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A B S T R A C T

Multispectral imagery is a widely used source of information to address post-fire ecosystem management. The
aim of this study is to evaluate the ability of remotely sensed indices derived from Landsat 8 OLI/TIRS to assess
initial burn severity (overall, on vegetation and on soil) in fire-prone pine forests along the Mediterranean-Tran-
sition-Oceanic climatic gradient in the Mediterranean Basin. We selected four large wildfires which affected pine
forests in a climatic gradient within the Iberian Peninsula. In each wildfire we established CBI plots to obtain field
values of three burn severity metrics: site, vegetation and soil burn severity. The ability of 13 spectral indices to
match these three field burn severity metrics was compared and their transferability along the climatic gradient
assessed using linear regression models. Specifically, we analysed the performance of 12 indices previously used
for burn severity assessments (8 reflective, 2 thermal, 2 mixed) and a new reflective index (dNBR-EVI). The re-
sults showed that Landsat spectral indices have a greater ability to determine site and vegetation burn severity
than soil burn severity. We found large differences in indices performances among the three different climatic
regions, since most indices performed better in the Mediterranean and Transition regions than in the Oceanic
one. In general, the dNBR-EVI showed the best fit to site, vegetation and soil burn severity in the three regions,
demonstrating broad transferability along the entire climatic gradient.

1. Introduction

Wildfire is a natural process identified as a serious environmental
and socio-economic problem in some regions of the world (Nunes et al.,
2016). Indeed, in the European countries of the Mediterranean Basin,
wildfires represent the most important abiotic disturbance (Lindner
et al., 2008), and they have increased significantly in number since
1980 (San-Miguel-Ayanz et al., 2016). Predictions of future fire regimes
forecast an increase in the severity of wildfires in the Mediterranean
Basin, under a warmer and drier climate (Lindner et al., 2008; Moreira
et al., 2011; Doblas-Miranda et al., 2017). The consequences of fire
are highly dependent on burn severity (Pausas et al., 2008; Keeley,
2009; González-de-Vega et al., 2016). This parameter is defined as
the change in the burnt area with respect to the pre-fire situation
(Key and Benson, 2006; De Santis et al., 2010; Soverel et al., 2011;

Meng et al., 2017), and operationally denoted as the aboveground and
belowground organic matter consumed by fire (Keeley, 2009).

In Southern Europe, for instance the Iberian Peninsula, forests most
affected by wildfires are the fire-prone pine ecosystems
(Dimitrakopoulos et al., 2011). In these forests, burn severity plays a
key role in the recovery capacity of both vegetation and soil (Calvo et
al., 2008; Lindner et al., 2008; Pausas et al., 2008; González-de-Vega
et al., 2016). In general, Pinus species in the Iberian Peninsula's forests
are obligated seeders whose post-fire regeneration relies on seeds stored
in serotinous cones within the canopy level (Calvo et al., 2008, 2016).
However, this natural regeneration could fail due to severe wildfires,
as regeneration from aerial seed banks could be hindered (Calvo et
al., 2008; Catry et al., 2013). Depending on burn severity, fire not
only affects the regeneration of dominant tree species but also the
understory community. Burn severity increases mortality and inter-
acts with regeneration strategies, affecting species with different bio
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logical traits in different ways and jeopardizing the recovery of some of
them (Céspedes et al., 2014; Pausas and Keeley, 2014; González-de-Vega
et al., 2016).

In addition, burn severity has several impacts on the soils in
fire-prone ecosystems. Whereas low severity has almost negligible or
non-negative impacts on soils (Marcos et al., 2009; Alcañiz et al., 2016),
high burn severity may cause significant loss of organic matter (Vega
et al., 2013), development of hydrophobicity with depth
(Rodríguez-Alleres et al., 2012), and deterioration of soil structure
(Varela et al., 2015), thus contributing to soil losses (Certini, 2005;
Lindner et al., 2008). Soil erosion is probably the most serious ecolog-
ical threat during the first year after fire in high burn severity areas
(Fernández and Vega, 2016), and damage can be significant in regions
like the Iberian Peninsula, where the risk of potential erosion is very
high (Van der Knijff et al., 2000). Consequently, initial assessments of
burn severity are necessary to address the potential post-fire manage-
ment strategies aimed at maintaining the vegetation community and
preserving the soil.

There are several ways to assess burn severity in the field, among
which the Composite Burn Index (CBI) (Key and Benson, 2006) has
been identified as a standard measurement (e.g. Fernández-Manso and
Quintano, 2015; Kong et al., 2015; Quintano et al., 2015; Holden et al.,
2016; Meddens et al., 2016; Parks et al., 2016; Day et al., 2017). The
CBI has been initially proposed for calibration and validation of remote
sensing products of burn severity the first months after fire (initial as-
sessment) or the first growing season after fire (extended assessment) in
Western United States (Key and Benson, 1999; Key and Benson, 2006),
and it has been adapted for use in different regions (Epting et al., 2005;
Kasischke et al., 2008). The CBI approach is more complete than many
other classification systems based on single indicators of burn sever-
ity (Sikkink, 2015), because it employs several visually estimated met-
rics of four vegetation strata (vegetation burn severity) and soil (soil
burn severity), which can be used together (site burn severity) provid-
ing an overall idea of the damage caused by fire, or separately, depend-
ing on compartments considered key in post-fire management (Key and
Benson, 2006; Zhu et al., 2006; Keeley, 2009). Although several limi-
tations of CBI have been noted, such certain subjectivity on its estima-
tion without knowing the pre-fire situation (Lentile et al., 2009), the
CBI is a burn severity index of great interest for land managers and sci-
entists (Holden et al., 2016) due to its integrative nature, rapid appli-
cation and known relation with many other impacts on the ecosystems
and post-fire recovery (e.g. Johnstone et al., 2010; Schwilk and Caprio,
2011; Kong et al., 2015; Holden et al., 2016; Day et al., 2017).

In large forest fires the assessment of burn severity by using only
field measurements is not functional, the use of remote sensing meth-
ods being necessary (De Santis and Chuvieco, 2007; Wu et al., 2015;
Meng et al., 2017). In order to tackle this challenge, various remote
sensing methods have been used, including those based on spectral
mixture analysis (SMA) (Fernández-Manso et al., 2009; Quintano et
al., 2017), radiative transfer models (RTM) (Chuvieco et al., 2006; De
Santis et al., 2009) or spectral indices (Chu and Guo, 2014; Wu et
al., 2015; Fernández-Manso et al., 2016; Zheng et al., 2016). SMA and
RTM have some advantages over spectral indices for burn severity map-
ping. SMA can be applied to any type of reflective remotely sensed im-
age (multispectral/hyperspectral), independently of their spatial reso-
lution or specific bands, and allows analogous products to some field
burn severity measurements to be obtained, having an explicit physi-
cal meaning (Lentile et al., 2009). RTM is a physically-based method
(Meng et al., 2017), which can model burn severity variables regard-
less of study site characteristics (De Santis et al., 2009). Furthermore,
RTM have successfully achieved higher correlations with field burn
severity than spectral indices in temperate and Mediterranean ecosys-
tems (De Santis and Chuvieco, 2007; De Santis et al., 2009; De Santis

et al., 2010). However, spectral indices are still the most commonly used
method (Key and Benson, 2006; Keeley, 2009; Veraverbeke et al., 2012;
Chu and Guo, 2014; Fernández-Manso and Quintano, 2015), because
they can be highly accurate when matching field measurements of burn
severity using a simple calculation process (Miller and Thode, 2007;
Parks et al., 2014; Fernández-Manso et al., 2016; Zheng et al., 2016),
but most studies analysing spectral indices performance have been car-
ried out in North America (Epting et al., 2005; Miller and Thode, 2007;
Harris et al., 2011; Cansler and McKenzie, 2012; Parks et al., 2014;
Zheng et al., 2016), further evaluations in other regions being advisable.

Among the many factors that can affect the spectral indices perfor-
mance, climate is one of great interest due to its influence on several
proximate factors, which can modify the land surface reflectance and/
or thermal emissivity. For instance, along different climates, vegetation
may have different leaf pigmentation (Xiao and Moody, 2008), leaf area
(Myneni et al., 2002; Zhu et al., 2013), and geometry (Box, 1981); and
soils have different moisture content (Reichle and Koster, 2004). Despite
this influence, few studies have indicated the relevance of climate-re-
lated proximate factors in burn severity assessments (Roy et al., 2006;
Picotte and Robertson, 2011; Soverel et al., 2011; Parks et al., 2014).

The Landsat 8 satellite allows us to obtain reflective indices, thermal
metrics, and mixed indices combining reflective and thermal, so the ca-
pacity of these spectral indices to assess burn severity can be compared
(Vlassova and Pérez-Cabello, 2016). Most spectral indices can be calcu-
lated from a mono-temporal perspective (post-fire situation) or from a
bi-temporal perspective (difference between pre-fire and post-fire situa-
tions) (Epting et al., 2005; Harris et al., 2011). The main advantage of
using mono-temporal indices is the reduction in errors associated with
differences in vegetation phenology potentially expected with bi-tempo-
ral approaches (Epting et al., 2005), due to imagery acquisition data or
because of inter-annual meteorological differences (Veraverbeke et al.,
2010). However, the literature usually indicates that bi-temporal indices
are more correlated to field burn severity measurements (Key, 2006;
Key and Benson, 2006; Miller and Thode, 2007; Zheng et al., 2016).

Spectral indices based on the opposite response of Near Infrared
(NIR) and Short Wave Infrared (SWIR) regions, specifically the NBR and
its bi-temporal approach called dNBR (Key, 2006), are considered a ref-
erence for burn severity mapping (De Santis et al., 2010; Veraverbeke et
al., 2012; Parks et al., 2014). Although some authors have found their
performance suboptimal (Chuvieco et al., 2006; Roy et al., 2006), other
indices based on NBR have been proposed obtaining good results, for
instance the RdNBR (Miller and Thode, 2007) and the RBR (Parks et al.,
2014), calculated by relativizing the bi-temporal NBR with the pre-fire
NBR. Other reflective metrics, such the typical vegetation NDVI (Rouse
et al., 1973) and EVI (Gao et al., 2000) indices have been used in burn
severity assessments, both mono and bi-temporal approaches obtaining
good results (Wu et al., 2015). Additionally, in recent years, thermal in-
frared data is starting to be used for burn severity assessments (Vlassova
et al., 2014; Quintano et al., 2015, 2017), but there are few studies
assessing their bi-temporal approach (Zheng et al., 2016). Thermal re-
motely sensed information can be easily transformed to land surface
temperature (LST), which is a function of soil and air temperature, both
of which are positively related to burn severity (Marcos et al., 2009;
Vlassova and Pérez-Cabello, 2016). Other authors have sought to im-
prove the functioning of the reflective indices incorporating a thermal
component, resulting in mixed burn severity indices that could outper-
form reference indices such as dNBR (Veraverbeke et al., 2011; Zheng
et al., 2016).

