager

- DVIA

- dd

- exiftool

- Android Studio

5.4.2. Tools developed for this Master Thesis

In this section, it is a detailed description about a set of programs and scripts that

have been developed, during the development of this document, to help to automate the

security and privacy analysis process in the main mobile platforms of the market: iOS &

Android.

The following scripts created for that purpose are:

- androguard_downloader: a script that downloads the latest version of the Android app

analysis utility called: Androguard.

- apktool_checker: allows you to keep the latest version of the tool apktool updated,

which among other tasks, allows: decompile and package a certain Android app.

- apk_downloader: this a script that allows downloading an Android app from an

unofficial store.

- manifest_interpreter: is a program that allows to automate the decompilation process,

and analysis of the manifest file in Android applications. This manifest file has among

other tasks to host the set of permissions that are requested by this app, to be able to

perform the functions for which it has been developed, during runtime.

- metadata_extractor: is a script which dump metadata associated to a certain file, doing

special attention in that information of private character, as it can be: name of the owner,

geolocation data, among others, and in that case of being found, then creates a json file

Máster Universitario en Investigación en Ciberseguridad Página 88

for a more comfortable importation/exportation by other existing tools, as well as create

a map with the location of the user when it has generated that resource.

These utilities are available in the github repository: www.github.com, besides

that they are consequently deployed in the Linux distribution that accompanies the

development of this final Master thesis, in the Scripts folder of the home directory of the

default user (see previous sections where the Security Analysis Structure’s structure is

detailed).

After this brief preamble, a detailed description of each of the developed utilities

will be carried out, explaining how they work, as well as how they have been developed

through an organizational chart that allows to visualize the internal structure of the

program or script, in order to be able to visualize what its mission is.

Inner structure of the directory that hosts the scripts

The content of the directory Script, is distributed in the following folders:

-call_command: Class developed in Go [143] that allows invoking any command provided

by the shell of a system, and returns the response of that command parsed for the use by

other programs. The program manifest_interpreter makes use of it.

-configparser: this is another class created in Go, and used by the program:

manifest_interpreter, whose task is to load and interpret the included configuration files

in the conf directory.

-conf: is a folder that containis the main configuration files of the scripts presented in this

project. These configuration files are: api_versions.cfg (descriptive file of the Android

environment APIs), and permissions.cfg (where it is included a classification, according

to its degree of danger, of the set of permissions that can be declared in an application for

the Operating System: Android).

-input: saves the applications in apk format, which are downloaded by the script:

apk_downloader, for later analysis by the security researcher.

-output: this is the directory where the contents of the application are dumped from its

apk format, once it has been decompiled. At the same time, it is also here where the

program: manifest_interpreter, exports the information processed during its execution

in json format into a folder with the same name.

With this group of directories, together with the scripts and programs mentioned

above, it is possible to automate a great number of the procedures that must be carried out

by a security researcher during its analysis of applications in mobile ecosystems.

1. androguard

It is nothing more than a bash script, which downloads the tool repository using

the git command (control version system). If this script is executed, the most up-to-date

version of Androguard will be downloaded, in the user's home directory, in the

androguard folder, so that it can be executed by the security researcher when he/she wants

http://www.github.com/

Máster Universitario en Investigación en Ciberseguridad Página 89

to perform an analysis. Due to the simplicity of the program, in this case it will not show

an associated organization chart, nor give more details of it, since its content is only the

following sentence:

git clone https://github.com/androguard/androguard.git (which downloads the content

from the master repository to the local system of the user invoking it).

2. check_apktool

It is a script developed in Python, which allows you to download the latest version

(currently 2.3.0) of the Android apps decompilation tool: apktool. In order to perform this

procedure, the script saves a log into the conf folder, with the apktool version installed on

the system in versions.cfg file. In this way, whenever the command line script is launched

(./apktool_checker), it is first checked that the developer's website does not have any more

updated version, so as not to repeat the installation procedure unnecessarily.

In the event that there is a more updated version, the script will download the new

version of the tool, in the associated temporary directory tmp, and then it will proceed to

perform the relevant tasks in order to update it correctly in the system. It is necessary, in

order to execute it, that the user is identified as root (super-user), since certain directories

where the tool is installed, are not accessible to the normal user of the system (saw).

In addition, part of the commented source code is also attached in Table 5.3, so

that it can be explained what steps the script actually follows when installing the apktool

tool in the system.

#!/usr/bin/env python3

import os

import re
import requests

import datetime

import subprocess
from collections import OrderedDict

from bs4 import BeautifulSoup as bs

import time

VERSIONS = OrderedDict()

TERM_COLORS = {"red": "\033[91m",

"green":"\033[92m",

"end": "\033[0m",}

#Function for getting the current time

def get_time():
 return datetime.datetime.now().strftime("%d/%m/%Y - %H:%M:%S")

#Function for moving the file to the correct bin folder

def mv(current_path,future_path):

 os.mv(current_path,future_path)

#Function for removing files in temp folder

def rm(files):

 files_path = map(lambda f: "tmp/{}".format(f),files)
 for f in files_path:

 subprocess.Popen(["rm","-rf",f])

#Function for setting correct permissions for files a list of files

def chmod(permission,files):

 files_path = list(map(lambda f: "tmp/{}".format(f),files))
 for cfile in files_path: os.chmod(cfile,permission)

Máster Universitario en Investigación en Ciberseguridad Página 90

The Figure 5.2 shows a simple organizational chart of the functions involved in

this script:

#Function for updating configuration files

def update_cfg_files():

 with open("cfg/versions.cfg","w") as f:
 for key in VERSIONS:

 f.write("{}={}\n".format(key,VERSIONS[key]))

#Checking apktool version installed in the system

def check_current_version():

 with open("cfg/versions.cfg","r") as f:
 lines = f.read().splitlines()

 for line in lines:
 software,version = line.split("=")

 VERSIONS[software.strip()] = version.strip()

 apktool_web = requests.get("https://bitbucket.org/iBotPeaches/apktool/downloads/").text

 html = bs(apktool_web,"html.parser")
 uploaded_files = html.find_all("table",{"id": "uploaded-files"})[0].find_all("td",{"class":"name"})

 latest_version = re.search(r"^.*_(.*)\.jar$",uploaded_files[1].find("a")["href"]).group(1)

 if latest_version > VERSIONS["APKTOOL_VERSION"]:
 print("[{}] Downloading wrapper script...".format(get_time()))

 wrapper = requests.get("https://raw.githubusercontent.com/iBotPeaches/Apktool/master/scripts/linux/apktool",

stream=True)

 with open("tmp/apktool","wb+") as f:

 for chunk in wrapper.iter_content(chunk_size=1024):
 if chunk: f.write(chunk)

 print("[{}] Downloading latest version of apktool [{}]...".format(get_time(),latest_version))

apkjar = requests.get("https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_{}.jar".format(latest_version),

stream=True)

with open("tmp/apktool.jar","wb+") as f:

 for chunk in apkjar.iter_content(chunk_size=1024):

if chunk: f.write(chunk)
 print("[{}] Download process complete...".format(get_time()))

 print("[{}] Fixing permissions for files...".format(get_time()))

 chmod(0o755,["apktool","apktool.jar"])
 print("[{}] Moving apktool to bin directory...".format(get_time()))

try:
 for cfile in ["apktool","apktool.jar"]: mv("tmp/{}".format(cfile),"/usr/local/bin/{}".format(cfile))

 pass

except:
 print(TERM_COLORS["red"],"* [ERROR] You need root permission to move files.",TERM_COLORS["end"])

 print("[{}] Cleaning temp directory...".format(get_time()))

 rm(["apktool","apktool.jar"])
 exit(-1)

print("[{}] Updating configuration files...".format(get_time()))

print(TERM_COLORS["green"],"[{}] apktool is ready to use.".format(get_time()),TERM_COLORS["end"])
VERSIONS["APKTOOL_VERSION"] = latest_version

update_cfg_files()

else:
 print(TERM_COLORS["green"],"* [{}] You have installed the current version of apktool. No updates

available.".format(get_time()),TERM_COLORS["end"])

if __name__ == "__main__": check_current_version()

Table 5.3. Source code snippet from check_apktool

Máster Universitario en Investigación en Ciberseguridad Página 91

Finally, a Figure 5.3. is shown that corresponds to the information dump after the

execution of check_apktool from a command-line terminal:

3. apk_downloader

As in the case of apktool_checker, this script is newly developed thanks to the use

of the programming language: Python, which allows a security researcher to automate in

an agile and fast way, procedures that can become repetitive. On this occasion, the

purpose of this script is to download the applications in Android apk format, in order to

analyze them from the computer of the security analyst, to discover the risks involved in

their installation.

The downloaded mobile applications are not hosted in the official store (Google

Play), but are stored on the web: https://www.apkmirror.com, which hosts a large number

of the most common applications on the Google platform. One of the advantages of this

unofficial store is that it allows you to download more obsolete versions of a certain app,

allowing the analyst to evaluate its evolution over time, besides studying the fixes made

by its developers to solve a certain issue, which led to the creation of a new build. It can

also be used for testing purposes to determine if the app to study has any mechanism that

could jeopardize the privacy of users who install it.

Figure 5.3. check_apktool execution

Figure 5.2. Organizational Chart for CheckAPKTool

https://www.apkmirror.com/

Máster Universitario en Investigación en Ciberseguridad Página 92

Due to the reasons listed in the previous paragraph, once the script is executed by

command line (./apk_downloader), the user is asked to enter the name of the Android

mobile application that he/she wants to download. In the case of not being in the web, the

user will be indicated by warning message on the screen, but in the case of existing

versions, a list of available versions will be returned which can be downloaded to the

analyst's local directory.

The security researcher must then select the version he/she wants to download,

and then the script will search for the set of hardware architectures available in which the

apk can be downloaded (usually ARM [144] should be selected, although there may be

occasions to choose other options in order to enrich the research). After selecting the

architecture, the script will prompt the user to enter the name under which the apk is to

be saved (default will use the search term used in previous steps).

If everything has been done correctly, the selected application will be downloaded

to the input folder of the Scripts directory, so that it can be analyzed in later steps by

another one of the programs developed for this Final Master Thesis: manifest_interpreter.

A sample of a part of the source code of this script, commented in order to detail

its operation, can be seen in the Table 5.4 below:

apk = input("Introduce the app name you want to download: ")

#Checking up the different options

response = requests.get("https://www.apkmirror.com/?post_type=app_release&searchtype=apk&s={}".format(

apk.lower()))

html_response = bs(response.text,"html.parser")

res = html_response.find_all("div",{"class":"addpadding"})

#Function for listing every download option

def list_options(title,opt_list):

 valid = False

 while not valid:

 print(title)

 for index in opt_list:

 print("{}. {}".format(index,opt_list[index]["name"]))

 try:

 opt = int(input("Introduce the app version, you want to download: "))

 if opt < 1 or opt > len(opt_list):

 if len(opt_list) == 1: print("[ERROR] The option must be: 1")

 print("[ERROR] The option must be between: 1 and {}".format(len(opt_list)))

 else:

 return opt

 except:

 print("[ERROR] The option chosen must be numeric".format(len(opt_list)))

 #The app is found in the website

 if not res:

 list_widget = html_response.find_all("div",{"class":"listWidget"})

 rows = list_widget[0].find_all("div",{"class":"appRow"})

 print("App found. {} {}.\n\n".format(len(rows),"results" if len(rows) > 0 else "result"))

 apks_list = {}

 for index,row in enumerate(rows):

 a_link = row.find("a")

 apk_name = a_link.text

 apk_link = a_link["href"]

 apks_list[index+1] = {"name": apk_name, "link": apk_link}

Máster Universitario en Investigación en Ciberseguridad Página 93

 #Listing every option found

 opt = list_options(title="--- APPS LIST ---",opt_list=apks_list)

 for index in apks_list:

 print("{}[{}]. {}{}".format(colors["green"] if index == opt else "","*" if index == opt else "

",apks_list[index]["name"],colors["end"] if index == opt else ""))

 print("\n"*2)

print("Searching available architectures...")

res_download = requests.get("https://www.apkmirror.com/{}".format(apks_list[opt]["link"]))

res_download = bs(res_download.text,"html.parser")

list_widget = res_download.find_all("div",{"class":"listWidget"})[0]

rows = list_widget.find_all("div",{"class":"table-row headerFont"})

archs_list = {}

for index,row in enumerate(rows[1:]):

 a_link = row.find("a")

 a_name = a_link.text.strip()

 apk_link = a_link["href"]

 arch = row.find_all("div",{"class":"table-cell rowheight addseparator expand pad dowrap"})[1].text

 archs_list[index+1] = {"name": a_name, "link": apk_link, "arch": arch}

 #Listing hardware architectures available

 opt = list_options(title="--- ARCHITECTURES LIST ---",opt_list=archs_list)

for index in archs_list:

 print("{}[{}]. {}{}".format(colors["green"] if index == opt else "","*" if index == opt else "

",archs_list[index]["name"],colors["end"] if index == opt else ""))

 print("\n"*2)

res_apk = requests.get("https://www.apkmirror.com/{}".format(archs_list[opt]["link"]))

res_apk = bs(res_apk.text,"html.parser")

download_link = "https://www.apkmirror.com/{}".format(res_apk.find("a",{"class":"btn btn-flat

downloadButton"})["href"])

apk_name = input("Choose a name to save the file. (By omission: {}): ".format(apk))

if apk_name:

 apk = apk_name

 #Downloading the Android app to input directory, in order to analyzing its manifest file

 app_apk = requests.get(download_link,stream=True)

try:

 with open("input/{}.apk".format(apk), 'wb') as f:

 for chunk in app_apk.iter_content(chunk_size=1024):

 if chunk:

 f.write(chunk)

 print("* apk: {}.apk downloaded successfully.".format(apk))

except:

 print("[ERROR] While downloading app. Retry again.")

#App not found in the website

else:

 print("APK not found. Please, try another Android app...")

In the following Figure 5.4 is shown an organizational chart, which summarizes

its internal structure:

Table 5.4. Source Code snippet from apk_downloader

Máster Universitario en Investigación en Ciberseguridad Página 94

Finally, in this Figure 5.5, it can be seen a simulation of a normal execution of this

script, in order to download the Instagram app for a later analysis.

4.manifest_interpreter

To finish this section, the program presented below is the most complex one

developed to form part of the final thesis of this master, and has been programmed in:

Go, a compiled programming language that has among its main assets: efficiency and

concurrency in recurring tasks.

The purpose of this program, which can be executed via command line by means

of: ./manifest_interpreter, is first of all to proceed to the automatic decompiling of a

Figure 5.5. apk_downloader execution

Figure 5.4. Organization chart for APKDownloader

Máster Universitario en Investigación en Ciberseguridad Página 95

certain mobile app indicated by the user. To do this, initially presents the security analyst

with a list of the ppks downloaded to the system, which are stored in the 'input' directory

(see apk_downloader), in order to request which one the security analyst wants to

decompile, to proceed with a further analysis. Once the researcher selects one of the

available apps, it will proceed to decompile it, which will dump all the files (classes, smali

code, manifest file among others), to the output folder, from which it will later be able to

analyze the source code of the application under study, with the use of other security

analysis tools, which have already been presented during previous sections of this

document.

Once the decompilation process is finished, the tool searches for the manifest file

in the output folder, which is where the manifest_interpreter program dumps the data

obtained after the decompilation of the mobile application selected by the user, and once

it finds the manifest file, it loads it into the system, and proceeds to its analysis.