Therefore, numerous spectral metrics from Landsat data to quantify
burn severity can be found, but there is no consensus about the most
appropriate alternative (Cansler and McKenzie, 2012), highlighting the
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importance of developing more specific research. Thus, there are few
studies comparing the capacity of spectral indices to detect site, vegeta-
tion and soil burn severity separately (Hudak et al., 2007), and it may be
of great interest for a better understanding of indices performance. Dif-
ferences in spectral indices retrieval of soil and vegetation burn severity
can be expected, due to the different sensitivity of each region of the
spectrum to each particular change in soil and in vegetation (Key and
Benson, 2006; Chuvieco, 2010; Veraverbeke et al., 2011; Vlassova et al.,
2014). Additionally, finding spectral indices with a great ability to map
the site, vegetation and soil burn severity is of great value in defining
emergency areas, especially in those ecosystems dominated by obligate
seeders or with high vulnerability to soil erosion, such the fire-prone
pine forests of the Iberian Peninsula (Van der Knijff et al., 2000; Calvo
et al., 2008; Fernández and Vega, 2016; González-de-Vega et al., 2016).

The objective of this study is to evaluate the ability of remotely
sensed indices derived from Landsat sensors for initial burn sever-
ity assessments in fire-prone ecosystems dominated by Pinus species
along the Mediterranean-Transition-Oceanic climatic gradient. Specif-
ically, we aim to answer the following questions: (1) Which spec-
tral indices (reflective, thermal or mixed) have the best fit to field
measurements

of burn severity (CBI) along the Mediterranean-Transition-Oceanic cli-
matic gradient? (2) Do the remotely sensed indices have the same ability
in assessing site burn severity (vegetation plus soil) as vegetation burn
severity or soil burn severity individually? (3) Is there any spectral index
transferable throughout climatic regions with a high ability to indicate
burn severity in the ecosystem (site burn severity) and its compartments
(vegetation and soil burn severity)?

2. Methods

The followed methodology comprises four steps: study sites selec-
tion, field measurements of burn severity, remotely sensed data and data
analysis (Fig. 1).

2.1. Study sites

Four wildfires were selected along the Mediterranean-Transi-
tion-Oceanic climatic gradient within the Iberian Peninsula (Mediter-
ranean, Transition1, Transition2 and Oceanic sites) (Table 1). All of
them affected closed-canopy forests basically dominated by Pinus
pinaster Ait.,

Fig. 1. Methodology flowchart. CNIG: Spanish National Centre of Geographic Information; DEM: Digital Elevation Model; NOAA: U.S. National Oceanic and Atmospheric Administration;
NCEP: U.S. National Centres for Environmental Prediction; Pv: proportion of vegetation cover.

Table 1
Characteristics of study sites.

Mediterranean site Transition1 site Transition2 site Oceanic site

Fire alarm date August 6th, 2015 August 19th, 2012 July 13th, 2015 July 28th, 2015
Wildfire size (km ⁠2) 88.90 118.91 26.00 5.79
Elevation (m) 275–1449 836–1493 1032–1531 231–768
Aspect S, W, E N, S, W, E S N, S, W, E
Mean annual precipitation (mm) ⁠a 702 612 703 934
Mean July precipitation (mm) ⁠a 7 20 30 40
Mean annual temperature (°C)⁠a 14.3 10.7 10.0 10.8
Mean July temperature (°C)⁠a 23.6 19.6 18.3 17.2
Mean summer soil moisture (%) ⁠b 9.3 22.5 29.2 40.6
Köppen classification ⁠c Csa Csb Csb Cfb
Quantity of fires (N ∗ 10 km⁠2–1 ∗ 10 years⁠− 1)⁠d 12.2 4.7 4.9 12.8
Average size of fires (km ⁠2)⁠d 0.18 0.64 0.16 0.08

a Precipitation and temperature are 1982 to 2012 averages.
b Soil moisture in the summer of the wildfire occurrence, measured as the percentage of soil water with respect to the amount of water that the soil could retain (Data provided by the

Spanish meteorological survey - AEMET).
c Climatic classifications (1971–2000) are done according to the Spanish meteorological survey (AEMET-IM, 2011). Csa: temperate with hot dry summer (Mediterranean); Csb:

temperate with dry temperate summer (Transition); Cfb: temperate without a dry season and temperate summer (Oceanic).
d Fire statistics are 1998–2008 averages (MAGRAMA, 2009).
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with a similar fuel structure, fuel model number 7 according to
Anderson (1982).

The Mediterranean site is located in Cáceres province, Spain (Fig. 2),
where 88.90 km⁠2 burned in summer 2015. The fire regime in this area
is characterized by a relatively high number of wildfires (MAGRAMA,
2009) (Table 1). The site combines mountainous terrain with almost no
northern exposure with flat areas. Soils are acidic and mainly originated
from biotitic-granitic lithologies and slash. The forest is dominated by
P. pinaster. This region is characterized by typical Mediterranean condi-
tions with 4 months of summer drought.

The Transition1 site is a mega-wildfire occurred in summer 2012
in the south of León province, Spain (Fig. 2), where there are few
fires (MAGRAMA, 2009). This wildfire burned 118.91 km⁠2 of P. pinaster
stands developed over siliceous lithologies (quartzite, sandstone and
slate) in a heterogeneous topography (Table 1).

The Transition2 site is located in the north of León province (Fig.
2), where a wildfire affected 26.00 km⁠2. In this area there are few
fires (MAGRAMA, 2009) (Table 1). The site is a south-exposed hillside,
where soils are acidic, originated from arkosic sands, slash, sandstone
and quartzite. The forest is dominated by P. pinaster with occasional
presence of P. nigra Arn. and P. sylvestris L. The Transition region is char-
acterized by a summer drought of 2 months, an intermediate period be-
tween the Mediterranean climate and Oceanic climates (with no sum-
mer drought).

The Oceanic wildfire occurred in Asturias province, Spain (Fig. 2),
and burned 5.79 km⁠2. The rugged terrain topography and patchy land-
scape (García-Llamas et al., 2016) cause wildfires in this region to
be smaller (MAGRAMA, 2009). Soils are acidic, originated from slash,
sandstone and conglomerate. The dominant tree species is P. pinaster
with occasional presence of P. radiata D. Don. In this region there is no
summer drought.

Fig. 2. Location of the study sites in Europe (a) and in the Iberian Peninsula along the different Köppen climatic regions (AEMET-IM, 2011) (b). The study sites are shown using Landsat
post-fire false colour composite with burned areas predominantly purple. c) Mediterranean site, d) Transition1 site, e) Transition2 site, f) Oceanic site. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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2.2. Field measurements of burn severity

Field data to quantify the initial burn severity were collected three
months after wildfires in the four study sites. 30 m diameter field
plots were randomly distributed in fairly homogeneous patches of at
least 100 m diameter throughout each wildfire and positions were GPS
recorded.

According to the sampling intensity reported in other studies (e.g. De
Santis et al., 2010; Wu et al., 2015; Zheng et al., 2016), we distributed
a total of 183 plots among the four wildfires: 58 in the Mediterranean
site, 54 in the Transition1 site, 48 in the Transition2 site, and 23 in the
Oceanic site. To ensure that the number of plots was enough in each
wildfire we used the following formula (Chuvieco, 2010):

(1)

where n is the minimum sampling size, z is the z-coefficient for a spe-
cific confidence level, L is the minimum detectable change or assumable
error, s⁠2 is the variance of the samples, and N is the population size. We
assumed an error of 0.5 CBI points and a confidence level of 95%.

Our field protocol to quantify burn severity (Table 2) is an adapted
version of the original CBI (Key and Benson, 2006). The sampling pro-
cedure consists of rating several variables from 0 points (unburned) to 3
points (maximum burn severity) in 5 strata (Table 2), obtaining an av-
erage burn severity value per stratum. The site burn severity score is the
average value of all evaluated strata, the vegetation burn severity is the
average value of all evaluated strata except substrate, and the soil burn
severity only considers the substrate stratum (Fig. 3). In our adapted CBI
we did not consider factors that have to be measured in extended as-
sessments (% of living shrubs, colonizers, or change in species composi-
tion). In the substrate stratum rating factors we did not use medium and
heavy fuel consumption, because they were not significantly present in
the study sites.

2.3. Remotely sensed data

Remotely sensed information to estimate burn severity was obtained
from Landsat imagery (Landsat 8 OLI/TIRS for the Mediterranean, Tran-
sition2 and Oceanic fires, and Landsat 7 ETM + for the Transition1
site). Pre-fire and post-fire scenes were acquired for each fire from
the USGS Earth Explorer server (http://earthexplorer.usgs.gov/). We se-
lected imagery without clouds, and as close as possible to the fire date.
Scenes in the Mediterranean site were from June 19th, 2015 and Sep-
tember 7th, 2015; in the Transition1 site from September 20th, 2011
and September 6th, 2012; in the Transition2 site from June 19th, 2015
and August 6th, 2015; and in the Oceanic site from June 26th, 2015 and
August 29th, 2015.

Landsat imagery provided by the USGS (L1T processing level) is a
Digital Numbers (DN) product geometrically rectified and radiometri-
cally corrected (Landsat 8 (L8) Data Users Handbook, 2016; Landsat 7
Science Data Users Handbook, 2017). In this product we can distinguish
optical or reflective bands (B1 to B9 in Landsat 8; B1 to B5, B7 and B8 in
Landsat 7), and thermal bands (B10 and B11 in Landsat 8; B6L and B6H
in Landsat 7), to which we applied different pre-processing treatments.

The reflective bands were spatially subset and pre-processed (Fig.
1). DN were transformed to radiance values (L⁠λ), which were atmos-
pherically corrected using the Fast Line-of-sight Atmospheric Analy-
sis of Spectral Hypercubes (FLAASH) module (Perkins et al., 2012) in
ENVI. We used the MODIS water vapor product (MOD05), meteoro-
logical data (NOAA) and mean elevation values to set the appropri-
ate atmosphere models, aerosol situations and input parameters. Topo-
graphic shadow effects were removed by C-correction algorithm (Teillet
et al., 1982), using a digital elevation model (DEM) generated from
the BCN25 product of the National Centre of Geographic Information
of Spain (CNIG). We used 10% of the pixels to define the C con-
stant of the algorithm (Quintano et al., 2015). Finally, topographic cor-
rected values were rescaled to land surface reflectance in percentage
(ρ). These corrections are convenient due to the relevant effect of at-
mosphere on some bands and because of the rough terrain in some

Table 2
Modified Composite Burn Index used in this study to obtain the field values of burn severity (based on Key and Benson, 2006).

Strata rating factors Burn severity scale

Unburned Low Moderate High

0 0.5 1 1.5 2 2.5 3

Substrate
Litter/light fuel
consumed

None < 10% 10–20% 20–40% 40–80% 80–98% 98%

Char & colour None Blackened litter, no changes
in soil

Charred
remains, recognizable litter

Grey and white ash, grey
soil

White ash, reddened
soil

Vegetation < 1 m
Foliage consumed None < 20% 20–40% 40–60% 60–90% > 90% Branch loss
Vegetation 1–5 m
Foliage consumed None < 10% 10–30% 30–60% 60–95% > 95% Branch loss
Vegetation 5–20 m
Green 100% > 90% 70–90% 50–70% 10–50% < 10% None
Black None < 5% 5–20% 20–40% 40–85% > 85% No needles/leaves
Brown None < 5% 5–20% 20–40% 40–80% < 40 or > 80% None
Tree mortality None < 5% 5–20% 20–50% 50–80% > 80% 100%
Char height None 1 m 1.5 m 2 m 2.8 m 4 m > 5 m
Vegetation > 20 m
Green 100% > 95% 90–95% 65–90% 10–65% < 10 None
Black None < 5% 5–10% 10–35% 35–80% > 80% No needles/leaves
Brown None < 5% 5–10% 10–30% 30–70% < 30 or > 70% None
Tree mortality None < 5% 5–20% 20–50% 50–80% > 80% 100%
Char height None 1 m 1.8 m 3 m 4 m 6 m > 7 m
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Fig. 3. Example of field plots and CBI values of vegetation burn severity (V) and soil burn severity (S).

study sites. The algorithms were chosen based on results by Lin et al.
(2015) and Hantson and Chuvieco (2011). For each Landsat 7 reflective
band, the land surface reflectance was transformed to comparable Land-
sat 8 surface reflectance according to the functions proposed by Roy et
al. (2016).

Thermal band B10 (Landsat 8) or B6L (Landsat 7) was used to ob-
tain the LST product, following the single channel method by the radia-
tive transfer equation according Yu et al. (2014). The procedure (Fig. 1)
comprises a radiometric calibration of the clipped image to converse DN
to radiance with brightness temperature, atmospheric correction with
emissivities adjustment, and conversion to temperature in Kelvin. To
perform the atmospheric correction we applied the radiative transfer
equation:

(2)

B⁠x(T⁠s) being the ground radiance received by the correspondent ther-
mal band (B⁠x), B⁠x(T ⁠x) the radiance received by B ⁠x with brightness
temperature T⁠x, I⁠↑ and I⁠↓ the upwelling and downwelling radiance re-
spectively to B⁠x. τ⁠x (θ) is the atmospheric transmittance when the view
zenith angle is θ, and ε⁠x is surface emissivities for channel x. B⁠x (T⁠x)
is obtained from B⁠x radiance, I⁠x⁠↑, I⁠x⁠↓ and τ⁠x (θ) were obtained from
the National Centres for Environmental Prediction (NCEP) profiles pro-
vided by Barsi et al. (2005) on the ATMCORR tool (http://atmcorr.
gsfc.nasa.gov/). ε⁠x was calculated using an NDVI thresholds method as

follows:

(3)

where ρ⁠red is the reflectance of corrected B4 in Landsat 8 or B3 in Land-
sat 7, and Pv is calculated as follows:

(4)

Lastly, B⁠x(T⁠s) radiance is transformed into LST (Kelvin) based on
Planck's law using the following equation:

(5)

where K1⁠x and K2⁠x are thermal constants obtained from each image
metadata for Landsat 8 and 666.09 W m⁠− 2 sr⁠− 1 μm⁠− 1 and 1282.71 K
for Landsat 7 ETM +, respectively.
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In order to find the most suitable spectral indices to quantify burn
severity in pine forests throughout the Mediterranean-Transi-
tion-Oceanic climatic gradient, we evaluated reflective, thermal and
mixed (combining reflective and thermal) metrics sensitive to changes
caused by fires. Indices were obtained from land surface reflectance (ρ)
or/and LST products of Landsat pre-processed bands following the algo-
rithms included in Table 3. Specifically, we checked 13 spectral indices:
9 reflective indices (NBR, dNBR, RdNBR, RBR, NDVI, dNDVI, EVI, dEVI
and dNBR-EVI), 2 thermal metrics (LST and dLST), and 2 mixed indices
((LST/EVI) and d(LST/EVI)).

We proposed the dNBR-EVI index as a potential improvement of tra-
ditional NBR-based indices for initial assessments of burn severity along
climatic gradients, because its expected enhanced sensitivity to phys-
ical or bio-physical parameters such as: (1) the reflectance related to
the internal structure of the leaves and the canopy density, retrieved by
the NIR band (Key, 2006; Chuvieco, 2010; Veraverbeke et al., 2011),
on which both components of the new index (dNBR and EVI) are sup-
ported; (2) the reflectance related to the moisture content of both vege-
tation and soil, retrieved by the SWIR band (Key, 2006; Chuvieco, 2010;
Vlassova et al., 2014) of the dNBR component, but attenuated by the in-
clusion of the post-fire EVI for better transferability among climates; and
(3) the reflectance related to the post-fire photosynthetic pigments, by
the inclusion of Red and Blue bands (Gao et al., 2000; Chuvieco, 2010)
from the EVI index, for better detection of senescent leaves in initial
assessments. Furthermore, the dNBR-EVI combination attempts to solve
the saturation problem of traditional NBR-based indices when estimat-
ing severely burned areas (e.g. Parks et al., 2014; Holden et al., 2010;
Chen et al., 2011), by including the EVI index that has demonstrated not
to be saturated (Holden et al., 2010; Chen et al., 2011).

Spectral indices values corresponding to each field plot were ex-
tracted by averaging the values of 175 sample points systematically dis-
tributed within each 30 m diameter plot, following the procedure of
Picotte and Robertson (2011). We ensure that the number of points was
representative according to accumulative adjustment curves.

2.4. Data analysis

The relationships between the field burn severity measurements (site
burn severity, vegetation burn severity and soil burn severity) and the
13 remotely sensed metrics of burn severity were analysed along the
climatic gradient (Mediterranean, Transition1, Transition2 and Oceanic
sites) using ordinary least squares models. Although it is common to find
non-linear relationships between CBI-based measurements and some
remotely sensed metrics in the literature (Miller and Thode, 2007;
Soverel et al., 2011; Cansler and McKenzie, 2012), we found a mar-
ginal improvement in the performance of models. Then, we graphi

cally checked the assumptions of homoscedasticity and normality of
model residuals, and we decided to work with linear regression mod-
els, as other authors have done (e.g. Epting et al., 2005; De Santis and
Chuvieco, 2009; Quintano et al., 2015). We considered the field burn
severity measurements from each study site (Mediterranean, Transition
and Oceanic) as dependent variables and the spectral indices as explana-
tory variables. The coefficient of determination (R⁠2) and statistical sig-
nificance (p) of the regression models obtained fitting all the available
plots were used to compare the performance of the spectral indices to
each other in the same climatic region, and each index among the dif-
ferent climatic regions.

We analysed the transferability of the spectral indices-derived mod-
els using a cross validation “leave-one out” approach. Iteratively, mod-
els were trained using all the available plots of three wildfires, and val-
idated using the plots of the remaining wildfire. The predictive accu-
racy of the models was assessed in each iteration by calculating the root
mean squared error (RMSE) between observed and predicted values.
RMSE values higher than 25% of the total range of the CBI (0.75 CBI
points) were considered not acceptable (De Santis and Chuvieco, 2007).

In order to determine whether the coefficients of determination R⁠2

and the RMSE values were statistically different among the analysed
spectral indices, we performed analysis of variance of linear mixed mod-
els (LMMs) including the study site as random factor. Fisher's LSD test
was applied to specify which of the means were significantly different.

All statistical analyses were performed using R (R Core Team, 2016).
nlme (Pinheiro et al., 2017) and multcomp (Hothorn et al., 2017) pack-
ages were used.

3. Results

3.1. Relationship between field burn severity and spectral indices

We found a common trend in the behaviour of the spectral indices
that were, in general, highly suitable to correlate site (Table 4) and veg-
etation (Table 5) burn severity, but not so able to match soil burn sever-
ity (Table 6).

The results of the site burn severity (Table 4) indicated that the
proposed new index dNBR-EVI and the other differenced reflective in-
dices based on NBR (dNBR, RdNBR and RBR), showed significantly
better correlations than thermal and mixed metrics along the climatic
gradient. The new index showed the best fit in the Mediterranean
(R⁠2 = 0.82) and Oceanic (R⁠2 = 0.78) sites. The rest of the indices
showed a significantly worse performance to match site burn severity
along the entire gradient. In particular, NDVI and dNDVI did not work
well in the Mediterranean region (R⁠2 ≤ 0.28), and thermal metrics (LST

Table 3
Selected indices and calculation algorithm, using Landsat 8 OLI/TIRS bands or Landsat 7 ETM + bands.

Spectral index Landsat 8 OLI/TIRS formula Landsat 7 ETM + formula Reference

Reflective NBR (ρ⁠5 − ρ⁠7) / (ρ⁠5 + ρ⁠7) (ρ⁠4 − ρ⁠7) / (ρ⁠4 + ρ⁠7) López-García and Caselles (1991)
dNBR 1000 (NBR ⁠pre − NBR⁠post) − offset⁠a 1000 (NBR ⁠pre − NBR⁠post) − offset⁠a Key (2006)
RdNBR dNBR / (| NBR⁠pre |⁠0.5) dNBR / (| NBR⁠pre |⁠0.5) Miller and Thode (2007)
RBR dNBR / (NBR⁠pre + 1.001) dNBR / (NBR⁠pre + 1.001) Parks et al. (2014)
NDVI (ρ⁠5 − ρ⁠4) / (ρ⁠5 + ρ⁠4) (ρ⁠4 − ρ⁠3) / (ρ⁠4 + ρ⁠3) Rouse et al. (1973)
dNDVI NDVI⁠pre − NDVI⁠post NDVI⁠pre − NDVI⁠post Zhu et al. (2006)
EVI 2.5 [(ρ⁠5 − ρ⁠4) / (ρ⁠5 + 6ρ⁠4 − 7.5ρ⁠2 + 1)] 2.5 [(ρ⁠4 − ρ⁠3) / (ρ⁠4 + 6ρ⁠3 − 7.5ρ⁠1 + 1)] Gao et al. (2000)
dEVI EVI⁠pre − EVI⁠post EVI⁠pre − EVI⁠post Zhu et al. (2006)
dNBR-EVI (dNBR-EVI ∗ 1000) − offset⁠a (dNBR-EVI ∗ 1000) − offset⁠a Proposed by the authors

Thermal LST LST in Kelvin from B ⁠10(T⁠s) LST in Kelvin from B ⁠6L(T⁠s) Yu et al. (2014)
dLST LST⁠post − LST⁠pre LST⁠post − LST⁠pre Zheng et al. (2016)

Mixed LST/EVI (LST − 273.15)/EVI (LST − 273.15)/EVI Zheng et al. (2016)
d(LST/EVI) (LST/EVI)⁠post − (LST/EVI)⁠pre (LST/EVI)⁠post − (LST/EVI)⁠pre Zheng et al. (2016)

a Offset is the average index value from pixels in homogeneous and unchanged areas.
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Table 4
Coefficients of determination (R⁠2) and significance (p) of the linear regression models between spectral indices and site burn severity in the four study sites. Models were performed fitting
all the available plots from each study site.