In this procedure, the information contained in this file will be shown in a

structured way, including: activities, services, receivers, providers, and other components

typical of the Android ecosystem, as well as the version of the API used during the

development of the app, which determines the version of the Operating System of the

mobile platform on which it can be installed (This association is made through the file

api_versions.cfg).

As a final part of all this information, the user is provided with a list of the

permissions used by the application, which shows a description, in addition to being

assigned a category: DANGER, NEUTRAL, DEPRECATED, or GOOD (See Android

Permission Classification in previous chapters) according to the impact on privacy and

security that could have the use of that permission by the mobile application. This

classification has been established in the file: permissions.cfg, which is located inside

conf, in the Scripts directory.

It should be noted that this assessment is a generalised classification of the impact

that such a permission could have, and that it should not be taken into account in a strict

manner, since it is up to the user (in this case the security analyst) to determine whether

or not such permission is necessary. As has been explained on numerous occasions during

this document, one of its main objectives is to raise awareness, and because of the

dangerousness involved in the use of permissions in mobile applications, the program:

manifest_interpreter has been developed that allows the security researcher to check at a

glance what permissions are used for, leaving the user of the application, the

responsability for determining whether the application being processed makes use of a

correct, or abusive way of the permissions declared within it.

After the procedure of analysis the manifest, the last stage that the program

performs before its completion, is the creation of a json file with a summary of everything

explained above. By default, the manifest file is a XML format, but after the execution of

manifest_interpreter, a JavaScript Object Notation file will be generated in the output/json

folder, which is more readable and allows it to be imported/exported more easily by other

types of web and desktop analysis tools.

A small snippet in Table 5.5 from the source code with comments, for illustrating

how part of the described tasks are carried out during the execution of the program:

Máster Universitario en Investigación en Ciberseguridad Página 96

//Manifest Overview

type ManifestLevel struct {

 Color Colors

 Manifest xml.Name `xml:"manifest"`

 Package_Name string `xml:"package,attr"`

 Schema string `xml:"android,attr"`

 Android_Version_Name string `xml:"versionName,attr"`

 Version_Code int8 `xml:"versionCode,attr"`

 Install_Location string `xml:"installLocation,attr"`

 App Application `xml:"application"`

 MinSDKVersion UseSDKTag `xml:"uses-sdk"`

 ScreenSupport ScreenSupportTag `xml:"supports-screens"`

 Permissions []PermissionTag `xml:"uses-permission"`

 PermissionsSdk23 []PermissionTag `xml:"uses-permission-sdk-23"`

 APIConfig map[string] string

 PermissionConfig map[string] string

 }

//Function for casting the manifest information to string

func (m ManifestLevel) String() string {

 m.Color.New()

 var buffer bytes.Buffer

 s := fmt.Sprintf("%s%s%s\n",colors.Yellow,"------- Manifest Overview -------",colors.End)

 buffer.WriteString(s)

 s = fmt.Sprintf("* Package Name: %s\n",m.Package_Name)

 buffer.WriteString(s)

 s = fmt.Sprintf("* Schema: %s\n",m.Schema)

 buffer.WriteString(s)

 s = fmt.Sprintf("* Android Version Name: %s\n",m.Android_Version_Name)

 buffer.WriteString(s)

 if m.Version_Code != 0 {

 s = fmt.Sprintf("* Version Code: %d\n",m.Version_Code)

 buffer.WriteString(s)

 }

 s = fmt.Sprintf("* Install Location: %s\n",m.Install_Location)

 buffer.WriteString(s)

 buffer.WriteString(m.App.String())

 buffer.WriteString(m.MinSDKVersion.String(m.APIConfig))

 buffer.WriteString(m.ScreenSupport.String())

 buffer.WriteString(fmt.Sprintf("\n\t%s%s%s\n",colors.Yellow,"--- Permissions ---",colors.End))

 if len(m.PermissionsSdk23) != 0 {

 m.Permissions = append(m.Permissions,m.PermissionsSdk23...)

 }

 for _,value := range m.Permissions {

 buffer.WriteString(value.String())

 desc := strings.Split(m.GetPermissionDesc(value.Name),"|")

 if len(desc) != 2 {

 desc = []string{"UNKNOWN","Customized permission. Description not available."}

 }

 grade := desc[0]

 description := desc[1]

 color_permission := colors.GetGradeColor(grade)

 buffer.WriteString(fmt.Sprintf("%s\t\tͰ [%s] %s%s\n",color_permission,grade,description,colors.End))

 buffer.WriteString(NEW_LINE)

 }

 return buffer.String()

 }

//Function for dumping Manifest Information to a json file

func (m ManifestLevel) ToJSON()string {

 var res []string

 res = append(res,fmt.Sprintf("\"package_name\": \"%s\"",m.Package_Name))

 res = append(res,fmt.Sprintf("\"schema\": \"%s\"",m.Schema))

Máster Universitario en Investigación en Ciberseguridad Página 97

 res = append(res,fmt.Sprintf("\"android_version\": \"%s\"",m.Android_Version_Name))

 if m.Version_Code != 0 {

 res = append(res,fmt.Sprintf("\"version_code\": \"%s\"",m.Version_Code))

 }else {

 res = append(res,fmt.Sprintf("\"version_code\": \"not specified\""))

 }

 res = append(res,fmt.Sprintf("\"install_location\": \"%s\"",m.Install_Location))

 var permission_value []string

 if len(m.PermissionsSdk23) != 0 {

 m.Permissions = append(m.Permissions,m.PermissionsSdk23...)

 }

 for _,value := range m.Permissions {

 desc := strings.Split(m.GetPermissionDesc(value.Name),"|")

 if len(desc) != 2 {

 desc = []string{"UNKNOWN","Customized permission. Description not available."}

 }

 grade := desc[0]

 description := desc[1]

 permission_value = append(permission_value,fmt.Sprintf("\"<%s>: %s -> %s\"",value.Name,description,grade))

 }

 permission_res := fmt.Sprintf("\"permissions\": [%s]",strings.Join(permission_value,","))

 res = append(res,permission_res)

 res = append(res,m.App.ToJSON())

 return fmt.Sprintf("{\"manifest\":{%s}}",strings.Join(res,", "))

 }

//Function for writing the json file in a certain folder

func (m ManifestLevel) Write(name string,ext string) {

 if ext == "json"{

 f,_ := os.Create(fmt.Sprintf("output/json/%s_manifest.json",strings.Split(name,".apk")[0]))

 defer f.Close()

 w := bufio.NewWriter(f)

 w.WriteString(m.ToJSON())

 w.Flush()

 }

 }

//Function for setting the initial configuration to the program

func (m *ManifestLevel) SetConfig() {

 var api_config configparser.ConfigParser

 api_config.Load(API_VERSION_FILENAME)

 var permission_config configparser.ConfigParser

 permission_config.Load(PERMISSION_FILENAME)

 m.APIConfig = api_config.GetConfigOpts()

 m.PermissionConfig = permission_config.GetConfigOpts()

 }

//Function for getting the description information for a certain permission

func (m ManifestLevel) GetPermissionDesc(permission string) string {

 index_dot := strings.LastIndex(permission,".") + 1

 permission = permission[index_dot:]

 return m.PermissionConfig[permission]

}

Table 5.5. Source code snippet from manifest_interpreter

Máster Universitario en Investigación en Ciberseguridad Página 98

In addition, an explanatory organizational chart is attached in Figure 5.6., in which

it can be glimpsed all the functions that make up the program, as well as its functionality:

Finally, in the Figure 5.7 shown below, it can be seen a normal execution of the

manifest_interpreter program, which returns the analysis of the Instagram application

manifest file, previously downloaded. A list of Android Permissions can be seen in Table

B1, in Annexes.

Figure 5.6. Organizational Chart for Manifest Interpreter

Figure 5.7. Manifest Interpreter running

Máster Universitario en Investigación en Ciberseguridad Página 99

5. metadata_extractor

 This script has been created to automate the process of extracting metadata from

files, and which is included as another utility in "Security Analysis Workwhop". to speed

up the process of security scanning on mobile platforms.

To launch the tool, firstly the analyst needs to configure a Google Maps API Key

(a detailed explanation will be found in the “Annexes” of this project, in a section called:

“How to get a Google Maps API Key”). Once this key is set, simply open a command

terminal and invoke the following: metadata_extractor. The process programmed for this

script will then start, asking the user to select the file, or image within the input folder of

the Scripts directory, that you want to be analyzed. Once this has been done, the analysis

process carried out by the tool will begin, in which all the information associated with the

file that can be extracted will be collected firstly, and then the information that can be

considered of a personal nature will be classified.

Then, the user will be asked to extract any geolocation information associated with

the file. If so, the coordinates of: altitude, latitude and longitude will be obtained in order

to discover where the resource was generated. Subsequently, a screenshot of the location

on a map, which has been obtained in this previous step, will be saved in the directory:

output/maps with the same name as the file to be analyzed, but with png extension.

To finish this procedure, all the data considered as: sensitive that has been

extracted during the execution of the script, it will be grouped in a dictionary, and later it

will be dumped to a JSON (Javascript Object Notation) file, which allows its import and

interpretation by other solutions present in the market, in quick and easy way.

Finally, there is also the option of the user to be able to anonymize a particular

file, in order to remove all those metadata that can be interpreted to give information

about himself/herself. To do this, simply run the command: metadata_extractor --

anonymize, and select the desired file.

Part of the Python language code with which the script was developed is attached

in the Table 5.6 below.

#!/usr/bin/env python3

import os

import re

import time

import json

import secrets

import requests

import datetime

import argparse

import googlemaps

import subprocess

import configparser

from PIL import Image

from selenium import webdriver

from selenium.webdriver.chrome.options import Options

class MetadataExtractor:

 #Terminal colors

Máster Universitario en Investigación en Ciberseguridad Página 100

 colors = {

 "blue" : '\033[94m',

 "green" : '\033[92m',

 "yellow" : '\033[93m',

 "red": '\033[91m',

 "end": '\033[0m',

 }

 #Constructor

 def __init__(self):

 self.metadata = {}

 self.gps_tags = {}

 self.config = configparser.ConfigParser()

 self.config.read("conf/api_keys.cfg")

 self.config.sections()

 #Enable key/value, gps and latitude/longitude detection

 self.__create_key_value_regex()

 self.__detect_location_tags()

 self.__extract_lat_long_values()

 #Function for selecting a random color for terminal messages

 def __random_color(self):

 choice = secrets.choice(range(len(self.colors)-2))

 for i,color in enumerate(self.colors):

 if i == choice: return self.colors[color]

 #Function for getting current date time

 def __get__time(self):

 return datetime.datetime.now().strftime("%A - %d-%m-%Y at %H:%M:%S").capitalize()

 #Function for checking Google Maps API key

 def __checking_api_key(self):

 try:

 self.api_key = self.config["KEYS"]["GoogleMaps"].strip()

 if self.api_key == "":

 print("[ERROR] The Google Maps API Key is empty. Please, introduce

your key in order to use this service, (conf/api_keys.cfg)")

 except:

 exit()

 #Function for checking the input folder in order to find files

 def check_input_dir(self):

 self.files = os.listdir("input/metadata")

 if not self.files:

 print("[ERROR] There is no files in the input/metadata folder. Please drop some files

in order to be analyzed.")

 exit()

 else:

 self.list_input_dir()

 #Function for listing the content of the input folder

 def list_input_dir(self):

 valid = False

 files_size = len(self.files)

 while not valid:

 print("\n"*3)

 print("What file do you want to analyze?")

 print("---------------------------------")

 for index,file in enumerate(self.files):

 print("{}). {}".format(index+1,file))

 try:

 self.option = int(input("Select an option: "))

Máster Universitario en Investigación en Ciberseguridad Página 101

 except:

 self.option = 0

 if self.option >= 1 and self.option <= files_size:

 valid = True

 else:

 if files_size == 1:

 print("[ERROR] The option must be a numeric argument of 1")

 else:

 print("[ERROR] The option must be a numeric argument from: 1

to {}".format(files_size))

 self.file_selected = [self.files[self.option-1]]

 #Function for maping the file selected to a folder format

 def __map_file_folder(self):

 self.file_selected = list(map(lambda x: "input/metadata/{}".format(x),self.file_selected))

 #Function for calling the exiftool command

 def call(self):

 command = ["exiftool"]

 self.__map_file_folder()

 command.extend(self.file_selected)

 self.output =

subprocess.Popen(command,stdout=subprocess.PIPE,stderr=subprocess.DEVNULL).communicate()

 self.__parse()

 self.prettify(self.file_selected[0])

 #Function for calling the exiftool command with arguments

 def call_with_args(self,args,output=True,overwrite=False):

 command = ["exiftool"]

 #self.__map_file_folder()

 command.extend([args])

 #To overwrite original file

 if overwrite: command.extend(["-overwrite_original"])

 command.extend(self.file_selected)

 lines =

subprocess.Popen(command,stdout=subprocess.PIPE,stderr=subprocess.DEVNULL).communicate()[0].decode("u

tf-8").splitlines()

 if not output: lines = []

 response_command = {}

 for line in lines:

 #Cleaning useless characters from output

 response = self.key_value_regex.search(line).groupdict()

 key,value = response["key"].strip(),response["value"].strip()

 response_command[key] = value

 return response_command

The following Figute 5.8 shows an organizational chart with the main structure

of the script

Table 5.6. Source code snippet from metadata_extractor

Máster Universitario en Investigación en Ciberseguridad Página 102

To finish this section, a Figure 5.9. is shown, in which it can be seen the tool in

question, running in the security analyst's system.

Figure 5.8. Organizational chart for Metadata Extractor

Figure 5.9. Metadata extractor collecting private information

Máster Universitario en Investigación en Ciberseguridad Página 103

5.5. Metrics

In order to evaluate the effectiveness of this platform, based on the objectives

described in previous sections, we have created a series of metrics or indicators that will

allow us to evaluate whether these have been correctly fulfilled.

Depending on the scope to which these metrics are directed, we can divide them

into:

- Metrics for the User

- Metrics for Professionals

- Metrics for Learning

a) Metrics for the user

- Is the user able to understand the concepts specified throughout the work?

- In addition to understanding them, is he/she able to assimilate them?

- Is the supplied platform useful to apply the concepts learned by the user?

- What kind of technical mastery does the tool require? Is it affordable/accessible to users

with little technical knowledge? Does it give them any kind of facilities?

b) Metrics for Professionals

- Does it allow them to automate tedious, costly procedures in an easy and comfortable

way?

- Does it provide a clear and concise view of the information provided to the user?

- Is it multi-platform?

 - Are open-source tools? Can a user with technical knowledge modify, or alter the

operation of the platform tools according to their use?

c) Metrics for learning

- Are the contents of security and forensic analysis applicable from the platform:

"Security Analysis Workshop"?

- Can this tool be adapted to the different needs of users? Is it interactive?

- Can it be applied to real cases?

- Is it dynamic?

Máster Universitario en Investigación en Ciberseguridad Página 104

5.5.1. Limitations found____________

Due to lack of time and other external factors, this project could not be tested

with the general public in order to test its effectiveness. However, and due to the metrics

that have been established during the execution of the project, and to the fact that these

have been met at the time of its implementation, it is considered that the main objectives

have been met, and therefore the work has been carried out successfully.

5.6. Real Cases of Security Analysis

Throughout this section, a series of real cases of security analysis on mobile

platforms will be cited, indicating the tools that have been used to develop them, as well

as the procedures carried out and the results or conclusions that have been drawn during

their study. Firstly, an analysis of the iOS application (DVIA - Damn Vulnerable iOS

App) will be detailed, which is an app for Apple's Mobile Operating System that has been

purposely designed, with a series of bugs and vulnerabilities that serve as a learning tool

for all those researchers who want to start in the world of analysis on mobile platforms.

Then, an issue will be evaluated in one of the most used messaging apps in the world

(WhatsApp), and as a result of bad decisions or negligence during its development, the

door was left open for a long time to an exfiltration of personal data by users who used it.

Finally, the problem of the danger of metadata associated with the majority of digital

resources that populate the Internet will be explored in depth, and how their collection

and subsequent analysis can enable personal information to be obtained from the user

who created them, including unambiguously identifying them.

5.6.1. Security Analysis over iOS app: DVIA

 In this section, we are going to perform a security analysis over: DVIA [146] (Damn

Vulnerable iOS Application), in order to show how a security analyst should carry out

any research about possible vulnerabilities in this mobile platform. DVIA is a special

application because it has been created to provide a learning platform for researchers,

students, and everybody who wants to know how the security and privacy architecture is

built in iOS. This application has been developed intentionally with errors and other

common issues that it works like example of how not to develop an iOS application,

dividing into sections the app to teach the user about: how to detect whether or not the

jailbreak is enabled, if communications through Internet are secure enough, and even how

to store user credentials, ensuring that these are properly encrypted.

 The github repository where the iOS application is stored is:

https://github.com/prateek147/DVIA . The first thing a security analyst needs to do is:

cloning the repository in order to have the source code of the iOS app available to inspect

it, in addition to its corresponding ipa file which is the common format for application in

iOS ecosystem. Once the information in this repository has been downloaded correctly,

the first thing, if the analyst is using a Linux distribution (for instance the distro provided

in this master thesis: "Security Analysis Workshop"), then he/she must go to the main

folder of the github repository which is: DVIA. To do that, It is only necessary to type on

the terminal:

- cd DVIA (change directory from the current folder to DVIA)

https://github.com/prateek147/DVIA

Máster Universitario en Investigación en Ciberseguridad Página 105

 After going into this folder, we will see an ipa file called:

DamnVulnerableiOSApp.ipa which is just a compress zip file with another extension.

Therefore, in order to uncompress its content, firstly it will be needed to change the

extension of the file. Then, the security analyst will invoke this command-line:

- mv DamnVulnerableiOSApp.ipa DamnVulnerableiOSApp.zip (This sentence will

change the original name for a new one with extension .zip).

 As we have a zip file, to see how many files are compressed within it, and start to

inspect them, we will execute this command:

 - unzip DamnVulnerableiOSApp.zip (which uncompress the content of the zip file

in the same working directory where the security analyst is).

 Inside the zip there are a list of different files, as can be seen in the picture below,

but the most important is one named: DamnVulnerableiOSApp without extension. This

is the binary file, the code compiled for the developer of the application, and it is where

the security researcher must search in order to comprehend the behavior of the mobile

application to analyze. One way to achieve this, it is researching over the source code of

the application, but this part of the application is not available, so in order to perform a

static analysis through the code of the app, the analyst must use a disassembler for

disassembling the binary cited previously. The utility chose for this stage of the analysis

will be: Hopper which is a disassembler, debugger and decoder introduced in previous

chapters, that is only available on macOS platforms, but it is the best choice to work with

binary files compiled in the ecosystem created by Apple. This step in the project could be

an obstacle for certain researchers, because if they do not own a Mac computer, then they

will not be able to carry out this important part of the analysis, or maybe they will have

more problems, because other software utilities like: volatility are not ready enough to

work on Apple platform.

 However, if the security analyst owns a Mac computer and he/she downloads

Hopper, he/she only needs to run this utility and when is loaded a window with a side bar

will show up on the screen. In order to start disassembling the: "Damn Vulnerable iOS

App", it is only needed to click on option File in toolbar menu, and then over "Read binary

executable from...". After doing that, the researcher must select the path where the app to

analyze is stored, in this case: DVIA, and after clicking on the binary file:

DamnVulnerableiOSApp, Hopper will ask the user to select between two different

architectures: 32bits or 64 bits. We will choose 64 bits, and then ARMv64 because this

application is ready for supporting the architecture of the latest iOS mobile dispositives.

Finally, it will start a procedure in which the mobile application will be disassembled,

displaying its assemble code on the center part of the Hopper.

 Once, we reach this point, it is necessary to highlight two different sections and

features in Hopper, that we will use frequently as long as we deal with this security

analysis. This two characteristics are: in first place the section in the left sidebar which

allows the security analyst to find strings, and labels in the source code of the application,

and then this button in the upper-right side of the window called: pseudo-

code, which creates as its name suggests a pseudo-code version of the source code written

by the developer. Therefore, the code will not be exactly as it was coded but it will be a

great approximation of the original source code, providing to the security researcher a

Máster Universitario en Investigación en Ciberseguridad Página 106

clearer view of the application target than the assembly version, which in many cases

when the mobile application is bigger than in this case, it will be really complicated to

understand deeply the purpose of the software decoded by Hopper [147].

 To teach how to reproduce a lookup in the assembly code displayed by the tool,

the researcher can search this common delegate in iOS application:

willFinishLaunchingWithOptions, which show up the results to the user. With this simple

step, we will accomplish two interesting things. Firstly, we learned how to search a

method, delegate, or whatever string inside the mobile application disassembled, and in

addition we found out the "Damn Vulnerable iOS App" is programmed in: Objective-C,

instead of the current trend of coding in the new programming language introduced by

Apple a few years ago: Swift.

 The content of the compress file has two different folders called: Payload (it

includes the .app file which contains among others the binary file to be disassembled),

and Symbols (includes symbolic information created during the execution of the mobile

application for creating reports in terms of logging). In order to see the files inside the

.app file, it is necessary to click on right button and then: "Show package contents". After

doing this, we will see a binary file which will be disassembled in the next steps of this

analysis.

 In addition to the application's own resources, such as images, videos, and so on,

it should be noted that the content of any app package usually contains:

-Info.plist - configuration information (such as the manifest file in Android).

-Pkginfo - indicates the packet type, plus a set of bytes to identify the application.

-CodeSignature: the signature itself of the mobile application.

 Next, and in order to more conveniently analyze the source code of the application

and run it in a terminal software simulator, if we do not have an iOS mobile device to do

so, we will import the DamnVulnerableiOSApp project into Apple's official IDE: Xcode.

To do this, double-click on the file called: DamnVulnerableiOSApp.xcodeproj, which

will proceed to the import process of all source code, and application resources into

Xcode. The typical interface of the official iOS IDE and applications for Mac, consists of

a sidebar on the right side from which we can select the project to work on, as well as the

set of resources of the same, and a central visualization area, where the source code of

each class, methods, and delegates created during the process of developing a mobile app

for iOS.

 From Xcode, if the researcher selects in the upper toolbar the device on which to

perform the emulation: (iPhone or iPad), and later gives to the "Play"button, the emulation

will take place in a virtual environment of the DVIA app, imitating its behavior as if it

were installed in a conventional physical device.

 If you want to investigate how this mobile application is stored in the device

emulator, you should simply access the macOS Finder and then go to the following path:

/Users/user/Library/Developer/CoreSimulator.

Máster Universitario en Investigación en Ciberseguridad Página 107

 As can be seen in the figure below, each app is assigned a random identifier

number, but not the app's proper name, and a sandbox environment is generated that limits

the scope of each one of them, as previously explained in this project. Once located where

the application has been compiled, it could be loaded as it was previously done in Hopper,

in order to proceed with its disassembling, and be able to evaluate certain characteristics

associated with it.

 As with Android, its info.plist configuration file is one of the most important

because it has configuration information from the app itself, and can greatly help the

research process, as it lists the most important components that are used by it.

 The info.plist file saved in the root folder of the iOS application. Among many of

the components that are identified, priority should always be given to those that have to

do with communications via the Internet, which is why we are attracted by the use of the

URL tag.

 Therefore, we decided to check how the URLs are handled by the application, and

for that we go to Hopper and write: URL. We found that there is an AppDelegate method,

which serves to manage URLs in the app, and that is called: openURL. If we look at some

of the strings contained, we notice the use of "phone" or "Calling without validation",

which is not a very characteristic behavior when going to consult web pages on the

Internet. It is therefore, that we keep this in quarantine, to consult at the end, but

everything seems to indicate that it is a strange behavior, which may have been created

to violate the security and privacy of the user of the application.

 As mobile applications become larger and more complex, it becomes increasingly

difficult to consult and perform a conclusive security investigation, since it is very

difficult to determine what elements each app contains and the relationships between

them. To solve this problem, the disassembler Hopper from its left sidebar allows you to

search for "Labels".

 To give an example, if the researcher wanted all the drivers of the mobile

application, which are precisely Controllers inherited from the parent class:

ViewController, he would only have to put ViewController in the text box, and then

Hopper would return a drop-down list of the set of drivers defined by the developer of the

app to be analyzed.

 After this analysis of DVIA's structure, the next step will be to evaluate the

information stored in it, since many times the main privacy problems in mobile

applications can be caused by a bad configuration of the security mechanisms provided

by the Operating System to store information, or by an exfiltration of data taking

advantage of a vulnerability present in the mobile system.

 In the case of iOS, the main storage media will be: NSUserDefaults (the equivalent

of Android's SharedPreferences), plist files, CoreData, and SQLite3 databases.

 To analyze NSUserDefaults, we must look for the method: standardUserDefaults,

which is the one that makes calls to access the content of this important section of Apple's

system. Once that string is searched, we will be returned a set of elements in the app that

make use of the previously mentioned method.

Máster Universitario en Investigación en Ciberseguridad Página 108

If we access the pseudo-code of the method: InsecureDataStorageVulnVC, we can

verify that a value called:"DemoValue" is stored in NSUserDefaults. It seems in this case,

something harmless, that could have been left as a legacy of the early stages of mobile

app development.

 In the case of plist files, they are usually created by invoking the writeToFile

method, NSDictionary or NSMutableDictionary objects, so we will go to the Strings

search bar on the left sidebar and type: writeToFile. This will return a list of methods that

meet that pattern. If you right click on: writeToFile:automatically, and then select

References to highlighted..., a list of those elements will be returned, where this method

is executed.

 Within the returned list, it is necessary to look for suspicious names, or that can

call the attention of the investigator in security due to the implementation of the same

one. In this case, it is curious to find a method called: InsecureDataStorageVulnVC, that

if we worry about looking at the source code written in Objective-C, we see that it saves

the username, and the user's password in plain text, in the file userInfo.plist.

 If we analyze the following discordant element later: FlurryHTTPResponse, we

can see that the headers, the body, and the status code of calls made to a web page that

we cannot identify are stored.

 Next, if we analyze: downloadAssetForTransaction, we can see that it is stored in

the mobile device, a certain file whose origin is unknown, but we only know that it has

been downloaded via the Internet.

 If another possible method of storing information is used: CoreData, the

NSManagedObjectContext method should be searched in strings. If we look again at:

InsecureDataStorageVulnVC, we can see that various data such as: name, telephone, or

user's e-mail, will be stored in this mechanism of system storage, through calls to the

methods: nameTextField, emailTextField, or phoneTextField.

 Because of the ability to be permanently connected to the network of today's

smartphones and tablets, another potential entry point for security threats on mobile

devices is through the network connections established between them. In order to analyze

them, the security analyst should focus on searching for the following strings, which have

to do with common elements in all Internet communication: SSL, SSLPinning,

NSURLRequest, NSURLConnection, and more specifically the methods used to initialize

these classes such as initWithRequest, or URLWithString.

 If we focus on URLWithString, searching for it will return a list of methods that

invoke it in such a way:

 Since at the present time how information is transmitted via the web medium

(whether through non-encrypted protocol: HTTP, or encryption: HTTPS) is one of the

points that determine to a greater extent the degree of security of the platform, we will

focus on analyzing the method: TransportLayerProtectionVC, which will return us if we

dump its pseudo-code, three interesting methods: sendOverHTTPTapped, send Because

non-encrypted means may be used for the transmission of information, this will be

another possible point to highlight as conflicting, as it could jeopardize user privacy.

Máster Universitario en Investigación en Ciberseguridad Página 109

 Finally, another of the most common storage media, which usually store

information of various kinds in the system, and which should be analyzed in any security

analysis of mobile platforms, are the following: system logs.

 In the case of the iOS platform, the NSLog method is usually used to create logs

of the various actions to be carried out. If we search for the NSLog string in the

disassembler Hopper, it will return the set of methods that refer to log calls within the

system. Because it is a very common function, the investigator's own intuition can help

you determine which methods to inspect more closely because they are suspicious.

 As in many of the sections of this section devoted to the analysis of an iOS

vulnerable application, the method to be investigated is: InsecureDataStorageVulnVC. If

we look at the body of the same one, an exception can be seen that could be generated

when saving user information through the system logs.

 In short, the main vulnerabilities, or risks that have been seen during the analysis

of this iOS application are: the ability to make calls in a covert manner without the app

user noticing, web communications through non-encrypted media using the HTTP

protocol, exfiltration of sensitive information associated with the user stored in various

storage mechanisms of the platform such as: NSUserDefaults, CoreData or NSLog for all

these facts, it is demonstrated once again the ignorance that the user may have about the

actions carried out by the applications of your system, and as the conjunction of the

actions carried out by them, can put at grave risk the security and privacy of users who

decide to install, and use that vulnerable app on your system.

5.6.2. Metadata Analysis over Multimedia Assets

 As has been described in previous sections of this Master thesis on mobile

platforms: iOS and Android, the information that can be extracted from multimedia media

that can be captured thanks to the capabilities offered by the new smartphones, and

tablets, make it possible that if you don't take special care, the data that an attacker can

obtain about the user can identify it, often uniquely, causing not only a violation of their

privacy, but also a violation of their privacy.

 To demonstrate this fact, the following assumption will be made:

 "In a group of friends, it is decided to share the photos that have been taken during

the holidays of each one, in a shared folder of Dropbox. Given a specific set of

photographs, could it be determined where these photographs have been taken, in addition

to who has taken them?”

 The answer, as will be seen throughout the development of this chapter, is yes.

Not only will we be able to determine where the photographs have been taken, but we

will also determine the device that has taken them, and therefore we will be able to relate

it to the holder of this mobile device.

 In order to perform this procedure, we will first access the Linux distribution based

on Ubuntu, and presented for this thesis called: "Security Analysis Workshop", and once

booted we will open a terminal of commands, clicking on the menu at the top left, and

clicking on: Terminal of Commands. Once we have a shell, we will move to the directory

Máster Universitario en Investigación en Ciberseguridad Página 110

where we have downloaded the photos for analysis (in this case, in Images/EXIF

Analysis).

 cd ~/Images/EXIFAnalysis

 Inside that directory, if we list its contents, by means of the command ls, we can

see that there are two photographs of a cloudy landscape, called DCIM_1. jpg, and

DCIM_2. jpg. Thanks to one of the tools installed within this Linux distribution, and

which has been presented in previous chapters of this document (exiftool), we will be

able to list the set of metadata associated with both photographs, in order to discover if

the information provided by them, allows us to obtain some kind of indication about what

and who has made them.