Spectral index Site burn severity

M T1 T2 O Mean ± SD

Reflective dNBR-EVI 0.82⁠···⁠ 0.87⁠···⁠ 0.87⁠···⁠ 0.78⁠···⁠ 0.84 ± 0.04 a
NBR 0.62⁠··· 0.75⁠··· 0.88⁠··· 0.62⁠··· 0.72 ± 0.12 ac
dNBR 0.79⁠··· 0.88⁠··· 0.86⁠··· 0.69⁠··· 0.81 ± 0.09 ab
RdNBR 0.76⁠··· 0.83⁠··· 0.89⁠··· 0.68⁠··· 0.79 ± 0.09 ab
RBR 0.77⁠··· 0.88⁠··· 0.88⁠··· 0.68⁠··· 0.80 ± 0.10 ab
NDVI 0.02 0.69⁠··· 0.54⁠··· 0.51⁠··· 0.44 ± 0.29 e
dNDVI 0.28⁠··· 0.76⁠··· 0.69⁠··· 0.58⁠··· 0.58 ± 0.21 ce
EVI 0.59⁠··· 0.68⁠··· 0.63⁠··· 0.69⁠··· 0.65 ± 0.05 bcd
dEVI 0.53⁠··· 0.66⁠··· 0.37⁠··· 0.69⁠··· 0.56 ± 0.15 ce

Thermal LST 0.31⁠··· 0.66⁠··· 0.65⁠··· 0.21⁠·· 0.46 ± 0.23 e
dLST 0.54⁠··· 0.80⁠··· 0.77⁠··· 0.24⁠·· 0.59 ± 0.26 ce

Mixed LST/EVI 0.56⁠··· 0.51⁠··· 0.50⁠··· 0.44⁠··· 0.50 ± 0.05 de
d(LST/EVI) 0.59⁠··· 0.53⁠··· 0.51⁠··· 0.43⁠··· 0.52 ± 0.07 de

M: Mediterranean site, T1: Transition1 site, T2: Transition2 site, O: Oceanic site.
Significances of the correlations are represented as ·, ·· and ··· (p < 0.05, p < 0.01, and p < 0.001, respectively).
Letters (a, b, c, d, e) indicate significant differences among mean R⁠2 values of the spectral indices.

Table 5
Coefficients of determination (R⁠2) and significance (p) of the linear regression models between spectral indices and vegetation burn severity in the four study sites. Models were performed
fitting all the available plots from each study site.

Spectral index Vegetation burn severity

M T1 T2 O Mean ± SD

Reflective dNBR-EVI 0.85⁠···⁠ 0.87⁠···⁠ 0.85⁠···⁠ 0.82⁠···⁠ 0.85 ± 0.02 a
NBR 0.67⁠··· 0.77⁠··· 0.86⁠··· 0.69⁠··· 0.75 ± 0.09 ac
dNBR 0.81⁠··· 0.89⁠··· 0.84⁠··· 0.75⁠··· 0.82 ± 0.06 ab
RdNBR 0.80⁠··· 0.84⁠··· 0.86⁠··· 0.74⁠··· 0.81 ± 0.05 ab
RBR 0.81⁠··· 0.89⁠··· 0.86⁠··· 0.74⁠··· 0.83 ± 0.07 a
NDVI 0.04 0.70⁠··· 0.52⁠··· 0.56⁠··· 0.46 ± 0.29 e
dNDVI 0.31⁠··· 0.76⁠··· 0.69⁠··· 0.63⁠··· 0.60 ± 0.20 ce
EVI 0.60⁠··· 0.69⁠··· 0.61⁠··· 0.67⁠··· 0.64 ± 0.04 bcd
dEVI 0.50⁠··· 0.67⁠··· 0.35⁠··· 0.74⁠··· 0.57 ± 0.18 de

Thermal LST 0.37⁠··· 0.67⁠··· 0.65⁠··· 0.28⁠·· 0.49 ± 0.20 de
dLST 0.61⁠··· 0.81⁠··· 0.77⁠··· 0.30⁠·· 0.62 ± 0.23 ce

Mixed LST/EVI 0.58⁠··· 0.52⁠··· 0.49⁠··· 0.48⁠··· 0.52 ± 0.05 de
d(LST/EVI) 0.60⁠··· 0.53⁠··· 0.49⁠··· 0.48⁠··· 0.53 ± 0.05 de

M: Mediterranean site, T1: Transition1 site, T2: Transition2 site, O: Oceanic site.
Significances of the correlations are represented as ·, ·· and ··· (p < 0.05, p < 0.01, and p < 0.001, respectively).
Letters (a, b, c, d, e) indicate significant differences among mean R⁠2 values of the spectral indices.

and dLST) did not work in the Oceanic region (R⁠2 ≤ 0.24). Mixed in-
dices [LST/EVI and d(LST/EVI)], were outperformed along the climatic
gradient by reflective indices based on NBR and by EVI.

Focusing on vegetation burn severity (Table 5), there were similar
fits and patterns as on site burn severity along the climatic gradient.
Therefore, reflective NBR based indices (NBR, dNBR, RdNBR and RBR)
and EVI were the best fitted along the entire climatic gradient, although
the dNBR-EVI index was the best fitted (R⁠2 ≥ 0.82).

The analysed spectral indices did not correlate soil burn severity
as well as site or vegetation burn severity (Table 6). Reflective indices
based on NBR reached the highest R⁠2 values, being significantly better
than thermal and mixed indices, dNBR-EVI being the best one. Thermal
metrics reached relatively high values of the coefficient of determina-
tion in the Transition region (R⁠2 ≥ 0.54), but a non-significant relation
was found in the Oceanic region. Mixed indices did not reach high val-
ues in any climatic region (R⁠2 ≤ 0.45).

The dNBR-EVI outperformed the previously existing indices in most
situations, and was the only index whose coefficients of determina-
tion were significantly higher than vegetation reflective indices (NDVI,
dNDVI, EVI and dEVI), thermal metrics and mixed indices when

matching the site, vegetation and soil burn severity. Furthermore, re-
gressions between dNBR-EVI and field measurements of burn severity
(Fig. 4) showed that dNBR-EVI index did not have saturation-related
problems in high severity scenarios, as occurs with the other NBR-based
indices.

3.2. Transferability of spectral indices-derived models to predict burn
severity

Cross-validation showed the highest accuracies when predicting the
site burn severity (Table 7), little differences with vegetation (Table 8)
and soil burn severity (Table 9) being observed. Broadly, errors were
higher when predicting burn severity in the Transition1 and Oceanic
sites.

Analysing the transferability of spectral indices-derived models to
predict the site burn severity (Table 7) along the entire climatic gra-
dient, we found that the dNBR-EVI-based models reached the lowest
RMSE values (RMSE ≤ 0.47), being significantly better than vegetation
(RMSE ≥ 0.60), thermal (RMSE ≥ 0.70) and mixed (RMSE ≥ 0.63) in-
dices. Only models based on differenced NBR-type indices reached ad
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Table 6
Coefficients of determination (R⁠2) and significance (p) of the linear regression models between spectral indices and soil burn severity in the four study sites. Models were performed fitting
all the available plots from each study site.

Spectral index Soil burn severity

M T1 T2 O Mean ± SD

Reflective dNBR-EVI 0.54⁠···⁠ 0.74⁠···⁠ 0.63⁠···⁠ 0.47⁠···⁠ 0.60 ± 0.12 a
NBR 0.34⁠··· 0.65⁠··· 0.67⁠··· 0.28⁠·· 0.49 ± 0.20 ae
dNBR 0.51⁠··· 0.77⁠··· 0.57⁠··· 0.34⁠·· 0.55 ± 0.18 ab
RdNBR 0.47⁠··· 0.69⁠··· 0.63⁠··· 0.32⁠·· 0.53 ± 0.17 ab
RBR 0.47⁠··· 0.77⁠··· 0.63⁠··· 0.32⁠·· 0.55 ± 0.20 abc
NDVI 0.00 0.58⁠··· 0.60⁠··· 0.26⁠· 0.36 ± 0.29 ce
dNDVI 0.13⁠·· 0.67⁠··· 0.53⁠··· 0.34⁠·· 0.42 ± 0.23 be
EVI 0.41⁠··· 0.57⁠··· 0.55⁠··· 0.55⁠··· 0.52 ± 0.07 abcd
dEVI 0.41⁠··· 0.56⁠··· 0.25⁠··· 0.34⁠·· 0.29 ± 0.13 be

Thermal LST 0.13⁠·· 0.54⁠··· 0.66⁠··· 0.05 0.35 ± 0.30 e
dLST 0.24⁠··· 0.66⁠··· 0.66⁠··· 0.07 0.41 ± 0.30 be

Mixed LST/EVI 0.34⁠··· 0.43⁠··· 0.36⁠··· 0.21⁠· 0.34 ± 0.09 de
d(LST/EVI) 0.37⁠··· 0.45⁠··· 0.35⁠··· 0.21⁠· 0.35 ± 0.10 e

M: Mediterranean site, T1: Transition1 site, T2: Transition2 site, O: Oceanic site.
Significances of the correlations are represented as ·, ·· and ··· (p < 0.05, p < 0.01, and p < 0.001, respectively).
Letters (a, b, c, d, e) indicate significant differences among mean R⁠2 values of the spectral indices.

missible RMSE values (≤ 25% of the CBI range) along the entire gradi-
ent. Focusing on the rest of the metrics, predictions of models based on
vegetation indices worked better on the humid side of the gradient, par-
ticularly in the Oceanic site.

Focusing on vegetation burn severity (Table 8), models showed very
similar patterns to site burn severity, being the dNBR-EVI the most
transferable index along the climatic gradient. RMSE values of vegeta-
tion, thermal and mixed indices were inadmissible (> 25% of the CBI
range) in most scenarios.

Predictions of soil burn severity (Table 9) indicated that the
dNBR-EVI-derived models were the most accurate and transferable
along the climatic gradient. RMSE values of predictions based on the
other indices were not acceptable (RMSE > 0.75) in at least one study
site, except for dEVI. The EVI-based model showed a good ability when
predicting the soil burn severity in the Oceanic site.

4. Discussion

Reflective spectral indices are the best matched to field measure-
ments of burn severity based on CBI in pine forests in the three climatic
regions. Specifically, indices using NIR and SWIR or indices combining
Red and Blue worked better than thermal and mixed metrics, on the one
hand correlating better the field burn severity measurements, and on the
other hand being more transferable among climatic regions. Both ther-
mal and mixed indices showed worse performance and greater variabil-
ity among regions. Another feature confirmed in this study is the limita-
tion of remotely sensed indices to correlate soil burn severity, probably
due to the shielding effect of vegetation or their remains (Soverel et al.,
2011; Tanase et al., 2011), corroborating results found by other authors
when analysing the remote sensing of burn severity on understory (Key,
2006; Cansler and McKenzie, 2012; Wu et al., 2015).