 In order to obtain a list of these metadata, simply run the following command:

 - exiftool DCIM_1.jpg (equivalent to DCIM_2.jpg and the rest of pictures),

which shows us all the data associated with the last medium as a parameter, which is

sometimes not the most appropriate, since sometimes the information is so vast, that it

becomes quite complex, to see at a glance what information shown is useful, and which

is not.

 Next, there is a Figure 5.10 below with the result of this command, which displays

all the metadata associated to a certain picture.

 As we can see, there are a lot of information to research. Fortunately, the exiftool

tool contains a series of filters, which will allow us to measure what information to show

to the security analyst, and allow him to divide in detail the investigation that is being

processed.

 From now on, we are going to introduce a set of different commands, in order to

show the main set of parameters to call, for displaying the more useful information which

can help the security analyst to perform an analysis with enough guarantees to prove how

multimedia resources may compromise the security and privacy of the users.

 In Figure 5.11, we can see a list of command sentences followed by its output

which is going to be explained step by step.

Figure 5.10. Exiftool extracting metadata from a certain picture

Máster Universitario en Investigación en Ciberseguridad Página 111

Figure 5.11. List of exiftool parameters

 One of the first steps, which any security researcher could take to determine the

source of the resource, is to check the camera model of the mobile device. This could help

as a first step to determine which mobile device is smartphone or tablet, has taken the

photograph, and thus be able to narrow down a little more the search among potential

people who may have been the owners of this multimedia resource.

 In order to display information about the camera that took the picture, we should

run the following command from the terminal:

-exiftool -Model DCIM_1. Jpg

 As we can see, it is the camera from an iPhone 4S. This command not only show

the camera type but also allow us to determine the model of the smartphone. Now, it is

easier to know the source of this picture, because from now on, we can discard Android

mobile devices.

 The next command: exiftool –Software DCIM_1.JPG is for determining the

version of the Operating System installed in the mobile device. In this case, we can see is

the version: 9.3.5, which is an obsolete iOS version, which is normal because an iPhone

4S is considered a vintage generation by Apple. In addition, this important data may help

the analyst to exploit some vulnerabilities of this old version which have not been patched

by Apple, due in general the latest patches are meant to be part of the newest versions of

this mobile system.

 To extract when the photograph was taken, it is only necessary to invoke: exiftool

–CreateDate DCIM_1.jpg, which displays the date when this picture was created is:

October 21st, 2017 at 12:07:56p.m. Therefore, it was taken at morning, as we can see in

the picture attached previously.

 There is no need to search this data, because the model of the smartphone was

discovered in the first step of this analysis, but if the security researcher launches: exiftool

–Make DCIM_1.jpg, Apple value is showed up, which is completely normal because we

are inspecting a picture taken by the official smartphone of Apple: iPhone.

 When the releasing of the new version of iOS (iOS11), Apple launched a new type

of compression system called: HEIF. We discovered in the software stage that this picture

was taken from iOS 9.3.5, therefore this extension will not be available, but in order to

show all the different possibilities this powerful tool provides, if the security analyst

invokes: exiftool –Compression DCIM_1.JPG, it will be displayed: the common in this

Máster Universitario en Investigación en Ciberseguridad Página 112

version: JPEG format which is one of the most popular picture format with loss, available

today.

 Likely, the most important and maybe the part which pay attention, because its

ability to violate the privacy of the user, it is in which is shown the GPS coordinates

associated to the photograph taken by some user. It is necessary to highlight that in order

to have this important characteristic; the location feature must be enabled in the

smartphone or tablet. This feature, due to export this ability in cars, the “Find my iPhone”

app, or because the use of smartphones in sport activities for monitoring the heart rate

and different aspects of the physical condition of the user, it is really common of keeping

enabled it. It is on, then the latitude and longitude associated to the place where the picture

was taken will be embedded within this multimedia resource.

 These important parameters, for exiftool can be executed in its single version:

-exiftool –gpslongitude DCIM_1.JPG

-exiftool –gpslatitude DCIM_1.JPG

 But the most useful way of invoking this sentence is through a mix version of the

previous command-line sentences.

-exiftool –gpsposition DCIM_1.JPG

 When the security analyst run this command, the latitude and longitude associated

to this asset is displayed on the screen. In this case, the result obtained is:

43 deg 18’ 10.91” N, 1 deg 58’ 31.65”W

 Besides, there is another command which provides the researcher with additional

information to add to the previous one, and that is: exiftool –gpsaltitude DCIM_1.JPG

that display: 28 m Below Sea Level. Maybe a seaside city?

 With all these coordinates, the security analyst can check through the different

online map solutions available, where is this place, but first of all, it is needed to format

the output received by the previous command sentences. To do that, the analyst can

invoke this instruction as follows:

-exiftool –gpsposition DCIM_1.JPG | sed ‘s/deg/º/g’

 After executing it, the output now is:

43º 18’ 10.91” N, 1º 58’ 31.65”W

Máster Universitario en Investigación en Ciberseguridad Página 113

Now, it is time to browse to an online map platform, for instance:

https://www.google.com/maps, and type in its search textbox the coordinates obtained:

As we can see, this picture was taken in: San Sebastián, Guipúzcoa (Spain) in

Figure 24, nearby the Anoeta Stadium. This metadata allows the security analyst to know

where was the city that appears in the picture, and as we suspect is a seaside city in North

Spain. Despite this prove the power of this interesting tools, it also shows how vulnerable

users are, because if some attacker takes this multimedia resource and he/she has

proficiency to perform this procedure, he/she will be able to know certain personal

information about the owner which means a severe privacy risk.

 Other useful fields that must be taken into account are those which delivers

information about the person who takes the photograph. Not every system shows this

data, but it does, invoking one of these commands, the security researcher will be able to

unveil the name of the person who owns the mobile device.

 -exiftool –Author pic_name

-exiftool –Creator pic_name

Due to its important privacy hole, which allows malicious users or other kinds to

discover certain private information about the user of the mobile dispositive, it

recommended to execute this command: exiftool –all= pic_name, once a picture is taken,

in order to remove the metadata fields which, identify the owner of the device, and thus

preserving his/her privacy.

Figure 5.12. Searching a place by its GPS coordinates

https://www.google.com/maps

Máster Universitario en Investigación en Ciberseguridad Página 114

 Finally, it is necessary to stand out that this procedure can be simplified, using the

tool developed for this purpose during this work, and called: metadata_extractor. The

steps to run this tool, are as follows:

- Go to the command prompt, and invoke the metadata_extractor script.

- The user will then be asked to choose the set of images, or other multimedia resources

to evaluate, and for them to be detected by the tool, they must be located in the input

folder of the home directory of the system (home/saw/Scripts/input).

- After selecting one of the resources, the analysis will begin, listing all the information

obtained by screen, and indicating if any associated sensitive information has been found.

-If found, it will be displayed on the screen, and in case they are GPS coordinates, the

location will be geolocated, showing a map to the user of the location found, besides

saving this capture in the output directory inside Scripts folder.

- Finally, the user will also save a summary of all the information obtained in previous

steps in a JSON format, for later analysis or import to other tools.

A complete tool execution is shown in Figure 5.13, and 5.14.

Figure 5.13 Execution of metadata_extractor

Máster Universitario en Investigación en Ciberseguridad Página 115

In addition to the above, metadata_extractor has two additional options:

- Anonymizer: invoke metadata_extractor -a, in order to eliminate all the sensitive

information of a determined multimedia resource.

- Faker: by calling metadata_extractor -f, random values associated with this resource can

be generated to falsify it, so that no real data can be extracted that could compromise the

user. Options can be configured in the file: conf/fake.cfg.

5.6.3. Downloading automatically applications

In order to obtain the applications that can be analyzed by other tools in “Software

Analysis Workshop” such as for instance: manifest_interpreter, applications should be

downloaded and manually incorporated one by one into the computer of the security

analyst. To automate this process, the script called: apk_downloader has been created.

This tool allows you to download applications from the Android platform in an automated

way, from the apkmirror repository, which as advantages compared to the official Google

store, offers a history of versions of the application a user want to download, apart from

an added value, because the user could get obsolete versions, or with some security issue

in order to learn the main errors and risks that are found on a mobile platform.

To run this utility included in "Software Analysis Workshop", the following will

be performed:

- From a terminal, run the command: apk_downloader.

Figure 5.14 Results of metadata_extractor

Máster Universitario en Investigación en Ciberseguridad Página 116

- The user will be asked to enter the name of the application he/she wants to download.

- If the app is available in the repository, it will proceed to display the set of available

versions of it.

- After selecting one of the available versions, the user will be asked to enter the

architecture or build version associated with that mobile application.

- When selected, it will prompt the user to enter the name with which he/she wants the

app to be saved in the system (If none is entered, a default name will be used).

- Finally, the apk file is downloaded to the input folder of the Scripts directory, for use by

other tools.

In Figure 5.15, a complete execution of a download of an Android application,

through this script, is shown.

Figure 5.15. Downloading an app via apk_downloader

Máster Universitario en Investigación en Ciberseguridad Página 117

5.6.4. Permission classification from a Manifest file

In the analysis of an Android application, one of the first steps to be carried out is

the extraction of the permissions requested by the app, in order to see its impact when is

used by the user.

As it can be seen in previous sections of this document ("Analysis of Permission

System"), in order to know the list of permissions in an Android application, the user

should look at the AndroidManifest.xml file, associated with each application. One of the

main problems with this file is that although it is a structured XML file, many times when

it is very large, or when it is evaluated by people with little knowledge of the platform, it

is difficult to discern the parts within it.

This is why the program called: manifest_interpreter, developed especially for this

work, evaluates, classifies and displays the information of this type of files in an

organized and orderly way to the user.

To proceed with its implementation, the following steps will be taken:

- From a terminal, it is necessary to execute: manifest_interpreter.

- The program requests a selection of the available apps in the system. Android apps with

an apk extension must be downloaded and saved in the input file of the Scripts folder, in

order to be detected by the tool.

- After selecting a given application, the program will automatically decompile it, collect

all the available information and display it in a structured way by screen, highlighting the

main parts of the manifest file, and classifying according to its dangerousness the set of

permissions associated with the mobile application under study.

- Finally, and automatically, it will save all the information collected in JSON format, in

the output folder of the Scripts directory, so that this file can be exported by other types

of tools that support it.

Next, a series of screenshots show the complete tool execution process. In the

Figure 28, it can be seen the initial running process of manifest_interpreter, followed by

the selection procedure of the application to be analyzed.

Máster Universitario en Investigación en Ciberseguridad Página 118

In Figure 5.17, you can see how the tool collects and displays the information

collected from the application under study, in this case: Instagram.

Figure 5.16. Initial execution of manifest_interpreter

Figure 5.17. Results of manifest_interpreter

Máster Universitario en Investigación en Ciberseguridad Página 119

5.6.5. Updating apk_tool easily

The tool called: apk_tool is one of the most powerful tools in the analysis sector

on Android applications. For this reason, it has been installed and integrated into

"Software Analysis Workshop", in order to be used for decompilation and package

creation, which it is provided by this utility. Nevertheless, one of the main problems

associated with apk_tool, is its installation is tedious, and may even be complicated for

some users who do not have enough experience. Therefore, in order to speed up and

facilitate this process, a script called: check_apktool has been included in: “Software

Analysis Workwhop”, which basically checks the version of the tool that is installed in

the system, and if it is an obsolete version it automatically updates it, avoiding that the

user has to download it, associate it with a certain wrapper, and finally add it to the PATH

of the system environment variables, which is the standard procedure that must be

performed.

It is necessary to point out that the execution of this service must be performed

with administrator privileges (sudo check_apktool), because certain actions require root

privileges in order to be performed.

In order to execute this tool, the following will be done:

- This command must be invoked from the terminal: sudo check_apktool

- If there is a newer version than the one installed, it will be updated.

- If not, a message will be shown to the user, indicating that the latest version is already

installed.

The following screenshots show the three possible cases that can occur. First, it

can be seen in Figure 5.18, as if it is not specified that it runs with root privileges, the app

gives an error at runtime.

Next, in Figure 5.19, the normal execution is shown when a new version is

available, which requires updating.

Figure 5.18. check_apktool executed with normal user privileges

Máster Universitario en Investigación en Ciberseguridad Página 120

Finally, in Figure 5.20, it can be seen what the tool shows when the most current

version of apktool is installed in the system.

5.7. Limitations

Most of the tools that are installed in "Security Analysis Workshop", belong to

those that allow security and privacy analysis on the Android platform. Tools for use with

iOS have also been included, but the number of tools is lower than its competitor's, as

iOS is more closed, and many utilities are available only for the Desktop Operating

System: macOS, or require jailbreak on the mobile terminal.

We have not been able to prove it in a professional or learning environment, but

the possible applications of each of the tools have been included, as well as metrics or

indicators to help assess whether the objectives established when developing this Master's

thesis have been achieved.

Furthermore, it has not been possible to test the platform with users in order to test

its functionality in real life, so one of the next steps which should be done is to verify that

the quality and compliance metrics described in previous sections are feasible.

5.8. Budget

There is no budget for this work, because its purpose to serve as Master Thesis.

Figure 5.19. Check_apktool executed successfully

Figure 5.20. Latest apk_tool version already installed

Máster Universitario en Investigación en Ciberseguridad Página 121

6. Conclusions

Nowadays, mobile technologies are beginning to take on such prominence and

importance that by the end of 2017, a growing trend is beginning to be noticed in which

it can be seen that mobile devices are beginning to surpass their desktop counterparts.

Due to the portability and mobility provided by these devices, more and more

developers choose these solutions to create their new applications, making mobile devices

the main private data host for: credentials, instant messaging conversations, social

networks, contact information, or even number of credit cards.This has caused that in

recent years, the interests of malicious users and main security professionals, have been

attracted to this emerging ecosystem, which day by day offers new possibilities and

services to users of these platforms,

Because of this, new vulnerabilities, and various security issues are discovered

every day, which help to improve system stability, but also serve if it is exploited by

hackers, or other malicious users, to create procedures, and tools aimed at violating the

security and privacy of the owners of affected devices.

This is why this project has placed special emphasis on showing a current state of

the security landscape in today's two main mobile operating systems: iOS and Android,

to give users an insight into how the situation is really going, and what hazards or risks

they are exposed to. Since most of the time, these dangers are caused by ignorance, an

attempt has been made to create a solid knowledge base on the security architecture of

these mobile ecosystems, as we have considered that there is no better way to avoid a

problem than to prevent it.

In addition, it has been jointly developed, a solution that serves not only as a

practical workshop of what was presented during this document, but also as a distribution

that combines the main existing mobile security analysis tools, as well as others specially

created for this development, and whose main objective is to provide an agile and

comfortable experience not only for professionals in the security sector, but also for users

who want to discover what this community offers.

Therefore, with the achievement of this Final Master's Thesis, it is hoped to have

been able to provide users with a complete and robust software platform, that allows them

to perform security and privacy analysis in the mobile ecosystem, as well as provide

global knowledge to users of these technologies, so that they are able to avoid and fight

against the main risks that populate these platforms.

Máster Universitario en Investigación en Ciberseguridad Página 122

References

Bibliography

 [20] “iOS Security Guide”

Author/s: various authors.

Apple © 2017 (68 pages)

 [151] “iOS Application Security: The Definitive Guide for Hackers and

Developers”

Author/s: David Thiel

No Starch Press © 2016 (297 pages)

 [152] “The Mobile Application - Hacker’s Playbook”

 Author/s: Dominic Chell, Tyrone Erasmus, Shaun Colley & Ollie Whitehouse

 John Wiley & Sons © 2015 (535 pages)

Papers

 [153] “Emerging Security Threats for Mobile Platforms”

Author/s: G. Delac, M. Silic and J. Krolo

Faculty of Electrical Engineering and Computing, University of Zagreb,

Croatia,2011

 [154] “iOS Security and Privacy: Authentication Methods, Permissions, and

Potential Pitfalls with Touch ID”

Author/s: Stephen J. Tipton, Daniel J. White II, Christopher Sershon, and Young

B. Choi

Virginia Beach, USA, 2014

 [155] “Towards a General Collection Methodology for Android Devices”

Authors: Timothy Vidas, Chengye Zhang and Nicolas Christin

USA, 2011

 [156] “Identifying back doors, attack points, and surveillance mechanisms in iOS

devices”

Authors: Jonathan Zdziarski

2014

 [157] “A Study of Android Application Security”

Authors: William Enck, Damien Octeau, Patrick McDaniel, and Swarat

Chaudhuri

Department of Computer Science and Engineering, The Pennsylvania State

University, USA,

Máster Universitario en Investigación en Ciberseguridad Página 123

Webgraphy

The following references are sorted in order of appearance:

[1] IDC, Smartphone Vendor Market Share (2001-2017), USA

Retrieved from:
https://www.idc.com/prodserv/smartphone-market-share.jsp

Accessed: 29/11/2017

[2] Apple, iPhone 4S – Especificaciones técnicas (1987-2017), USA

Retrieved from:
https://support.apple.com/kb/SP643?locale=es_ES&viewlocale=es_ES

Accessed: 29/11/2017

[3] Apple, iPad Air 2 – Especificaciones técnicas (1987-2017), USA

Retrieved from:
https://support.apple.com/kb/SP708?locale=es_ES&viewlocale=es_ES

Accessed: 29/11/2017

[4] Smart-GSM, Moto G4 – Características… (2005-2017), USA

Retrieved from:
http://www.smart-gsm.com/moviles/motorola-moto-g4

Accessed: 29/11/2017

[5] Smart-GSM, Xperia Tipo – Características… (2005-2017), USA

Retrieved from:
http://www.smart-gsm.com/moviles/sony-xperia-tipo

Accessed: 29/11/2017

[6] Standford, Mobile device and Platform Security (2004-2017), USA

Retrieved from:
https://crypto.stanford.edu/cs155/lectures/17-mobile-platforms.pdf

Accessed: 29/11/2017

[7] Wikipedia, Sandbox (2001-2017), USA

Retrieved from:
https://en.wikipedia.org/wiki/Sandbox_(computer_security)

Accessed: 29/11/2017

[8] Apple, App Sandboxing in iOS (1987-2017), USA

Retrieved from:
https://developer.apple.com/app-sandboxing/

Accessed: 29/11/2017

https://support.apple.com/kb/SP643?locale=es_ES&viewlocale=es_ES
http://www.smart-gsm.com/moviles/sony-xperia-tipo
https://developer.apple.com/app-sandboxing/
http://www.smart-gsm.com/moviles/motorola-moto-g4
https://www.idc.com/prodserv/smartphone-market-share.jsp
https://crypto.stanford.edu/cs155/lectures/17-mobile-platforms.pdf
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://support.apple.com/kb/SP708?locale=es_ES&viewlocale=es_ES

Máster Universitario en Investigación en Ciberseguridad Página 124

[9] Android, SELinux (1997-2017), USA

Retrieved from:
https://source.android.com/security/selinux/

Accessed: 29/11/2017

[10] Meinit, Linux Permission System (2007-2017), Netherland

Retrieved from:
http://meinit.nl/linux-permission-system-explained

Accessed: 29/11/2017

[11] Fonepaw, Unlocking mechanisms on Android (2014-2017), USA

Retrieved from:
https://www.fonepaw.com/android-lock/lock-screen-options.html

Accessed: 29/11/2017

[12] Android, Signing apps on Android (1997-2017), USA

Retrieved from:
https://developer.android.com/studio/publish/app-signing.html

Accessed: 29/11/2017

[13] Apple, Signing apps on iOS (1987-2017), USA

Retrieved from:
https://developer.apple.com/support/code-signing/

Accessed: 29/11/2017

[14] Washington University, Secure boot chain on iOS (1987-2017), USA

Retrieved from:
https://www.cse.wustl.edu/~jain/cse571-14/ftp/ios_security/index.html

Accessed: 29/11/2017

[15] Android, Android Keystore (1997-2017), USA

Retrieved from:
https://developer.android.com/training/articles/keystore.html?hl=es-419

Accessed: 29/11/2017

[16] TechTarget, How iOS encryption and data protection (1999-2017), USA

 Retrieved from:
http://searchmobilecomputing.techtarget.com/tip/How-iOS-encryption-and-data-protection-work

Accessed: 29/11/2017

[17] PCMag, Remote, wipe and block (1995-2017), USA

Retrieved from:
https://www.pcmag.com/article2/0,2817,2352755,00.asp

Accessed: 29/11/2017

https://www.cse.wustl.edu/~jain/cse571-14/ftp/ios_security/index.html
http://meinit.nl/linux-permission-system-explained
https://www.fonepaw.com/android-lock/lock-screen-options.html
https://developer.android.com/studio/publish/app-signing.html
https://www.pcmag.com/article2/0,2817,2352755,00.asp
https://source.android.com/security/selinux/
https://developer.android.com/training/articles/keystore.html?hl=es-419
https://developer.apple.com/support/code-signing/
http://searchmobilecomputing.techtarget.com/tip/How-iOS-encryption-and-data-protection-work

Máster Universitario en Investigación en Ciberseguridad Página 125

[18] Apple, iOS: Find my iPhone (1987-2017), USA

Retrieved from:
https://support.apple.com/es-es/explore/find-my-iphone-ipad-mac-watch

Accessed: 29/11/2017

[19] Google, Find my device (1997-2017), USA

Retrieved from:
https://support.apple.com/es-es/explore/find-my-iphone-ipad-mac-watch

Accessed: 29/11/2017

[20] Apple, iOS Security Guide (1987-2017), USA

Retrieved from:
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Accessed: 29/11/2017

[21] Wikipedia, AES (Advanced Encryption Standard) (2001-2017), USA

Retrieved from:
https://es.wikipedia.org/wiki/Advanced_Encryption_Standard

Accessed: 29/11/2017

[22] Apple, TouchID (1987-2017), USA

Retrieved from:
https://support.apple.com/en-us/HT204587

Accessed: 29/11/2017

[23] Apple, FaceID Security Guide (1987-2017), USA

Retrieved from:
https://images.apple.com/business/docs/FaceID_Security_Guide.pdf

Accessed: 29/11/2017

[24] Apple, AppStore GuideLines (1987-2017), USA

Retrieved from:
https://developer.apple.com/app-store/review/guidelines/

Accessed: 29/11/2017

[25] Statista, AppStore 06/08 – 06/16 (2005-2017), USA

Retrieved from:
https://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/

Accessed: 29/11/2017

https://support.apple.com/es-es/explore/find-my-iphone-ipad-mac-watch
https://support.apple.com/en-us/HT204587
https://developer.apple.com/app-store/review/guidelines/
https://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/
https://support.apple.com/es-es/explore/find-my-iphone-ipad-mac-watch
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://es.wikipedia.org/wiki/Advanced_Encryption_Standard
https://images.apple.com/business/docs/FaceID_Security_Guide.pdf

Máster Universitario en Investigación en Ciberseguridad Página 126

[26] Apple, Apple File Manegement (1987-2017), USA

 Retrieved from:
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/

Accessed: 29/11/2017

[27] iMore, APFS (Apple File System) (1999-2017), USA

Retrieved from:
https://www.imore.com/apfs

Accessed: 29/11/2017

[28] Apple, UIKit (1987-2017), USA

Retrieved from:
https://developer.apple.com/documentation/uikit/uiview

Accessed: 29/11/2017

[29] Apple, Programming with Objective-C (1987-2017), USA

Retrieved from:
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWith

ObjectiveC

Accessed: 29/11/2017

[30] Apple, Information Property List (1987-2017), USA

Retrieved from:
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyRefere

nce

Accessed: 29/11/2017

[31] Google, Android Framework (1997-2017), USA

Retrieved from:
 https://developer.android.com/guide/platform/index.html

Accessed: 29/11/2017

[32] Google, Google Play (1997-2017), USA

Retrieved from:
https://play.google.com/store?hl=en

Accessed: 29/11/2017

[33] Google, What’s new in Android 8.0 Oreo (1997-2017), USA

Retrieved from:
https://developer.android.com/about/versions/oreo/android-8.0-changes.html

Accessed: 29/11/2017

https://developer.android.com/guide/platform/index.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference
https://developer.android.com/about/versions/oreo/android-8.0-changes.html
https://developer.apple.com/documentation/uikit/uiview
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC
https://play.google.com/store?hl=en
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/
https://www.imore.com/apfs

Máster Universitario en Investigación en Ciberseguridad Página 127

[34] All-Things, Android File System Hierarchy (2012-2017), USA

Retrieved from:
https://developer.android.com/about/versions/oreo/android-8.0-changes.html

Accessed: 29/11/2017

[35] Google, Android Architecture Components (1997-2017), USA

Retrieved from:
https://developer.android.com/guide/components/fundamentals.html?hl=en

Accessed: 29/11/2017

[36] Kaspersky UK, Malware on Mobile Platforms (2000-2017), USA – Retrieved

from: 29
https://www.kaspersky.co.uk/resource-center/threats/mobile

Accessed: 29/11/2017

[37] OWASP, TOP 10 Mobile Risks 2016 (2001-2017), USA

Retrieved from:
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

Accessed: 29/11/2017

[38] OWASP, TOP 10 Mobile Risks 2014 (2001-2017), USA

 Retrieved from:
https://www.owasp.org/index.php/Mobile_Security_Project_Archive#tab=Top_10_Mobile_Risks

Accessed: 29/11/2017

[39] Wikipedia, Jailbreak (2001-2017), USA

Retrieved from:
https://en.wikipedia.org/wiki/IOS_jailbreaking

Accessed: 29/11/2017

[40] Wikipedia, Root (Android) (2001-2017), USA

Retrieved from:
https://en.wikipedia.org/wiki/Rooting_(Android)

Accessed: 29/11/2017

[41] University Erlangen, Android Cool Boot Attack (2012-2017), Germany

 Retrieved from:
https://www1.informatik.uni-erlangen.de/filepool/projects/frost/frost.pdf

Accessed: 29/11/2017

[42] iPhone-Tricks, ScreenLock: Bypassing iOS Locking (2013-2017), USA

 Retrieved from:
http://iphone-tricks.com/tutorial/212-how-to-bypass-iphone-passcode-and-lock-screen

Accessed: 29/11/2017

https://en.wikipedia.org/wiki/IOS_jailbreaking
https://en.wikipedia.org/wiki/Rooting_(Android)
https://developer.android.com/about/versions/oreo/android-8.0-changes.html
https://www.owasp.org/index.php/Mobile_Security_Project_Archive#tab=Top_10_Mobile_Risks
https://www1.informatik.uni-erlangen.de/filepool/projects/frost/frost.pdf
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://developer.android.com/guide/components/fundamentals.html?hl=en
http://iphone-tricks.com/tutorial/212-how-to-bypass-iphone-passcode-and-lock-screen
https://www.kaspersky.co.uk/resource-center/threats/mobile

Máster Universitario en Investigación en Ciberseguridad Página 128

[43] IOActive, Bank XSS Attacks (1998-2017), USA

 Retrieved from:
http://blog.ioactive.com/2015/12/by-ariel-sanchez-two-years-ago-idecided.html

Accessed: 29/11/2017

[44] Wikipedia, Celebgate Scandal (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/ICloud_leaks_of_celebrity_photos

Accessed: 29/11/2017

[45] FireEye, Masque Attack (1995-2017), USA

Retrieved from:
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html

Accessed: 29/11/2017

[46] LookOut, Xsser mRat (2001-2017), USA

Retrieved from:
https://blog.lookout.com/xsser-mrat-ios

Accessed: 29/11/2017

[47] Palo Alto Networks, YiSpecter: Malware for iOS (2005-2017), USA

Retrieved from:
http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-

jailbroken-ios-devices-by-abusing-private-apis/

Accessed: 29/11/2017

[48] Palo Alto Networks, XcodeGhost (2005-2017), USA

 Retrieved from:
http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-xcodeghost-modifies-xcode-

infects-apple-ios-apps-and-hits-app-store/

Accessed: 29/11/2017

[49] Blasting, No more Jailbreaking on iOS (2012-2017), USA

 Retrieved from:
http://us.blastingnews.com/tech/2017/08/jailbreak-ios-1032-analysis-no-more-jailbreaking-apple-

ios-001912417.html

Accessed: 29/11/2017

[50] Palo Alto Networks, AceDeceiver: Exploiting DRM (2005-2017), USA

Retrieved from:
https://researchcenter.paloaltonetworks.com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-

drm-design-flaws-to-infect-any-ios-device/

Accessed: 29/11/2017

[51] Business Insider, Pegasus (1998-2017), USA

Retrieved from:
http://www.businessinsider.com/pegasus-nso-group-iphone-2016-8

Accessed: 29/11/2017

http://www.businessinsider.com/pegasus-nso-group-iphone-2016-8
http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/
https://en.wikipedia.org/wiki/ICloud_leaks_of_celebrity_photos
http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
http://us.blastingnews.com/tech/2017/08/jailbreak-ios-1032-analysis-no-more-jailbreaking-apple-ios-001912417.html
http://us.blastingnews.com/tech/2017/08/jailbreak-ios-1032-analysis-no-more-jailbreaking-apple-ios-001912417.html
http://researchcenter.paloaltonetworks.com/2015/10/yispecter-first-ios-malware-attacks-non-jailbroken-ios-devices-by-abusing-private-apis/
http://researchcenter.paloaltonetworks.com/2015/09/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://researchcenter.paloaltonetworks.com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
http://blog.ioactive.com/2015/12/by-ariel-sanchez-two-years-ago-idecided.html
https://blog.lookout.com/xsser-mrat-ios
https://researchcenter.paloaltonetworks.com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-flaws-to-infect-any-ios-device/

Máster Universitario en Investigación en Ciberseguridad Página 129

[52] iMore, iTunes Backup Vulnerability (1999-2017), USA – Retrieved from: 37
http://www.imore.com/itunes-backup-vulnerability-what-you-need-know

Accessed: 29/11/2017

[53] Apple, iOS 10.1 (iTunes Backup fix) (1987-2017), USA

Retrieved from:
https://support.apple.com/en-us/HT207271

Accessed: 29/11/2017

[54] CyberScoop, Cellebrite (2003-2017), USA

Retrieved from:
https://www.cyberscoop.com/cellebrite-iphone-6-ufed-samsung-galaxy-facebook-messenger-

snapchat/

Accessed: 29/11/2017

[55] SpamFighter, Fake iTunes Gift Cards (1999-2017), USA

Retrieved from:
http://www.spamfighter.com/News-17109-Fake-Gift-Certificate-from-iTunes-has-Malware.htm

Accessed: 29/11/2017

[56] Wikileaks, Vault7 (2006-2017), USA

 Retrieved from:
https://wikileaks.org/ciav7p1/

Accessed: 29/11/2017

[57] Threatpost, Broadcom chip vulnerability on iOS (2008-2017), USA

Retrieved from:
https://threatpost.com/remote-wi-fi-attack-backdoors-iphone-7/128163/