Reflective indices based on NBR (NBR, dNBR, RdNBR and RBR)
showed good behaviour in Mediterranean and Transition environments,
reaching good relationships with field measurements of burn sever-
ity similar to or even better than those reported in other wildfires
(Zhu et al., 2006; Miller and Thode, 2007; Veraverbeke et al., 2010;
Tanase et al., 2011; Parks et al., 2014) and their models showed a high
transferability for site burn severity predictions as other authors found
(Soverel et al., 2011). The sensitivity of these indices to burn sever-
ity is widely recognized (e.g. Miller et al., 2009; Chu and Guo, 2014;
Fernández-Manso and Quintano, 2015), and it is due to the decrease in

NIR reflectance, sensitive to the cellular structure of the leaves, and
the simultaneous increase in SWIR reflectance primarily related to de-
creased moisture content (Key, 2006; De Santis and Chuvieco, 2007;
Miller and Thode, 2007; Robichaud et al., 2007; Chuvieco, 2010;
Veraverbeke et al., 2011; Harris et al., 2011; Cansler and McKenzie,
2012). The dNBR and the relativized indices RdNBR and RBR produced
similar regression fits and predictive errors, a result which can be at-
tributed to the high homogeneity of the studied ecosystems (Miller and
Thode, 2007). Analysing the models along the climatic gradient, despite
the good performance of reflective indices based on NBR in Mediter-
ranean and Transition regions, our results demonstrate more difficulties
in correlating and predicting CBI in the Oceanic region. Other studies
can support the idea that climate-related factors have an important ef-
fect on the performance of these indices. Thus, Zhu et al. (2006) found
the worst fit for dNBR in the Northern Rockies, with a humid climate
(R⁠2 = 0.65), and much better results in Mediterranean and arid zones
(R⁠2 from 0.72 to 0.79). Also Parks et al. (2014) found the best per-
formance of dNBR-based indices in the Southwestern US, with a rel-
atively dry climate. Soverel et al. (2011) related the lower R⁠2 values
(0.40 to 0.50) in some of their study regions to the high soil moisture
content, which is a potential facilitator of decoupled fires (fires with
different burn severity levels per strata). A single index does not cap-
ture this decoupling among strata because it provides an overall value
not segregated by strata, leading in worse correspondences (Tanase et
al., 2011). Another potential cause of the worse performance in the
Oceanic region related to soil moisture is its high absorbance of SWIR
radiation (Chuvieco, 2010; Vlassova et al., 2014). Consequently, the
expected increase in SWIR reflectance after fire may be attenuated in
Oceanic sites, especially in the highest burn severity areas, where soils
can play a major role in the satellite received reflectance because of
the depletion of the vegetation layer (Robichaud et al., 2007; Chuvieco,
2010). These hypotheses are supported by the mean SWIR reflectance
values obtained within the fire perimeters in the post-fire image, being
lower in the Oceanic study site (3.14 ± 1.64) than in the other wild-
fires (≥ 4.50). Furthermore, areas with a humid climate can have faster
post-fire green-up (Soverel et al., 2011; Liu, 2016; Rother and Veblen,
2017), rapidly reducing the change in reflectance values caused by burn
severity. This influence of climate could be greatest in extended assess-
ments, when the apparent magnitude of the initial burn severity is de-
creased (Key and Benson, 2006).

The analysed reflective vegetation indices (NDVI, dNDVI, EVI and
dEVI) showed very different results when correlating burn severity, as
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they did when extrapolating their models to new study sites. Their re-
sponse is based on the reflectance of the Red band, which is higher
when the vegetation is stressed, and also in the NIR reflectance, which
has an opposite response to Red (Gao et al., 2000; Huete et al., 2002;
Chuvieco, 2010). However, although both kinds of indices (NDVI and
EVI) are highly sensitive to chlorophyll levels, EVI is more related to
structural characteristics of vegetation, such as leaf area or plant canopy
and architecture of the vegetation (Huete et al., 2002). NDVI and dNDVI
showed a great variability along the climatic gradient, and they did not
work in the Mediterranean region, maybe due to the higher effect of
summer drought on chlorophyll levels than in other indices like EVI
(Mänd et al., 2010) and because, in general, the pigment content per
leaf area decreases with climate aridity (Madani et al., 2017; Yudina
et al., 2017) as the NDVI of the fire scars revealed in the pre-fire im-
ages (from 0.38 ± 0.09 in the Oceanic site to 0.31 ± 0.09 in the Mediter-
ranean site). Thus, it is very likely that the NDVI and dNDVI indices
confused severity levels and burned areas with low activity zones in
Mediterranean regions, where the drought period is usually coincident
to the fire occurrence period (Steel et al., 2015). For this reason, green-
ness immediately before the fire could be lower than values from the
pre-fire images. This possibility was previously reported by Picotte and
Robertson (2011). Conversely, EVI relationships with field burn severity
were relatively as good as could be expected (Harris et al., 2011; Wu et
al., 2015; Zheng et al., 2016), principally in the Oceanic region. EVI is
a robust index against changes of soil type and atmosphere because it
includes the Blue band and two coefficients, unlike the NDVI, which is
also less consistent in time (Gao et al., 2000; Chuvieco, 2010). Further-
more, the Red band can detect senescent leaves (Chuvieco, 2010; Mänd
et al., 2010), which is advantageous information for initial burn sever-
ity assessments, when the delayed tree mortality detection is challeng-
ing (Key and Benson, 2006). The worse transferability of the EVI-based
models to the Transition1 site (Landsat 7 imagery) could be due to the
lower correlation between Blue bands than between the other reflective
bands from ETM + and OLI sensors (Roy et al., 2016).

Thermal metrics (LST and dLST) did not work in the same way
along the climatic gradient. The highest coefficients of determination
of the thermal metrics were reached in the Transition region, obtain-
ing similar results to those reported in other wildfires (Quintano et al.,
2015, Zheng et al., 2016). However, these indices did not work as well
in the other two regions. The variable performance of thermal met-
rics in the different study sites could lead to unacceptable predictions
(RMSE > 0.75) in most scenarios when extrapolating LST-based mod-
els along the climatic gradient, suggesting that models have to be per-
formed in each single fire. These differences may be due to the influ-
ence of topographic factors in the LST generating changes not related
to burn severity. Aspect and altitudinal differences strongly affect LST
(Vlassova et al., 2014; Quintano et al., 2015), and these topographic
parameters have a large variation in the Mediterranean and Oceanic
sites. Another factor that could affect the operation of thermal metrics
along the climatic gradient could be moisture, which is higher in the
Oceanic region. Chuvieco (2010) indicates that moisture content is one
of the most outstanding factors in the thermal behaviour of soils. Thus,
higher moisture content in soil and above the surface, could soften the
LST differences caused by the burn severity. Besides, assorted aspects
lead to differences in moisture (Wu et al., 2013). In brief, homogene-
ity in topography and moisture in the Transition sites, where thermal
metrics are some of the best to assess soil burn severity, can explain the
widely better results obtained in this sites in comparison to the other
study areas. For extended assessments, it is necessary to take into ac
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Fig. 4. Linear relationships between spectral index dNBR-EVI and each field measurement
of burn severity (site, vegetation and soil burn severity). Study sites are represented as M
(Mediterranean), T1 (Transition1), T2 (Transition2) and O (Oceanic).
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Table 7
RMSE in CBI units of the spectral indices-derived models trained with a set of plots from three wildfires, when predicting the site burn severity in the remaining wildfire (noted in the
heading of the table).

Spectral index Site burn severity

M T1 T2 O Mean ± SD

Reflective dNBR-EVI 0.41 0.41 0.34 0.47 0.41 ± 0.05 a
NBR 0.59 0.85 0.37 0.83 0.66 ± 0.23 bc
dNBR 0.43 0.51 0.49 0.58 0.50 ± 0.06 ab
RdNBR 0.46 0.52 0.32 0.67 0.49 ± 0.15 ab
RBR 0.44 0.38 0.35 0.65 0.46 ± 0.14 ab
NDVI 0.97 0.83 0.64 0.81 0.81 ± 0.14 cde
dNDVI 0.79 0.71 0.60 0.67 0.69 ± 0.08 bd
EVI 0.87 1.45 0.72 0.60 0.91 ± 0.38 de
dEVI 0.71 1.29 0.76 0.69 0.86 ± 0.29 cde

Thermal LST 0.79 0.98 0.90 0.94 0.90 ± 0.08 de
dLST 0.91 0.70 0.84 0.84 0.82 ± 0.09 cde

Mixed LST/EVI 0.80 1.39 1.01 0.78 1.00 ± 0.28 e
d(LST/EVI) 0.63 0.85 0.96 0.74 0.80 ± 0.14 cde

M: Mediterranean site, T1: Transition1 site, T2: Transition2 site, O: Oceanic site.
Letters (a, b, c, d, e) indicate significant differences among mean RMSE values of the spectral indices.

Table 8
RMSE in CBI units of the spectral indices-derived models trained with a set of plots from three wildfires, when predicting the vegetation burn severity in the remaining wildfire (noted in
the heading of the table).

Spectral index Vegetation burn severity

M T1 T2 O Mean ± SD

Reflective dNBR-EVI 0.47 0.53 0.42 0.49 0.48 ± 0.05 a
NBR 0.66 1.07 0.52 0.86 0.78 ± 0.24 bc
dNBR 0.45 0.42 0.51 0.59 0.49 ± 0.08 a
RdNBR 0.52 0.71 0.43 0.70 0.59 ± 0.14 ab
RBR 0.48 0.45 0.41 0.66 0.50 ± 0.11 a
NDVI 1.09 0.85 0.77 0.85 0.89 ± 0.14 cd
dNDVI 0.89 0.64 0.66 0.71 0.73 ± 0.11 ac
EVI 0.94 1.50 0.81 0.70 0.99 ± 0.36 cd
dEVI 0.85 1.62 0.95 0.80 1.06 ± 0.38 d

Thermal LST 0.85 0.91 0.96 1.02 0.94 ± 0.07 cd
dLST 1.07 0.64 0.84 0.92 0.87 ± 0.18 cd

Mixed LST/EVI 0.86 1.39 1.16 0.86 1.07 ± 0.26 d
d(LST/EVI) 0.72 0.81 1.01 0.81 0.84 ± 0.12 bcd

M: Mediterranean site, T1: Transition1 site, T2: Transition2 site, O: Oceanic site.
Letters (a, b, c, d) indicate significant differences among mean RMSE values of the spectral indices.

Table 9
RMSE in CBI units of the spectral indices-derived models trained with a set of plots from three wildfires, when predicting the soil burn severity in the remaining wildfire (noted in the
heading of the table).

Spectral index Soil burn severity

M T1 T2 O Mean ± SD

Reflective dNBR-EVI 0.45 0.71 0.48 0.61 0.56 ± 0.12 a
NBR 0.52 0.80 0.37 0.89 0.65 ± 0.24 acd
dNBR 0.54 0.90 0.62 0.68 0.69 ± 0.15 ae
RdNBR 0.49 0.71 0.51 0.76 0.62 ± 0.14 ac
RBR 0.51 0.76 0.45 0.74 0.62 ± 0.16 ac
NDVI 0.77 1.01 0.45 0.86 0.77 ± 0.24 bce
dNDVI 0.65 0.98 0.61 0.67 0.73 ± 0.17 ae
EVI 0.82 1.35 0.60 0.52 0.82 ± 0.37 de
dEVI 0.49 0.67 0.52 0.65 0.58 ± 0.09 ab

Thermal LST 0.71 1.15 0.73 0.81 0.85 ± 0.20 e
dLST 0.57 0.96 0.85 0.72 0.78 ± 0.17 bce

Mixed LST/EVI 0.75 1.36 0.69 0.66 0.87 ± 0.33 e
d(LST/EVI) 0.56 1.04 0.91 0.68 0.80 ± 0.22 ce

M: Mediterranean site, T1: Transition1 site, T2: Transition2 site, O: Oceanic site.
Letters (a, b, c, d, e) indicate significant differences among mean RMSE values of the spectral indices.
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count that differences in LST due to burn severity rapidly decrease with
the time-lapse after fire (Quintano et al., 2015).

Indices that combine thermal and optical bands (LST/EVI and dLST/
EVI) performed better than thermal metrics at the ends of the gradi-
ent, and worse in the Transition region. They did not exceed optical in-
dices such as mono-temporal or bi-temporal NBR, and they showed little
transferability since they exceeded the assumable error in many scenar-
ios. Our coefficients of determination coincided with those obtained in
previous research works in Western United States (Zheng et al., 2016),
although these authors obtained higher R⁠2 in mixed indices than in re-
flective and thermal ones. Similarly, Harris et al. (2011) proposed the
use of indices based on reflective and thermal bands that were well cor-
related to ground measured burn severity.