Accessed: 29/11/2017

[58] Techworld, Moonpig (1997-2017), USA

 Retrieved from:
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-

at-risk-3592812/

Accessed: 29/11/2017

[59] Android Central, Stagefright (2007-2017), USA

 Retrieved from:
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-

at-risk-3592812/

Accessed: 29/11/2017

https://threatpost.com/remote-wi-fi-attack-backdoors-iphone-7/128163/
https://www.cyberscoop.com/cellebrite-iphone-6-ufed-samsung-galaxy-facebook-messenger-snapchat/
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-at-risk-3592812/
http://www.imore.com/itunes-backup-vulnerability-what-you-need-know
http://www.spamfighter.com/News-17109-Fake-Gift-Certificate-from-iTunes-has-Malware.htm
https://support.apple.com/en-us/HT207271
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-at-risk-3592812/
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-at-risk-3592812/
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-at-risk-3592812/
https://www.cyberscoop.com/cellebrite-iphone-6-ufed-samsung-galaxy-facebook-messenger-snapchat/
https://wikileaks.org/ciav7p1/

Máster Universitario en Investigación en Ciberseguridad Página 130

[60] TrendMicro, Dresscode (1995-2017), USA

Retrieved from:
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-

at-risk-3592812/

Accessed: 29/11/2017

[61] Forbes, Gooligan (1993-2017), USA

Retrieved from:
https://www.forbes.com/sites/thomasbrewster/2016/11/30/gooligan-android-malware-1m-google-

account-breaches-check-point-finds/#5b94c9ec1ad8

Accessed: 29/11/2017

[62] Graham Cluley, Android Tordow (2001-2017), USA

Retrieved from:
https://www.grahamcluley.com/tordow-2-0-android-banking-trojan-gains-root-access-mimics-

ransomware/

Accessed: 29/11/2017

[63] Bleeping Computer, Skyfin (2004-2017), USA

Retrieved from:
https://www.bleepingcomputer.com/news/security/android-trojan-hijacks-google-play-store-

covertly-downloads-or-purchases-apps/

Accessed: 29/11/2017

[64] Bleeping Computer, Energy Rescue (2004-2017), USA

Retrieved from:
https://www.bleepingcomputer.com/news/security/charger-android-ransomware-reaches-google-

play-store/

Accessed: 29/11/2017

[65] The Inquirer, HummingWhale (2001-2017), USA

Retrieved from:
https://www.theinquirer.net/inquirer/news/3003152/hummingwhale-android-malware-blows-

through-millions-of-devices

Accessed: 29/11/2017

[66] ZDNet, Android Skinner (1995-2017), USA

 Retrieved from:
http://www.zdnet.com/article/sneaky-adware-exploits-android-users-with-precision-targeting/

Accessed: 29/11/2017

https://www.grahamcluley.com/tordow-2-0-android-banking-trojan-gains-root-access-mimics-ransomware/
https://www.bleepingcomputer.com/news/security/charger-android-ransomware-reaches-google-play-store/
https://www.theinquirer.net/inquirer/news/3003152/hummingwhale-android-malware-blows-through-millions-of-devices
https://www.bleepingcomputer.com/news/security/android-trojan-hijacks-google-play-store-covertly-downloads-or-purchases-apps/
https://www.theinquirer.net/inquirer/news/3003152/hummingwhale-android-malware-blows-through-millions-of-devices
http://www.zdnet.com/article/sneaky-adware-exploits-android-users-with-precision-targeting/
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-at-risk-3592812/
https://www.techworld.com/news/security/moonpig-android-app-flaw-puts-three-million-accounts-at-risk-3592812/
https://www.bleepingcomputer.com/news/security/charger-android-ransomware-reaches-google-play-store/
https://www.forbes.com/sites/thomasbrewster/2016/11/30/gooligan-android-malware-1m-google-account-breaches-check-point-finds/#5b94c9ec1ad8
https://www.grahamcluley.com/tordow-2-0-android-banking-trojan-gains-root-access-mimics-ransomware/
https://www.forbes.com/sites/thomasbrewster/2016/11/30/gooligan-android-malware-1m-google-account-breaches-check-point-finds/#5b94c9ec1ad8
https://www.bleepingcomputer.com/news/security/android-trojan-hijacks-google-play-store-covertly-downloads-or-purchases-apps/

Máster Universitario en Investigación en Ciberseguridad Página 131

[67] Security Affairs, Chryasor (2011-2017), USA

 Retrieved from:
http://securityaffairs.co/wordpress/57702/malware/android-chrysaor-spyware.html

Accessed: 29/11/2017

[68] Softzone, Malware Xavier (2007-2017), USA

 Retrieved from:
http://securityaffairs.co/wordpress/57702/malware/android-chrysaor-spyware.html

Accessed: 29/11/2017

[69] Marketecheasier, Malware Xavier (2007-2017), USA

 Retrieved from:
https://www.maketecheasier.com/android-virus-ghostctrl/

Accessed: 29/11/2017

[70] Welivesecurity, Bankbot (2012-2017), USA

Retrieved from:
https://www.welivesecurity.com/la-es/2017/09/25/troyano-bankbot-google-play/

Accessed: 29/11/2017

[71] CVE Details (2010-2017), USA

 Retrieved from:
http://www.cvedetails.com/

Accessed: 29/11/2017

[72] CVE Details: iOS (2010-2017), USA

 Retrieved from:
http://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49

Accessed: 29/11/2017

[73] CVE Details: iOS vulnerabilities by version (2010-2017), USA

 Retrieved from:
http://www.cvedetails.com/version-list/49/15556/1/Apple-Iphone-Os.html

Accessed: 29/11/2017

[74] CVE Details: Android (2010-2017), USA

Retrieved from:
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

Accessed: 29/11/2017

[75] CVE Details: Android vulnerabilities by version (2010-2017), USA

 Retrieved from:
http://www.cvedetails.com/version-list/1224/19997/1/Google-Android.html

Accessed: 29/11/2017

https://www.maketecheasier.com/android-virus-ghostctrl/
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://securityaffairs.co/wordpress/57702/malware/android-chrysaor-spyware.html
http://securityaffairs.co/wordpress/57702/malware/android-chrysaor-spyware.html
http://www.cvedetails.com/version-list/49/15556/1/Apple-Iphone-Os.html
http://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49
https://www.welivesecurity.com/la-es/2017/09/25/troyano-bankbot-google-play/
http://www.cvedetails.com/version-list/1224/19997/1/Google-Android.html
http://www.cvedetails.com/

Máster Universitario en Investigación en Ciberseguridad Página 132

[76] Software Fundamentals, White box vs. Black box (2009-2017), USA

 Retrieved from:
http://softwaretestingfundamentals.com/differences-between-black-box-testing-and-white-box-

testing/

Accessed: 29/11/2017

[77] Wikipedia, Penetration Test (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/Penetration_test

Accessed: 29/11/2017

[78] Testing Excellence, Static Analysis (2007-2017), USA

 Retrieved from:
https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/

Accessed: 29/11/2017

[79] Testing Excellence, Dynamic Analysis (2007-2017), USA

Retrieved from:
https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/

Accessed: 29/11/2017

[80] Cypress Data, Static Analysis in multiple platforms (2013-2017), USA

Retrieved from:
https://www.cypressdatadefense.com/security-assessments/application-security-testing/mobile-

application/static-analysis/

Accessed: 29/11/2017

[81] Forensic Control, Forensiscs Analysis (2008-2017), USA

Retrieved from:
https://forensiccontrol.com/resources/beginners-guide-computer-forensics/

Accessed: 29/11/2017

[82] Forensic Mag, Forensiscs Analysis - Fundamentals (2003-2017), USA

 Retrieved from:
https://www.forensicmag.com/article/2011/03/validation-forensic-tools-and-software-quick-guide-

digital-forensic-examiner

Accessed: 29/11/2017

[83] Github, Qark (2007-2017), USA

 Retrieved from:
https://github.com/linkedin/qark

Accessed: 29/11/2017

https://www.forensicmag.com/article/2011/03/validation-forensic-tools-and-software-quick-guide-digital-forensic-examiner
https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/
https://forensiccontrol.com/resources/beginners-guide-computer-forensics/
http://softwaretestingfundamentals.com/differences-between-black-box-testing-and-white-box-testing/
https://github.com/linkedin/qark
https://en.wikipedia.org/wiki/Penetration_test
http://softwaretestingfundamentals.com/differences-between-black-box-testing-and-white-box-testing/
https://www.cypressdatadefense.com/security-assessments/application-security-testing/mobile-application/static-analysis/
https://www.cypressdatadefense.com/security-assessments/application-security-testing/mobile-application/static-analysis/
https://www.testingexcellence.com/static-analysis-vs-dynamic-analysis-software-testing/
https://www.forensicmag.com/article/2011/03/validation-forensic-tools-and-software-quick-guide-digital-forensic-examiner

Máster Universitario en Investigación en Ciberseguridad Página 133

[84] Github, apktool (2007-2017), USA

Retrieved from:
https://ibotpeaches.github.io/Apktool/

Accessed: 29/11/2017

[85] Github, androguard (2007-2017), USA

Retrieved from:
https://github.com/androguard/androguard

Accessed: 29/11/2017

[86] Bitbucket, dex2jar (1997-2017), USA

Retrieved from:
https://github.com/androguard/androguard

Accessed: 29/11/2017

[87] Benow, JD-GUI (2001-2017), USA

Retrieved from:
http://jd.benow.ca/

Accessed: 29/11/2017

[88] Github, Clutch (2007-2017), USA

 Retrieved from:
https://github.com/KJCracks/Clutch

Accessed: 29/11/2017

[89] Cycript, cycript (2009-2017), USA

 Retrieved from:
http://www.cycript.org/

Accessed: 29/11/2017

[90] Hopper, Hopper Disassembler (2011-2017), USA

Retrieved from:
https://www.hopperapp.com

Accessed: 29/11/2017

[91] AppSec Labs, iNalyzer (2011-2017), USA

Retrieved from:
http://appsec-labs.com/cydia

Accessed: 29/11/2017

[92] Github, idevicebackup2 (2007-2017), USA

Retrieved from:
https://github.com/libimobiledevice/libimobiledevice

Accessed: 29/11/2017

https://ibotpeaches.github.io/Apktool/
https://github.com/androguard/androguard
http://jd.benow.ca/
http://appsec-labs.com/cydia
https://www.hopperapp.com/
https://github.com/libimobiledevice/libimobiledevice
https://github.com/KJCracks/Clutch
http://www.cycript.org/
https://github.com/androguard/androguard

Máster Universitario en Investigación en Ciberseguridad Página 134

[93] UseYourLoaf, idevicebackup2 (2009-2017), USA

Retrieved from:
https://useyourloaf.com/blog/remote-packet-capture-for-ios-devices/

Accessed: 29/11/2017

[94] rm-rf, tcp-dump (2008-2017), USA

Retrieved from:
http://rm-rf.es/tcpdump-ejemplos/

Accessed: 29/11/2017

[95] Wireshark, wireshark (2006-2017), USA

Retrieved from:
https://www.wireshark.org/

Accessed: 29/11/2017

[96] Daniel Miessler, tcpdump examples (2009-2017), USA

Retrieved from:
https://danielmiessler.com/study/tcpdump/

Accessed: 29/11/2017

[97] Wireshark, tshark manual (2006-2017), USA

 Retrieved from:
https://www.wireshark.org/docs/man-pages/tshark.html

Accessed: 29/11/2017

[98] Wikipedia, Proxy (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/Proxy_server

Accessed: 29/11/2017

[99] Port Swigger, Burp Suite (2009-2017), USA

 Retrieved from:
https://portswigger.net/burp

Accessed: 29/11/2017

[100] SourceForge, SQLite Manager (1999-2017), USA

 Retrieved from:
https://sourceforge.net/p/sqlitemanager/wiki/Home/

Accessed: 29/11/2017

[101] Linuxnix, dd usage (2009-2017), USA

Retrieved from:
https://www.linuxnix.com/what-you-should-know-about-linux-dd-command/

Accessed: 29/11/2017

https://www.wireshark.org/
https://sourceforge.net/p/sqlitemanager/wiki/Home/
https://www.linuxnix.com/what-you-should-know-about-linux-dd-command/
https://www.wireshark.org/docs/man-pages/tshark.html
https://en.wikipedia.org/wiki/Proxy_server
https://useyourloaf.com/blog/remote-packet-capture-for-ios-devices/
http://rm-rf.es/tcpdump-ejemplos/
https://portswigger.net/burp
https://danielmiessler.com/study/tcpdump/

Máster Universitario en Investigación en Ciberseguridad Página 135

[102] Wikipedia, dd uses (2001-2017), USA

Retrieved from:
https://en.wikipedia.org/wiki/Dd_(Unix)

Accessed: 29/11/2017

[103] Queen’s University, exiftool (2000-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/Dd_(Unix)

Accessed: 29/11/2017

[104] Google, Dex Files (1997-2017), USA

 Retrieved from:
 https://developer.android.com/reference/dalvik/system/DexFile.html

Accessed: 29/11/2017

[105] Apple, Swift Programming Language (1987-2017), USA

Retrieved from:
https://developer.apple.com/swift/

Accessed: 29/11/2017

[106] Saurik, Cydia (1997-2017), USA

Retrieved from:
https://cydia.saurik.com/

Accessed: 29/11/2017

[107] OpenSSH, OpenSSH (1999-2017), USA

 Retrieved from:
https://www.openssh.com/

Accessed: 29/11/2017

[108] Digital Forensics, Clutch usage (2012-2017), USA

 Retrieved from:
http://digitalforensicstips.com/2015/05/a-quick-guide-to-using-clutch-2-0-to-decrypt-ios-apps/

Accessed: 29/11/2017

[109] Wikipedia, Reverse Engineering (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/Reverse_engineering

Accessed: 29/11/2017

[110] Hopper, Hopper tutorial (2011-2017), USA

 Retrieved from:
https://www.hopperapp.com/tutorial.html

Accessed: 29/11/2017

https://en.wikipedia.org/wiki/Dd_(Unix)
https://www.openssh.com/
https://developer.apple.com/swift/
https://en.wikipedia.org/wiki/Reverse_engineering
http://digitalforensicstips.com/2015/05/a-quick-guide-to-using-clutch-2-0-to-decrypt-ios-apps/
https://www.hopperapp.com/tutorial.html
https://en.wikipedia.org/wiki/Dd_(Unix)
https://developer.android.com/reference/dalvik/system/DexFile.html
https://cydia.saurik.com/

Máster Universitario en Investigación en Ciberseguridad Página 136

[111] GitHub, apktool usage (2007-2017), USA

Retrieved from:
https://ibotpeaches.github.io/Apktool/documentation/

Accessed: 29/11/2017

[112] Google Blog, SHA1 first collision (2002-2017), USA

 Retrieved from:
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

Accessed: 29/11/2017

[113] Google, zipalign (1997-2017), USA

 Retrieved from:
https://developer.android.com/studio/command-line/zipalign.html

Accessed: 29/11/2017

[114] Apple, Xcode (1987-2017), USA

 Retrieved from:
https://developer.apple.com/xcode/

Accessed: 29/11/2017

[115] Apple, codesign (1987-2017), USA

Retrieved from:
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/code

sign.1.html

Accessed: 29/11/2017

[116] Stack Overflow, What does debuggable do? (2003-2017), USA

 Retrieved from:
https://stackoverflow.com/questions/37143960/androidstudio-what-does-debuggable-do