The new proposed index, dNBR-EVI, showed the best performance
along the climatic gradient. First, the dNBR-EVI reached the highest
R⁠2 values when matching the three field measurements of burn sever-
ity (site, vegetation and soil burn severity). Additionally, its models
showed the highest transferability along the climatic gradient, being the
only analysed index with admissible predictions in all studied scenarios
(RMSE ≤ 0.75). Particularly, the new index has proven to be a large im-
provement in the assessment of soil burn severity, which was the most
difficult variable to be detected by the spectral indices. The new in-
dex also constituted an enhancement in burn severity detection in the
Oceanic region (site, vegetation and soil burn severity), the study site
where the other NBR-based indices performed the worst. The better per-
formance of the new index in comparison with the others analysed may
be due to several reasons: (1) The dNBR-EVI regression did not show sig-
nal saturation at high severities, a common problem when using dNBR,
RdNBR or RBR (De Santis et al., 2010; Veraverbeke et al., 2012; Parks et
al., 2014). This is a significant improvement when predicting high burn
severity patches, because those are the areas where the recovery of veg-
etation and soil may be endangered (Calvo et al., 2008; Fernández and
Vega, 2016; González-de-Vega et al., 2016), and consequently, they are
targets for forest managers (Miller and Thode, 2007). (2) dNBR-EVI uses
more spectral information than the other NBR type indices, combining
Red, Blue, NIR and SWIR bands, which are meaningful for initial burn
severity assessments along climatic gradients due to their respective sen-
sitivity to atmospheric aerosols, chlorophyll levels, cellular structure of
the leaves and canopy density, and soil and vegetation moisture (Huete
et al., 2002; Key, 2006; Chuvieco, 2010; Cansler and McKenzie, 2012).
(3) In the calculation of the dNBR-EVI, the contribution of the SWIR
band is less important than in the other NBR type indices. As SWIR
reflectance is closely related to moisture content (Veraverbeke et al.,
2011; Harris et al., 2011; Cansler and McKenzie, 2012), the dNBR-EVI
index could be more robust dealing with moisture variability, typical in
climatic gradients. (4) The dNBR-EVI index combines the bi-temporal
approach by including the dNBR, and the mono-temporal perspective
provided by the post-fire EVI. Thus, the new index has the advantage of
a high model fit, characteristic of bi-temporal NBR-based indices, with
the influence of a mono-temporal index that can lead to more scatter in
the unburned areas. However, the mono-temporal component compen-
sates for differences in vegetation phenology (Veraverbeke et al., 2010)
or hydrological fluctuations (Picotte and Robertson, 2011) between the
pre and post-fire scenes.

Our results demonstrate that the new dNBR-EVI index is very suit-
able for use in initial burn severity assessments of pine forests across
different climatic regions. Thus, several issues should be taken into
account when applying it under different circumstances, such as ex-
tended assessments, different ecosystems or different geographical re-
gions. In this study we analysed the performance of spectral indices for
initial burn severity assessments, because in the Mediterranean coun-
tries interventions are usually carried out within the first year after
fire, extended assessments being less appropriate (Tanase et al., 2011).

However, extended assessments are widely used in other regions of the
world (Miller and Thode, 2007; Miller et al., 2009; Parks et al., 2014;
Zheng et al., 2016), so the dNBR-EVI performance should be analysed
considering that spectral response is highly dependent on the time lapse
after fire (Chen et al., 2011; Quintano et al., 2015; Meddens et al.,
2016). Further validations are also recommended when extrapolating
the new index to ecosystems with different species composition, since
the spectral signature of each kind of forest is different (Lehmann et al.,
2015). We also highlight the importance of further research in differ-
ent geographic regions, because they are linked to different climates and
ecosystems, and they have an influence on spectral indices performance
(Roy et al., 2006; Parks et al., 2014).

The convenience of validations in different scenarios is characteristic
of empirical models (De Santis and Chuvieco, 2007). Future research to
avoid this time-consuming process may be focused on the development
of accurate models supported on more generalizable physically-based
methods such as RTM or SMA.

5. Conclusions

The results found in our study constitute a novelty in the field of
burn severity initial assessment using remote sensing imagery. This is
the first evaluation of the performance of different spectral indices (re-
flective, thermal and mixed) as suitable tools to match field burn sever-
ity (site, vegetation and soil burn severities) throughout climatic re-
gions in the Mediterranean Basin. Moreover, we proposed and evaluated
a new spectral index, the dNBR-EVI, for increasing the transferability
along climatic regions (Mediterranean, Transition and Oceanic).

Specifically, our results demonstrated that reflective indices based
on dNBR fitted field values of burn severity better than thermal metrics
and mixed ones (combining thermal and optical information).

Besides, in fire-prone pine forests in the Mediterranean Basin, re-
motely sensed indices indicated better site and vegetation burn severity
than soil burn severity.

Most spectral indices used, such as dNBR, showed variable behav-
iour along the climatic gradient to match burn severity. In order to
solve this problem, we proposed an alternative index for initial burn
severity assessments using Landsat reflective bands: the dNBR-EVI. We
concluded that this index performs better than the other studied in-
dices, showing the best fit to burn severity field data and the best
transferability throughout the climatic gradient (Mediterranean-Transi-
tion-Oceanic).

Finally, we recommended further evaluations of the performance
and suitability of the new dNBR-EVI index for extended assessments of
burn severity, as well as in other types of ecosystems, and different ge-
ographical regions or climatic situations. Likewise, we highlight the ne-
cessity to enhance the current capacity of remotely sensed methods to
detect soil burn severity, a crucial factor in areas with high post-fire ero-
sion vulnerability, such as fire prone ecosystems in the Mediterranean
Basin.

Uncited reference

Parsons et al., 2010

Acknowledgements

This research was financially supported by the Spanish Ministry
of Economy and Competitiveness, and the European Regional
Development Fund (ERDF), in the framework of the GESFIRE project
(AGL2013-48189-C2-1-R); and by the Regional Government of Castilla
y León in the framework of the FIRECYL project (LE033U14). We are
grateful for technical help provided by Rut Díez Romero, supported by
the European Social Fund and Youth Employment Initiative through

12



UN
CO

RR
EC

TE
D

PR
OOF

V. Fernández-García et al. Remote Sensing of Environment xxx (2017) xxx-xxx

the Regional Government of Castilla y León (workplace ULE-15). Víctor
Fernández-García was supported by a predoctoral fellowship from the
Spanish Ministry of Education (FPU14/00636).

We would like to thank the emergency service and forest firefight-
ers of Asturias and Extremadura for showing us the study areas and for
their help getting to the field plots. We are also grateful to Hugh D. Saf-
ford (University of California-Davis) and collaborators for helping us to
understand better the use of remote sensing methods for burn severity
assessments.

References

AEMET-IM, 2011. Air temperature and precipitation (1971–2000). In: Iberian Climate At-
las. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Medio Rural y
Marino. Instituto de Meteorologia de Portugal.

Alcañiz, M., Outeiro, L., Francos, M., Farguell, J., Úbeda, X., 2016. Long-term dynamics of
soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Mas-
sif, Catalonia, Spain). Sci. Total Environ. 572, 1329–1335. https://doi.org/10.1016/j.
scitotenv.2016.01.115.

Anderson, H.E., 1982. Aids to determining fuel models for estimating fire behavior. In:
USDA Forest Service, General Technical Report, INT-122.

Barsi, J.A., Schott, J.R., Palluconi, F.D., Hook, S.J., 2005. Validation of a web-based atmos-
pheric correction tool for single thermal band instruments. Earth observing systems X.
Proc. SPIE 5882. https://doi.org/10.1117/12.619990.

Box, E.O., 1981. Macroclimate and Plant Forms. An Introduction to Predictive Model-
ing in Phytogeography. Dr. W. Junk Publishers, The Hague, https://doi.org/10.1007/
978-94-009-8680-0.

Calvo, L., Santalla, A., Valbuena, L., Marcos, E., Tárrega, R., Luis-Calabuig, E., 2008.
Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecol. 197,
81–90. https://doi.org/10.1007/s11258-007-9362-1.

Calvo, L., Hernández, V., Valbuena, L., Taboada, A., 2016. Provenance and seed mass de-
termine seed tolerance to high temperatures associated to forest fires in Pinus pinaster.
Ann. For. Sci. 73, 381–391. https://doi.org/10.1007/s13595-015-0527-0.

Cansler, C.A., McKenzie, D., 2012. How robust are burn severity indices when applied in a
new region? Evaluation of alternate field-based and remote-sensing methods. Remote
Sens. 4, 456–483. https://doi.org/10.3390/rs4020456.

Catry, F.X., Pausas, J.G., Moreira, F., Fernandes, P.M., Rego, F., 2013. Post-fire response
variability in Mediterranean Basin tree species in Portugal. Int. J. Wildland Fire 22,
919–932. https://doi.org/10.1071/WF12215.

Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10.
https://doi.org/10.1007/s00442-004-1788-8.

Céspedes, B., Luna, B., Pérez, B., Urbieta, I.R., Moreno, J., 2014. Burning season effects
on the short-term post-fire vegetation dynamics of a Mediterranean heathland. Appl.
Veg. Sci. 17, 86–96. https://doi.org/10.1111/avsc.12053.

Chen, X., Vogelmann, J.E., Rollins, M., Ohlen, D., Key, C.H., Yang, L., Huang, C., Shi, H.,
2011. Detecting post-fire burn severity and vegetation recovery using multitemporal
remote sensing spectral indices and field-collected composite burn index data in a
ponderosa pine forest. Int. J. Remote Sens. 32, 7905–7927.

Chu, T., Guo, X., 2014. Remote sensing techniques in monitoring post-fire effects and pat-
terns of forest recovery in boreal forest regions: a review. Remote Sens. 6, 470–520.
https://doi.org/10.3390/rs6010470.

Chuvieco, E., 2010. Teledetección ambiental. La observación de la Tierra desde el espacio,
3rd ed. Ariel, Barcelona.

Chuvieco, E., Riaño, D., Danson, F.M., Martin, P., 2006. Use of a radiative transfer model
to simulate the postfire spectral response to burn severity. J. Geophys. Res. 111
G04S09https://doi.org/10.1029/2005JG000143.

Day, N.J., Carriere, S., Baltzer, J.L., 2017. Annual dynamics and resilience in post-fire bo-
real understory vascular plant communities. For. Ecol. Manag. 401, 264–272. https://
doi.org/10.1016/j.foreco.2017.06.062.

De Santis, A., Chuvieco, E., 2007. Burn severity estimation from remotely sensed data:
performance of simulation versus empirical models. Remote Sens. Environ. 108,
422–435. https://doi.org/10.1016/j.rse.2006.11.022.

De Santis, A., Chuvieco, E., 2009. GeoCBI: a modified versión of the Composite Burn Index
for the initial assessment of the short-term burn severity from remotely sensed data.
Remote Sens. Environ. 113, 554–562. https://doi.org/10.1016/j.rse.2008.10.011.

De Santis, A., Chuvieco, E., Vaughan, P.J., 2009. Short-term assessment of burn severity
using the inversion of PROSPECT and GeoSail models. Remote Sens. Environ. 113,
126–136. https://doi.org/10.1016/j.rse.2008.08.008.

De Santis, A., Asner, G.P., Vaughan, P.J., Knapp, D.E., 2010. Mapping burn severity and
burning efficiency in California using simulation models and Landsat imagery. Remote
Sens. Environ. 114, 1535–1545. https://doi.org/10.1016/j.rse.2010.02.008.