Accessed: 29/11/2017

[117] Ztrela, Androguard manual (2014-2017), USA

 Retrieved from:
http://cyborg.ztrela.com/androguard.php/

Accessed: 29/11/2017

[118] Hackers Online, androlyze, main tool of Androguard (2011-2017), USA

 Retrieved from:
https://blog.hackersonlineclub.com/2016/12/androguard-reverse-engineering-and.html

Accessed: 29/11/2017

[119] GitHub, Instropy Analyzer (2007-2017), USA

 Retrieved from:
https://github.com/iSECPartners/Introspy-Analyzer

Accessed: 29/11/2017

https://developer.apple.com/xcode/
https://blog.hackersonlineclub.com/2016/12/androguard-reverse-engineering-and.html
http://cyborg.ztrela.com/androguard.php/
https://github.com/iSECPartners/Introspy-Analyzer
https://stackoverflow.com/questions/37143960/androidstudio-what-does-debuggable-do
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/codesign.1.html
https://ibotpeaches.github.io/Apktool/documentation/
https://developer.android.com/studio/command-line/zipalign.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/codesign.1.html

Máster Universitario en Investigación en Ciberseguridad Página 137

[120] Wikipedia, iOS & macOS Hooking (2001-2017), USA

Retrieved from:
https://en.wikipedia.org/wiki/Hooking

Accessed: 29/11/2017

[121] Wikipedia, HMAC (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Accessed: 29/11/2017

[122] Wikipedia, HTTPS (2001-2017), USA

Retrieved from:
https://en.wikipedia.org/wiki/HTTPS

Accessed: 29/11/2017

[123] Symantec, What a sniffer is? (1992-2017), USA

Retrieved from:
https://www.symantec.com/connect/articles/sniffers-what-they-are-and-how-protect-yourself

Accessed: 29/11/2017

[124] Free, Android Malware Reverse Engineering (1999-2017), France

Retrieved from:
http://wikisec.free.fr/papers/androidre-insomnihack2017.pdf

Accessed: 29/11/2017

[125] NSHipster, NSURL (2012-2017), USA

Retrieved from:
http://nshipster.com/nsurl/

Accessed: 29/11/2017

[126] The Geek Stuff, strings (2008-2017), USA

Retrieved from:
http://www.thegeekstuff.com/2010/11/strings-command-examples/

Accessed: 29/11/2017

[127] Google, Android SharedPreferences (1997-2017), USA

Retrieved from:
https://developer.android.com/training/data-storage/shared-preferences.html?hl=en

Accessed: 29/11/2017

[128] Stack Overflow, How to get the SharedPreferences (2003-2017), USA

Retrieved from:
https://stackoverflow.com/questions/5950043/how-to-use-getsharedpreferences-in-android

Accessed: 29/11/2017

https://en.wikipedia.org/wiki/Hooking
https://stackoverflow.com/questions/5950043/how-to-use-getsharedpreferences-in-android
http://wikisec.free.fr/papers/androidre-insomnihack2017.pdf
http://nshipster.com/nsurl/
https://developer.android.com/training/data-storage/shared-preferences.html?hl=en
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
http://www.thegeekstuff.com/2010/11/strings-command-examples/
https://www.symantec.com/connect/articles/sniffers-what-they-are-and-how-protect-yourself
https://en.wikipedia.org/wiki/HTTPS

Máster Universitario en Investigación en Ciberseguridad Página 138

[129] Apple, UserDefaults (1987-2017), USA

 Retrieved from:
https://developer.apple.com/documentation/foundation/userdefaults

Accessed: 29/11/2017

[130] Wikipedia, SQLite3 (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/SQLite

Accessed: 29/11/2017

[131] Packt Pub, Extracting Data on Android (2003-2017), USA

 Retrieved from:
https://www.packtpub.com/books/content/extracting-data-physically-dd

Accessed: 29/11/2017

[132] Google, BusyBox (1997-2017), USA

Retrieved from:
https://play.google.com/store/apps/details?id=stericson.busybox&hl=es

Accessed: 29/11/2017

[133] GitHub, AFLogical (2007-2017), USA

Retrieved from:
https://github.com/nowsecure/android-forensics/downloads

Accessed: 29/11/2017

[134] GitHub, LIME (Linux Memory Extractor) (2007-2017), USA

 Retrieved from:
https://github.com/504ensicsLabs/LiME

Accessed: 29/11/2017

[135] GitHub, volatility (2007-2017), USA

Retrieved from:
https://github.com/volatilityfoundation/volatility

Accessed: 29/11/2017

[136] LineageOS, LineageOS (2016-2017), USA

 Retrieved from:
https://lineageos.org/

Accessed: 29/11/2017

[137] Hashcat, hashcat (2009-2017), USA

 Retrieved from:
https://hashcat.net/hashcat/

Accessed: 29/11/2017

https://github.com/volatilityfoundation/volatility
https://hashcat.net/hashcat/
https://en.wikipedia.org/wiki/SQLite
https://developer.apple.com/documentation/foundation/userdefaults
https://github.com/504ensicsLabs/LiME
https://play.google.com/store/apps/details?id=stericson.busybox&hl=es
https://lineageos.org/
https://github.com/nowsecure/android-forensics/downloads
https://www.packtpub.com/books/content/extracting-data-physically-dd

Máster Universitario en Investigación en Ciberseguridad Página 139

[138] Hashcat, wiki (2009-2017), USA

Retrieved from:
https://hashcat.net/wiki/doku.php?id=hashcat

Accessed: 29/11/2017

[139] SANS, Forensics on Android (1995-2017), USA

Retrieved from:
https://hashcat.net/wiki/doku.php?id=hashcat

Accessed: 29/11/2017

[140] SANS, Forensics on iOS (1995-2017), USA

Retrieved from:
https://www.sans.org/reading-room/whitepapers/forensics/forensic-analysis-ios-devices-34092

Accessed: 29/11/2017

[141] VirtualBox, VirtualBox (2006-2017), USA

Retrieved from:
https://www.virtualbox.org/

Accessed: 29/11/2017

[142] Ubuntu, Xubuntu (XFCE Edition) (2005-2017), Isle of Man

 Retrieved from:
https://xubuntu.org/

Accessed: 29/11/2017

[143] Google, golang (2009-2017), USA

 Retrieved from:
https://golang.org/

Accessed: 29/11/2017

[144] Wikipedia, ARM Architecture (2001-2017), USA

 Retrieved from:
https://en.wikipedia.org/wiki/ARM_architecture

Accessed: 29/11/2017

[145] CeoLevel, Metrics for a Project Manager (2013-2017), Spain

 Retrieved from:

http://www.ceolevel.com/7-metricas-que-todo-project-manager-deberia-medir

Accessed: 30/11/2017

[146] DVIA, Damn Vulnerable iOS Application (2013-2017), USA

 Retrieved from:
http://damnvulnerableiosapp.com/

Accessed: 29/11/2017

https://hashcat.net/wiki/doku.php?id=hashcat
https://golang.org/
https://en.wikipedia.org/wiki/ARM_architecture
https://hashcat.net/wiki/doku.php?id=hashcat
http://damnvulnerableiosapp.com/
https://xubuntu.org/
http://www.ceolevel.com/7-metricas-que-todo-project-manager-deberia-medir
https://www.sans.org/reading-room/whitepapers/forensics/forensic-analysis-ios-devices-34092
https://www.virtualbox.org/

Máster Universitario en Investigación en Ciberseguridad Página 140

[147] Enharmonic HQ, Hopper Disassembler Class Dump (2012-2017), USA

 Retrieved from:
http://www.enharmonichq.com/tutorial-ios-reverse-engineering-class-dump-hopper-dissasembler/

Accessed: 29/11/2017

[148] Google, Android Dashboard (1997-2017), USA

 Retrieved from:

https://developer.android.com/about/dashboards/index.html?hl=es-419

Accessed: 29/11/2017

[149] David Smith, iOS Version Stats (2001-2017), USA

 Retrieved from:

https://david-smith.org/iosversionstats/

Accessed: 29/11/2017

[150] Google, Android Permissions (1997-2017), USA

Retrieved from:

https://developer.android.com/reference/android/Manifest.permission.html

Accessed: 29/11/2017

http://www.enharmonichq.com/tutorial-ios-reverse-engineering-class-dump-hopper-dissasembler/
https://david-smith.org/iosversionstats/
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/about/dashboards/index.html?hl=es-419

Máster Universitario en Investigación en Ciberseguridad Página 141

Annexes
Finally, some annexes are included at the end of this thesis to illustrate not only

some materials that have been used during the development of the project, either mobile

devices, statistics and other resources created specifically for this work, but also ongoing

research, or other information related to the topic on which this document is based, which

is considered of interest in order to see the future trends that may arise in this area.

A, Usage on both platforms

 According of Android Dashboards in Figure A.1, the distribution of Android

versions in November 2017 [148] is as follows:

Figure A.1 Android Distribution on September 2017 (Source: Android Dashboard)

Just an almost 16% use the latest version of Android. In the case of the iOS operating

system, fragmentation is not as palpable as in Android, as we see in Table A.1:

iOS Distribution (December 2017) [149]

Version Percentage

11.x 68.0%

10.x 18.6%

9.x 10.3%

8.x 0.5%

7.x 0.8%

6.x 1.2%

5.x 0.5%

4.x 0.1%

Table A.1. iOS Distribution (December 2017)

Máster Universitario en Investigación en Ciberseguridad Página 142

As can be seen, almost 87% of users use the most up-to-date versions of the

system, which helps them to be protected from the latest vulnerabilities in terms of

security.

B. Android Permissions Table

It coul be seen a table B1 [150] with the main permissions, and their use taken

from the Android Developer page, classified according to their degree of danger, so that

they can serve as a guide for any analyst in mobile security, at the moment that it is

ready to make an evaluation of the permissions demanded by each application of the

system being analyzed. At the same time, this classification, is taken into account, by

the time one of the scripts developed for this thesis (manifest_interpreter), is running.

Android Permission System

Permission Description Scope

ACCESS_CHECKIN_PROPERTIES Allows r/w access to the properties

table in the checkin database.

DANGER

ACCESS_COARSE_LOCATION Allows an app to access approximate

location.

DANGER

ACCESS_FINE_LOCATION Allows an app to access precise

location.

DANGER

ACCESS_LOCATION_EXTRA_COMMANDS Allows and app to access extra

location provider commands.

DANGER

ACCESS_NETWORK_STATE Allows apps to access information

about networks.

NEUTRAL

ACCESS_NOTIFICATION_POLICY Allows apps to access to notification

policy.

NEUTRAL

ACCESS_WIFI_STATE Allows apps to access information

about WiFi networks.

NEUTRAL

ACCOUNT_MANAGER Allows apps to call into

AccountAuthenticators.

NEUTRAL

ADD_VOICEMAIL Allows apps to add voicemails into the

system.

NEUTRAL

ANSWER_PHONE_CALLS Allows an app to answer an incoming

phone call.

DANGER

BATTERY_STATS Allows an app to collect battery

statistics.

NEUTRAL

BIND_ACESSIBILITY_SERVICE Must be required by an

AccessibilityService to ensure that

only the system can bind to it.

NEUTRAL

BIND_APPWIDGET Allows an app to tell the AppWidget

service which app can access to its

data.

NEUTRAL

BIND_AUTOFILL_SERVICE Must be required by an

AutofillService to ensure that only the

systen can bind to it.

NEUTRAL

BIND_CARRIER_MESSAGING_SERVICE Constant deprecated from API 23

onwards.

DEPRECATED

BIND_CARRIER_SERVICES The system process that is allowed to

bind to services in carrier apps will

have this permission.

NEUTRAL

BIND_CHOOSER_TARGET_SERVICE Must be required by a

ChooserTargetService to ensure that

only the system can bind to it.

NEUTRAL

Máster Universitario en Investigación en Ciberseguridad Página 143

BIND_CONDITION_PROVIDER_SERVICE Must be required by a

ConditionProviderService to ensure

that only the system can bind to it.

NEUTRAL

BIND_DEVICE_ADMIN Must be required by device

administration receiver to ensure that

only the system can interact with it.

NEUTRAL

BIND_DREAM_SERVICE Must be required by DreamService to

ensure that only the system can bind to

it

NEUTRAL

BIND_INCALL_SERVICE Must be required by an InCallService

to ensure that only the system can bind

to it.

NEUTRAL

BIND_INPUT_METHOD Must be required by an

InputMethodService to ensure that

only the system can bind to it.

NEUTRAL

BIND_MIDI_DEVICE_SERVICE Must be requires by a

MidiDeviceService to ensure that only

the system can bind to it.

NEUTRAL

BIND_NFC_SERVICE Must be required by a

HostApduService or

OffHostApduService to ensure that

only the system can bind to it.

NEUTRAL

BIND_NOTIFICATION_LISTENER_SERVICE Must be required by an

NotificationListenerService to ensure

that only the system can bind to it.

NEUTRAL

BIND_PRINT_SERVICE Must be required by a PrintService to

ensure that only the system can bind to

it.

NEUTRAL

BIND_QUICK_SETTINGS_TILE Allows an app to bind to third party

quick setting tiles.

NEUTRAL

BIND_REMOTEVIEWS Must be required by a

RemoteViewsService to ensure that

only the system can bind to it.

NEUTRAL

BIND_SCREENING_SERVICE Must be required by a

CallScreeningService to ensure that

only the system can bind to it.

NEUTRAL

BIND_TELECOM_CONNECTION_SERVICE Must be required by a

ConnectionService to ensure that only

the system can bind to it.

NEUTRAL

BIND_TEST_SERVICE Must be required by a TextService. NEUTRAL

BIND_TV_INPUT Must be required by a TvInputService

to ensure that only the system can bind

to it.

NEUTRAL

BIND_VISUAL_VOICEMAIL_SERVICE Must be required by a link

VisualVoicemailService to ensure that

only the system can bind to it.

NEUTRAL

BIND_VOICE_INTERACTION Must be required by a

VoiceInteractionService to ensure that

only the system can bind to it.

NEUTRAL

BIND_VPN_SERVICE Must be required by a VpnService to

ensure that only the system can bind to

it.

NEUTRAL

BIND_VR_LISTENER_SERVICE Must be required by a

VrListenerService to ensure that only

the system can bind to it.

NEUTRAL

BIND_WALLPAPER Must be required by a

WallpaperService to ensure that only

the system can bind to it.

NEUTRAL

Máster Universitario en Investigación en Ciberseguridad Página 144

BLUETOOTH Allows apps to connect to paired

bluetooth devices.

DANGER

BLUETOOTH_ADMIN Allows apps to discover and pair

bluetooth devices.

DANGER

BLUETOOTH_PRIVILEGED Allows apps to pair bluetooth devices

without user interaction and to

allow/disallow phonebook/message

access.

DANGER

BODY_SENSORS Allows an app to access data from

sensors like for instance: heart rate.

NEUTRAL

BROADCAST_PACKAGE_REMOVED Allows an app to broadcast a

notification that an app package has

been removed.

DANGER

BROADCAST_SMS Allows an app to broadcast an SMS

receipt notification.

DANGER

BROADCAST_STICKY Allows an app to broadcast sticky

intents.

NEUTRAL

BROADCAST_WAP_PUSH Allows an app to broadcast a WAP

PUSH receipt notification.