Dimitrakopoulos, A.P., Mitsopoulos, I.D., Kaliva, A., 2011. Short communication. Compar-
ing flammability traits among fire-stricken (low elevation) and non fire-stricken (high
elevation) conifer forest species of Europe: a test of the Mutch hypothesis. For. Syst.
22, 134–137. https://doi.org/10.5424/fs/2013221-02475.

Doblas-Miranda, E., Alonso, R., Arnan, X., Bermejo, V., Brotons, L., de las Heras, J., Es-
tiarte, M., Hódar, J.A., Llorens, P., Lloret, F., López-Serrano, F.R., Martínez-Vilalta, J.,
Moya, D., Peñuelas, J., Pino, J., Rodrigo, A., Roura-Pascual, N., Valladares, F., Vilà,

M., Zamora, R., Retana, J., 2017. A review of the combination among global change fac-
tors in forests, shrublands and pastures of the Mediterranean Region: beyond drought
effects. Glob. Planet. Chang. 148, 42–54. https://doi.org/10.1016/j.gloplacha.2016.
11.012.

Epting, J., Verbyla, D.L., Sorbel, B., 2005. Evaluation of remotely sensed indices for as-
sessing burn severity in interior Alaska using Landsat TM and ETM +. Remote Sens.
Environ. 96, 328–339. https://doi.org/10.1016/j.rse.2005.03.002.

Fernández, C., Vega, J.A., 2016. Evaluation of RUSLE and PESERA models for predicting
soil erosion losses in the first year after wildfire in NW Spain. Geoderma 273, 64–72.
https://doi.org/10.1016/j.geoderma.2016.03.016.

Fernández-Manso, A., Quintano, C., 2015. Evaluating Landsat ETM + emissivity-enhanced
spectral indices for burn severity discrimination in Mediterranean forest ecosystems.
Remote Sens. Lett. 6, 302–310. https://doi.org/10.1080/2150704X.2015.1029093.

Fernández-Manso, O., Quintano, C., Fernández-Manso, A., 2009. Combining spectral mix-
ture analysis and object-based classification for fire severity mapping. For. Syst. 18,
296–313. https://doi.org/10.5424/fs/2009183-01070.

Fernández-Manso, A., Fernández-Manso, O., Quintano, C., 2016. SENTINEL-2A red-edge
spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs.
Geoinf. 50, 170–175. https://doi.org/10.1016/j.jag.2016.03.005.

Gao, X., Huete, A.R., Ni, W., Miura, T., 2000. Optical-biophysical relationships of vegeta-
tion spectra without background contamination. Remote Sens. Environ. 74, 609–620.
https://doi.org/10.1016/S0034-4257(00)00150-4.

García-Llamas, P., Calvo, L., Álvarez-Martínez, J.M., Suárez-Seoane, S., 2016. Using re-
mote sensing products to classify landscape. A multi-spatial resolution approach. Int.
J. Appl. Earth Obs. Geoinf. 50, 95–105. https://doi.org/10.1016/j.jag.2016.03.010.

González-de-Vega, S., De las Heras, J., Moya, D., 2016. Resilience of Mediterranean terres-
trial ecosystems and fire severity in semiarid areas: responses of Aleppo pine forests
in the short, mid and long term. Sci. Total Environ. 573, 1171–1177. https://doi.org/
10.1016/j.scitotenv.2016.03.115.

Hantson, S., Chuvieco, E., 2011. Evaluation of different topographic correction methods
for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 13, 691–700. https://doi.org/10.
1016/j.jag.2011.05.001.

Harris, S., Veraverbeke, S., Hook, S., 2011. Evaluating spectral indices for assessing fire
severity in Chaparral ecosystems (Southern California) using MODIS/ASTER (MAS-
TER) airborne simulator data. Remote Sens. 3, 2403–2419.

Holden, Z.A., Morgan, P., Smith, A.M.S., Vierling, L., 2010. Beyond Landsat: a compari-
son of four satellite sensors for detecting burn severity in ponderosa pine forests of
the Gila Wilderness, NM, USA. Int. J. Wildland Fire 19, 449–458. https://doi.org/10.
1071/WF07106.

Holden, S.R., Rogers, B.M., Treseder, K.K., Randerson, J., 2016. Fire severity influences the
response of soil microbes to a boreal forest fire. Environ. Res. Lett. 11, 035004https:
//doi.org/10.1088/1748-9326/11/3/035004.

Hothorn, T., Bretz, F., Westfall, P., Heiberger, R.M., Schuetzenmeister, A., Scheibe, S.,
2017. multcomp: Simultaneous Inference in General Parametric Models. R package
version 1. 4–7 https://cran.r-project.org//package=multcomp.

Hudak, A.T., Morgan, P., Bobbitt, M.J., Smith, A.M.S., Lewis, S.A., Lentile, L.B., Ro-
bichaud, P.R., Clark, J.T., McKinley, R.A., 2007. The relationship of multispectral
satellite imagery to immediate fire effects. In: Fire Ecology Special Issue. 3, pp. 64–90.

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L., 2002. Overview of the
radiometric and biophysical performance of the MODIS vegetation indices. Remote
Sens. Environ. 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2.

Johnstone, J.F., Hollinsworth, T.N., Chapin, F.S., Mack, M., 2010. Changes in fire regime
break the legacy lock on successional trajectories in Alaskan boreal forest. Glob.
Chang. Biol. 16, 1281–1295. https://doi.org/10.1111/j.1365-2486.2009.02051.x.

Kasischke, E.S., Turetsky, M.R., Ottmar, R.D., French, N.H.F., Hoy, E.E., Kane, E.S., 2008.
Evaluation of the composite burn index for assessing fire severity in Alaskan black
spruce forests. Int. J. Wildland Fire 17, 515–526. https://doi.org/10.1071/WF08002.

Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and sug-
gested usage. Int. J. Wildland Fire 18, 116–126. https://doi.org/10.1071/WF07049.

Key, C.H., 2006. Ecological and sampling constraints on defining landscape fire severity.
Fire Ecol. 2, 34–59. https://doi.org/10.4996/fireecology.0202034.

Key, C.H., Benson, N.C., 1999. Measuring and remote sensing of burn severity: the CBI
and NBR. In: Neuenschwander, L.F., Ryan, K.C. (Eds.), Proceedings Joint Fire Science
Conference and Workshop. Vol. II. University of Idaho and International Association
of Wildland Fire, Boise, ID, pp. 15–17.

Key, C.H., Benson, N.C., 2006. Landscape assessment (LA) sampling and analysis methods.
In: USDA Forest Service General Technical Report, RMRS-GTR-164-CD.

Kong, J.J., Yang, J., Chu, H., Xiang, X., 2015. Effects of wildfire and topography on soil
nitrogen availability in a boreal larch forest of northeastern China. Int. J. Wildland
Fire 24, 433–442. https://doi.org/10.1071/WF13218.

2017. Landsat 7 Science Data Users Handbook. In: https://landsat.gsfc.nasa.gov/
landsat-7-science-data-users-handbook/, Accessed 1 June 2017.

2016. Landsat 8 (L8) Data Users Handbook. In: http://landsat.usgs.gov/l8handbook.php,
Accessed 1 December 2016.

Lehmann, J.R.K., Große-Stoltenberg, A., Römer, M., Oldeland, J., 2015. Field spectroscopy
in the VNIR-SWIR region to discriminate between Mediterranean native plants and ex-
otic-invasive shrubs based on leaf tannin content. Remote Sens. 7, 1225–1241. https:
//doi.org/10.3390/rs70201225.

Lentile, L.B., Smith, A.M.S., Hudak, A.T., Morgan, P., Bobbitt, M.J., Lewis, S.A., Ro-
bichaud, P.R., 2009. Remote sensing for prediction of 1-year post-fire ecosystem con-
dition. Int. J. Wildland Fire 18, 594–608. https://doi.org/10.1071/WF07091.

13



UN
CO

RR
EC

TE
D

PR
OOF

V. Fernández-García et al. Remote Sensing of Environment xxx (2017) xxx-xxx

Lin, C., Wu, C., Tsogt, K., Ouyang, Y., Chang, C., 2015. Effects of atmospheric correction
and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf.
Process. Agric. 2, 25–36. https://doi.org/10.1016/j.inpa.2015.01.003.

Lindner, M., Garcia-Gonzalo, J., Kolström, M., Geen, T., Reguera, R., Maroschek, M., Seidl,
R., Lexer, M.J., Netherer, S., Schopf, A., Kremer, A., Delzon, S., Barbati, A., Marchetti,
M., Corona, P., 2008. Impacts of climate change on European forests and options for
adaptation. In: Report to the European Commission Directorate-General for Agricul-
ture and Rural Development. AGRI-2007-G4-06.

Liu, Z., 2016. Effects of climate and fire on short term vegetation recovery in the bo-
real larch forests of Northeastern China. Sci. Rep. 6, 37572. https://doi.org/10.1038/
srep37572.

López-García, M.J., Caselles, V., 1991. Mapping burns and natural reforestation using
thematic mapper data. Geocarto Int. 1, 31–37. https://doi.org/10.1080/
10106049109354290.

Madani, N., Kimball, J.S., Jones, L.A., Parazoo, N.C., Guan, K., 2017. Global analysis
of bioclimatic controls on ecosystem productivity using satellite observations of so-
lar-induced chlorophyll fluorescence. Remote Sens. 9, 530, http://dx.doi.org/3390/
rs9060530.

MAGRAMA, 2009. Mapa de frecuencia de incendios forestales por término municipal. Web
Map Service. In: http://wms.magrama.es/sig/Biodiversidad/Incendios/wms.aspx, Ac-
cessed 21 June 2017.

Mänd, P., Hallik, L., Peñuelas, J., Nilson, T., Duce, P., Emmett, B.A., Beier, C., Estiarte,
M., Garadnai, J., Kalapos, T., Schmidt, I.K., Kovács-Láng, E., Prieto, P., Tietema, A.,
Westerveld, J.W., Kull, O., 2010. Responses of the reflectance indices PRI and NDVI to
experimental warming and drought in European shrublands along a north-south cli-
matic gradient. Remote Sens. Environ. 114, 626–636. https://doi.org/10.1016/j.rse.
2009.11.003.

Marcos, E., Villalón, C., Calvo, L., Luis-Calabuig, E., 2009. Short-term effects of experimen-
tal burning on soil nutrients in the Cantabrian heathlands. Ecol. Eng. 35, 820–828.
https://doi.org/10.1016/j.ecoleng.2008.12.011.

Meddens, A.J.H., Kolden, C.A., Lutz, J.A., 2016. Detecting unburned areas within wildfire
perimeters using Landsat and ancillary data across the northwestern United States. Re-
mote Sens. Environ. 186, 275–285. https://doi.org/10.1016/j.rse.2016.08.023.

Meng, R., Wu, J., Schwager, K.L., Zhao, F., Dennison, P.E., Cook, B.D., Brewster, K., Green,
T.M., Serbin, S.P., 2017. Using high spatial resolution satellite imagery to map forest
burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ.
191, 95–109. https://doi.org/10.1016/j.rse.2017.01.016.

Miller, J.D., Thode, A.E., 2007. Quantifying burn severity in a heterogeneous landscape
with a relative version of the delta normalized burn ratio (dNBR). Remote Sens. Envi-
ron. 109, 66–80. https://doi.org/10.1016/j.rse.2006.12.006.