NEUTRAL

CALL_PHONE Allows an application to initiate a

phone call without going through the

Dialer user interface for the user to

confirm the call.

DANGER

CALL_PRIVILEGED Allows an application to call any

phone number, including emergency

numbers, without going through the

Dialer user interface for the user to

confirm the call being placed.

DANGER

CAMERA Required to be able to access the

camera device.

DANGER

CAPTURE_AUDIO_OUTPUT Allows an application to capture audio

output.

DANGER

CAPTURE_SECURE_VIDEO_OUTPUT Allows an application to capture

secure video output.

DANGER

CAPTURE_VIDEO_OUTPUT Allows an application to capture video

output.

DANGER

CHANGE_COMPONENT_ENABLED_STATE Allows an application to change

whether an application component

(other than its own) is enabled or not.

NEUTRAL

CHANGE_CONFIGURATION Allows an application to modify the

current configuration, such as locale.

NEUTRAL

CHANGE_NETWORK_STATE Allows applications to change network

connectivity state.

NEUTRAL

CHANGE_WIFI_MULTICAST_STATE Allows applications to enter Wi-Fi

Multicast mode.

NEUTRAL

CHANGE_WIFI_STATE Allows applications to change Wi-Fi

connectivity state.

NEUTRAL

CLEAR_APP_CACHE Allows an application to clear the

caches of all installed applications on

the device.

NEUTRAL

CONTROL_LOCATION_UPDATES Allows enabling/disabling location

update notifications from the radio.

NEUTRAL

DELETE_CACHE_FILES Allows an application to delete cache

files.

NEUTRAL

DELETE_PACKAGES Allows an application to delete

packages.

NEUTRAL

Máster Universitario en Investigación en Ciberseguridad Página 145

DIAGNOSTIC Allows applications to RW to

diagnostic resources.

NEUTRAL

DISABLE_KEYGUARD Allows applications to disable the

keyguard if it is not secure.

NEUTRAL

DUMP Allows an application to retrieve state

dump information from system

services.

NEUTRAL

EXPAND_STATUS_BAR Allows an application to expand or

collapse the status bar.

NEUTRAL

FACTORY_TEST Run as a manufacturer test application,

running as the root user.

NEUTRAL

GET_ACCOUNTS Allows access to the list of accounts in

the Accounts Service.

NEUTRAL

GET_ACCOUNTS_PRIVILEGED Allows access to the list of accounts in

the Accounts Service.

DANGER

GET_PACKAGE_SIZE Allows an application to find out the

space used by any package.

NEUTRAL

GET_TASKS This constant was deprecated in API

level 21. No longer enforced.

DEPRECATED

GLOBAL_SEARCH This permission can be used on

content providers to allow the global

search system to access their data.

NEUTRAL

INSTALL_LOCATION_PROVIDER Allows an application to install a

location provider into the Location

Manager.

NEUTRAL

INSTALL_PACKAGES Allows an application to install

packages.

DANGER

INSTALL_SHORTCUT Allows an application to install a

shortcut in Launcher.

DANGER

INSTANT_APP_FOREGROUND_SERVICE Allows an instant app to create

foreground services.

NEUTRAL

INTERNET Allows applications to open network

sockets.

DANGER

KILL_BACKGROUND_PROCESSES Allows an application to call

killBackgroundProcesses(String).

DANGER

LOCATION_HARDWARE Allows an application to use location

features in hardware, such as the

geofencing api.

DANGER

MANAGE_DOCUMENTS Allows an application to manage

access to documents, usually as part of

a document picker.

DANGER

MANAGE_OWN_CALLS Allows a calling application which

manages its own calls through the self-

managed ConnectionService APIs.

DANGER

MASTER_CLEAR Not for use by third-party applications. NEUTRAL

MEDIA_CONTENT_CONTROL Allows an application to know what

content is playing and control its

playback.

NEUTRAL

MODIFY_AUDIO_SETTINGS Allows an application to modify

global audio settings.

NEUTRAL

MODIFY_PHONE_STATE Allows modification of the telephony

state - power on, mmi, etc.

DANGER

MOUNT_FORMAT_FILESYSTEMS Allows formatting file systems for

removable storage.

DANGER

MOUNT_UNMOUNT_FILESYSTEMS Allows mounting and unmounting file

systems for removable storage.

DANGER

NFC Allows applications to perform I/O

operations over NFC.

DANGER

Máster Universitario en Investigación en Ciberseguridad Página 146

PACKAGE_USAGE_STATS Allows an application to collect

component usage statistics

NEUTRAL

PERSISTENT_ACTIVITY This constant was deprecated in API

level 9. This functionality will be

removed in the future; please do not

use. Allow an application to make its

activities persistent.

DEPRECATED

PROCESS_OUTGOING_CALLS Allows an application to see the

number being dialed during an

outgoing call with the option to

redirect the call to a different number

or abort the call altogether.

DANGER

READ_CALENDAR Allows an application to read the

user's calendar data.

DANGER

READ_CALL_LOG Allows an application to read the

user's call log.

DANGER

READ_CONTACTS Allows an application to read the

user's contacts data.

DANGER

READ_EXTERNAL_STORAGE Allows an application to read from

external storage.

DANGER

READ_FRAME_BUFFER Allows an application to take screen

shots and more generally get access to

the frame buffer data.

NEUTRAL

READ_INPUT_STATE This constant was deprecated in API

level 16. The API that used this

permission has been removed.

DEPRECATED

READ_LOGS Allows an application to read the low-

level system log files.

DANGER

READ_PHONE_NUMBERS Allows read access to the device's

phone number(s).

DANGER

READ_PHONE_STATE Allows read only access to phone

state, including the phone number of

the device, current cellular network

information, the status of any ongoing

calls, and a list of any PhoneAccounts

registered on the device.

DANGER

READ_SMS Allows an application to read SMS

messages.

DANGER

READ_SYNC_SETTINGS Allows applications to read the sync

settings.

NEUTRAL

READ_SYNC_STATS Allows applications to read the sync

stats.

NEUTRAL

READ_VOICEMAIL Allows an application to read

voicemails in the system.

NEUTRAL

REBOOT Required to be able to reboot the

device.

DANGER

RECEIVE_BOOT_COMPLETED Allows an application to receive the

ACTION_BOOT_COMPLETED that

is broadcast after the system finishes

booting.

NEUTRAL

RECEIVE_MMS Allows an application to monitor

incoming MMS messages.

DANGER

RECEIVE_SMS Allows an application to receive SMS

messages.

DANGER

RECEIVE_WAP_PUSH Allows an application to receive WAP

push messages.

DANGER

RECORD_AUDIO Allows an application to record audio. DANGER

REORDER_TASKS Allows an application to change the Z-

order of tasks.

DANGER

Máster Universitario en Investigación en Ciberseguridad Página 147

REQUEST_COMPANION_RUN_IN_BACKGROUND Allows a companion app to run in the

background.

NEUTRAL

REQUEST_COMPANION_USE_DATA_IN_BACKGROUND Allows a companion app to use data in

the background.

NEUTRAL

REQUEST_DELETE_PACKAGES Allows an application to request

deleting packages.

NEUTRAL

REQUEST_IGNORE_BATTERY_OPTIMIZATIONS Permission an application must hold in

order to use a certain permission

NEUTRAL

REQUEST_INSTALL_PACKAGES Allows an application to request

installing packages.

NEUTRAL

RESTART_PACKAGES This constant was deprecated in API

level 8. The restartPackage(String)

API is no longer supported.

DEPRECATED

SEND_RESPOND_VIA_MESSAGE Allows an application (Phone) to send

a request to other applications to

handle the respond-via-message action

during incoming calls.

NEUTRAL

SEND_SMS Allows an application to send SMS

messages.

DANGER

SET_ALARM Allows an application to broadcast an

Intent to set an alarm for the user.

NEUTRAL

SET_ALWAYS_FINISH Allows an application to control

whether activities are immediately

finished when put in the background.

NEUTRAL

SET_ANIMATION_SCALE Modify the global animation

scaling factor.

NEUTRAL

SET_DEBUG_APP Configure an application for

debugging.

NEUTRAL

SET_PREFERRED_APPLICATIONS This constant was deprecated in API

level 7. No longer useful, see

addPackageToPreferred(String) for

details.

DEPRECATED

SET_PROCESS_LIMIT Allows an application to set the

maximum number of (not needed)

application processes that can be

running.

NEUTRAL

SET_TIME Allows applications to set the system

time.

DANGER

SET_TIME_ZONE Allows applications to set the system

time zone.

DANGER

SET_WALLPAPER Allows applications to set the

wallpaper.

NEUTRAL

SET_WALLPAPER_HINTS Allows applications to set the

wallpaper hints.

NEUTRAL

SIGNAL_PERSISTENT_PROCESSES Allow an application to request that a

signal be sent to all persistent

processes.

NEUTRAL

STATUS_BAR Allows an application to open, close,

or disable the status bar and its icons.

NEUTRAL

SYSTEM_ALERT_WINDOW Allows an app to create windows

using the type

TYPE_APPLICATION_OVERLAY,

shown on top of all other apps.

NEUTRAL

TRANSMIT_IR Allows using the device's IR

transmitter, if available.

NEUTRAL

UNINSTALL_SHORTCUT This permission is no longer

supported.

DEPRECATED

Máster Universitario en Investigación en Ciberseguridad Página 148

UPDATE_DEVICE_STATS Allows an application to update device

statistics.

NEUTRAL

USE_FINGERPRINT Allows an app to use fingerprint

hardware.

DANGER

USE_SIP Allows an application to use SIP

service.

DANGER

VIBRATE Allows access to the vibrator. NEUTRAL

WAKE_LOCK Allows using PowerManager

WakeLocks to keep processor from

sleeping or screen from dimming.

NEUTRAL

WRITE_APN_SETTINGS Allows applications to write the APN

settings.

DANGER

WRITE_CALENDAR Allows an application to write the

user's calendar data.

DANGER

WRITE_CALL_LOG Allows an application to write (but not

read) the user's call log data.

DANGER

WRITE_CONTACTS Allows an application to write the

user's contacts data.

DANGER

WRITE_EXTERNAL_STORAGE Allows an application to write to

external storage.

DANGER

WRITE_GSERVICES Allows an application to modify the

Google service map.

NEUTRAL

WRITE_SECURE_SETTINGS Allows an application to read or write

the secure system settings.

NEUTRAL

WRITE_SETTINGS Allows an application to read or write

the system settings.

DANGER

WRITE_SYNC_SETTINGS Allows applications to write the sync

settings.

NEUTRAL

WRITE_VOICEMAIL Allows an application to modify and

remove existing voicemails in the

system.

NEUTRAL

Table B.1. Android Permissions Classification

Máster Universitario en Investigación en Ciberseguridad Página 149

Acronyms

 AES (Advanced Encryption Standard) pp.14,15

 APFS (Apple File System) pp.17

 APK (Android Package Kit) pp.45,57,59

 AP (Access Point) pp.73

 API (Application Programming Interface) pp.34,57,86,88,90,91,116,119,120

 AR (Augmented Reality) pp.4

 ARC (Automatic Reference Counting) pp.66

 ART (Android Runtime) pp.20

 ARM (Advanced RISC Machine) pp.20,83

 BYOD (Bring Your Own Device) pp.29

 C&C (Command & Control) pp.25

 CA (Certificate Authority) pp.61

 CBC (Cypher Block Chaining) pp.14

 CD (Compact Disc) pp.50,77

 CIA (Central Intelligence Agency) pp.33

 CVE (Common Vulnerabilities and Exposures) pp.32,37,38

 DB (DataBase) pp.49

 DCIM (Digital Camera Images) pp.68,72,102,103,104

 DDR (Double Data Rate) pp.9

 DEX (Dalvik Executable) pp.45

 DRM (Digital Rights Management) pp.32,54

 DoS (Denial of Service) pp.24

 DVD (Digital Video Disc) pp.77

 DVIA (Damn Vulnerable iOS App) pp.77,78,96,97,99

 EXIF (Exchangeable Image File Format) pp.50,72,102

 GB (GigaByte) pp.9

 GHz (GigaHertz) pp.9

 GPS (Global Positioning System) pp.70,73,104,105,106

 GUI (Graphical User Interface) pp.4,46,47,52,77,78

 HFS+ (Hierarchical File System plus) pp.17

 HMAC (Hash Message Authentication Code) pp.58

 HTTP (Hypertest Transfer Protocol) pp.49,61,101,124

 HTTPS (Hypertext Transfer Protocol Secure) pp.49,61,124

 IDE (Integrated Development Environment) pp.18,19,31,46,51,54,55,77

 IMEI (International Mobile Equipment Identity) pp.74

 I/O (Input/Output) pp.119

 IP (Internet Protocol) pp.31

 IT (Informatation Technology) pp.3

 JFFS2 (Journal Flash File System 2) pp.22

 JSON (JavaScript Object Notation) pp.90,96,106,109

 LG (Lucky-Goldstar) pp.21

Máster Universitario en Investigación en Ciberseguridad Página 150

 LIME (Linux Memory Extractor) pp.66

 LLB (Low-Level Bootlander) pp.14

 LTS (Long Term Support) pp.75,95

 MB (MegaByte) pp.65

 MD5 (Message-Digest 5) pp.69

 MMS (Multimedia Messaging Service) pp.65,70,72,120

 NFC (Near Field Communication) pp.40,117,119

 OS (Operating System) pp.3,12,14,15,17,21,30,32,36,38,50,76

 OTA (On-The-Air) pp.21

 OVF (Open Virtualization Format) pp.76

 OWASP (Open Web Application Security Project) pp.25,26,27

 PBKDF2 (Password-Based Key Derivation Function 2) pp.32

 PIN (Personal Identificator Number) pp.33,35

 PSK (Pre-Shared Key) pp.69

 RAM (Random Access Memory) pp.9,10,29,42,54,65,66,75

 RISC (Reduced Instruction Set Computer) pp.20

 RSA (Rivest-Shamir-Addleman) pp.54

 SAW (Security Analysis Workshop) pp.75

 SD (Secure Digital) pp.14,22,50,63,66,68

 SDK (Software Development Kit) pp.17,18,54,63

 SELinux (Security-Enhanced Linux) pp.12

 SHA (Secure Hash Algorithm) pp.32

 SIM (subscriberIdentity Module) pp.29,74

 SMS (Short Messages Service) pp.24,29,31,35,36,65,70,72,118,120

 SQL (Structured Query Language) pp.49,62,69

 SSH (Secure Shell) pp.52,65

 SSL (Secure Sockets Layer) pp.20,25,31,61,100

 TCP (Transmission Control Protocol) pp.47

 TLS (Transport Layer Security) pp.22,32,61

 UDID (Unique Device Identifier) pp.12,18,47,71

 UDP (User Datagram Protocol) pp.47

 UI (User Interface) pp.18,21

 UPnP (Universal Plug and Play) pp.25

 URI (Uniform Resource Identifier) pp.19

 URL (Uniform Resource Locator) pp.60,99

 USB (Universal Serial Bus) pp.29,30,63,77

 UTF-8 (Unicode Transformation Format 8) pp.19

 WEP (Wired Equivalent Privacy) pp.69

 WPA (Wi-Fi Protected Access) pp.69

 Wi-Fi (Wireless Fidelity) pp.28,118

 XML (eXtensible Markup Language) pp.19,86,109

 XSS (Cross-site Scripting) pp.31

Alejandro Cueto Prieto - December 2017.