Miller, J.D., Safford, H.D., Crimmins, M., Thode, A.E., 2009. Quantitative evidence for
increasing forest fire severity in the Sierra Nevada and Southern Cascade Moun-
tains, California and Nevada, USA. Ecosystems 12, 16–32. https://doi.org/10.1007/
s10021-008-9201-9.

Moreira, F., Viedma, O., Arianoutsou, M., Curt, T., Koutsias, N., Rigolot, E., Barbati, A.,
Corona, P., Vaz, P., Xanthopoulos, G., Mouillot, L., Bilgiri, E., 2011. Landscape – wild-
fire interactions in Southern Europe: implications for landscape management. J. Envi-
ron. Manag. 92, 2389–2402. https://doi.org/10.1016/j.jenvman.2011.06.028.

Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y.,
Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P.,
Nemani, R.R., Running, S.W., 2002. Global products of vegetation leaf area and frac-
tion absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231.
https://doi.org/10.1016/S0034-4257(02)00074-3.

Nunes, A.N., Lourenço, L., Castro Meira, A.C., 2016. Exploring spatial patterns and drivers
of forest fires in Portugal (1980–2014). Sci. Total Environ. 573, 1190–1202. https://
doi.org/10.1016/j.scitotenv.2016.03.121.

Parks, S.A., Dillon, G.K., Miller, C., 2014. A new metric for quantifying burn sever-
ity: the relativized burn ratio. Remote Sens. 6, 1827–1844. https://doi.org/10.3390/
rs6031827.

Parks, S.A., Miller, C., Abatzoglou, J.T., Holsinger, L.M., Parisien, M.A., Dobrowski, S.Z.,
2016. How will climate change affect wildland fire severity in the western US?. Envi-
ron. Res. Lett. 11, 035002https://doi.org/10.1088/1748-9326/11/3/035002.

, .
Pausas, J.G., Keeley, J.E., 2014. Evolutionary ecology of resprouting and seeding in

fire-prone ecosystems. New Phytol. 204, 55–65. https://doi.org/10.1111/nph.12921.
Pausas, J.G., Llovet, J., Rodrigo, A., Vallejo, R., 2008. Are wildfires a disaster in the

Mediterranean basin?–a review. Int. J. Wildland Fire 17, 713–723. https://doi.org/10.
1071/WF07151.

Perkins, T., Adler-Golden, S., Matthew, M.W., Berk, A., Bernstein, L.S., Lee, J., Fox, M.,
2012. Speed and accuracy improvements in FLAASH atmospheric correction of hyper-
spectral imagery. Opt. Eng. 51, 111707https://doi.org/10.1117/1.OE.51.11.111707.

Picotte, J.J., Robertson, K.M., 2011. Validation of remote sensing of burn severity in
south-eastern US ecosystems. Int. J. Wildland Fire 20, 453–464. https://doi.org/10.
1071/WF10013.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2017. nlme: Linear and Non-
linear Mixed Effects Models. R package version 3. 1–131 https://cran.r-project.org/
package=nlme.

Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., Valbuena, L., 2015. Land surface
temperature as potential indicator of burn severity in forest Mediterranean ecosys-
tems. Int. J. Appl. Earth Obs. Geoinf. 36, 1–12. https://doi.org/10.1016/j.jag.2014.
10.015.

Quintano, C., Fernández-Manso, A., Roberts, D.A., 2017. Burn severity mapping from
Landsat MESMA fraction images and land surface temperature. Remote Sens. Environ.
190, 83–95. https://doi.org/10.1016/j.rse.2016.12.009.

R Core Team, 2016. R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/.

Reichle, R.H., Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture.
Geophys. Res. Lett. 31, L19501https://doi.org/10.1029/2004GL020938.

Robichaud, P., Lewis, S., Laes, D., Hudak, A., Kokaly, R., Zamudio, J., 2007. Post-fire soil
burn severity mapping with hyperspectral image unmixing. Remote Sens. Environ.
108, 467–480. https://doi.org/10.1016/j.rse.2006.11.027.

Rodríguez-Alleres, M., Varela, M.E., Benito, E., 2012. Natural severity of water repellency
in pine forest soils from NW Spain and influence of wildfire severity on its persistence.
Geoderma 191, 125–131. https://doi.org/10.1016/j.geoderma.2012.02.006.

Rother, M.T., Veblen, T.T., 2017. Climate drives episodic conifer establishment after fire
in dry ponderosa pine forests of the Colorado Front Range, USA. Forests 8, 159. https:
//doi.org/10.3390/f8050159.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems
in the great plains with ERTS. In: Proceedings of the Third ERTS Symposium. NASA
SP-351, 1. NASA, Washington DC, U.S., pp. 309–317.

Roy, D.P., Boschetti, L., Trigg, S.N., 2006. Remote sensing of fire severity: assessing
the performance of the Normalized Burn Ratio. IEEE Geosci. Remote Sens. Lett. 3,
112–116. https://doi.org/10.1109/LGRS.2005.858485.

Roy, D.P., Kovalskyy, V., Zhang, H.K., Vermote, E.F., Yan, L., Kumar, S.S., Egorov, A.,
2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normal-
ized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70. https:
//doi.org/10.1016/j.rse.2015.12.024.

San-Miguel-Ayanz, J., Durrant, T., Boca, R., Libertà, G., Bocacci, F., Di Leo, M.,
López-Pérez, J., Schulte, E., 2016. Forest fires in Europe, Middle East and North Africa
2015. In: Joint Research Center of the European Commission Technical Reports, EUR
28158EN. https://doi.org/10.2788/914.

Schwilk, D.W., Caprio, A.C., 2011. Scaling from leaf traits to fire behaviour: community
composition predicts fire severity in a temperate forest. J. Ecol. 99, 970–980. https://
doi.org/10.1111/j.1365-2745.2011.01828.x.

Sikkink, P.G., 2015. Comparison of six fire severity classification methods using Montana
and Washington wildland fires. In: Keane, R.E., Jolly, M., Parsons, R., Riley, K. (Eds.),
Proceedings of the Large Wildland Fires Conference; Proc.RMRS-P-73. United States
Department of Agriculture, Missoula, MT, pp. 213–226.

Soverel, N.O., Coops, N.C., Perrakis, D.B., Daniels, L., Gergel, S., 2011. The transferability
of a dNBR-derived model to predict burn severity across ten wildland fires in Western
Canada. Int. J. Wildland Fire 20, 1–14. https://doi.org/10.1071/WF10081.

Steel, Z.L., Safford, H.D., Viers, J.H., 2015. The fire frequency-severity relationship and
the legacy of fire suppression in California forests. Ecosphere 6 (8)https://doi.org/10.
1890/ES14-00224.1.

Tanase, M., de la Riva, J., Pérez-Cabello, F., 2011. Estimating burn severity at the regional
level using optically based indices. Can. J. For. Res. 41, 863–872. https://doi.org/10.
1139/X11-011.

Teillet, P.M., Guindon, B., Goodenough, D.G., 1982. On the slope-aspect correction of mul-
tispectral scanner data. Can. J. Remote. Sens. 8, 84–106.

Van der Knijff, J.M., Jones, R.J.A., Montanarella, L., 2000. Soil erosion risk assessment in
Europe. In: Joint Research Center of the European Commission Report, EUR19044EN.

Varela, M.E., Benito, E., Keizer, J.J., 2015. Influence of wildfire severity on soil physical
degradation in two pine forest stands of NW Spain. Catena 133, 342–348. https://doi.
org/10.1016/j.catena.2015.06.004.

Vega, J.A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., Jiménez, E., 2013. Testing
the ability of visual indicators of soil burn severity to reflect changes in soil chemical
and microbial properties in pine forests and shrubland. Plant Soil 369, 73–91. https:
//doi.org/10.1007/s11104-012-1532-9.

Veraverbeke, S., Verstraeten, W., Lhermitte, S., Goossens, R., 2010. Evaluating Landsat
Thematic Mapper spectral indices for estimating burn severity of the 2007 Pelopon-
nese wildfires in Greece. Int. J. Wildland Fire 19, 558–569. https://doi.org/10.1071/
WF09069.

Veraverbeke, S., Harris, S., Hook, S., 2011. Evaluating spectral indices for burned area
discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sens.
Environ. 115, 2702–2709. https://doi.org/10.1016/j.rse.2011.06.010.

Veraverbeke, S., Hook, S., Hulley, G., 2012. An alternative spectral index for rapid fire
severity assessments. Remote Sens. Environ. 123, 72–80. https://doi.org/10.1016/j.
rse.2012.02.025.

Vlassova, L., Pérez-Cabello, F., 2016. Effects of post-fire wood management strategies
on vegetation recovery and land surface temperature (LST) estimated from Landsat
images. Int. J. Appl. Earth Obs. Geoinf. 44, 171–183. https://doi.org/10.1016/j.jag.
2015.08.011.

Vlassova, L., Pérez-Cabello, F., Mimbrero, M., Llovería, R., García-Martín, A., 2014. Analy-
sis of the relationship between land surface temperature and wildfire severity in
a series of Landsat images. Remote Sens. 6, 6136–6162. https://doi.org/10.3390/
rs6076136.

Wu, Z., He, H.S., Liang, Y., Cai, L., Lewis, B.J., 2013. Determining relative contributions of
vegetation and topography to burn severity from LANDSAT imagery. Environ. Manag.
52, 821–836. https://doi.org/10.1007/s00267-013-0128-3.

Wu, Z., Middleton, B., Hetzler, R., Vogel, J., Dye, D., 2015. Vegetation burn severity
mapping using Landsat-8 and WorldView-2. Photogramm. Eng. Remote. Sens. 81,
143–154. https://doi.org/10.14358/PERS.81.2.143.

14



UN
CO

RR
EC

TE
D

PR
OOF

V. Fernández-García et al. Remote Sensing of Environment xxx (2017) xxx-xxx

Xiao, J., Moody, A., 2008. Geographical distribution of global greening trends and their
climatic correlates: 1982–1998. Int. J. Remote Sens. 26, 2371–2390. https://doi.org/
10.1080/01431160500033682.

Yu, X., Guo, X., Wu, Z., 2014. Land surface temperature retrieval from Landsat 8
TIRS—comparison between radiative transfer equation-based method, split window
algorithm and single channel method. Remote Sens. 6, 9829–9852. https://doi.org/
10.3390/rs6109829.

Yudina, P.K., Ivanova, L.A., Ronzhina, D.A., Zolotareva, N.V., Ivanov, L.A., 2017. Vari-
ation of leaf traits and pigment content in three species of steppe plants depending
on the climate aridity. Russ. J. Plant Physiol. 64, 410–422. https://doi.org/10.1134/
S1021443717020145.

Zheng, Z., Zeng, Y., Li, S., Huang, W., 2016. A new burn severity index based on land sur-
face temperature and enhanced vegetation index. Int. J. Appl. Earth Obs. Geoinf. 45,
84–94. https://doi.org/10.1016/j.jag.2015.11.002.

Zhu, Z., Key, C., Ohlen, D., Benson, N., 2006. Evaluate sensitivities of burn-severity map-
ping algorithms for different ecosystems and fire histories in the United States. In: Fi-
nal Report to the Joint Fire Science Program. JFSP 01-1-4-12.

Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R.R.,
Myneni, R.B., 2013. Global data sets of vegetation leaf area index (LAI)3g and frac-
tion of photosynthetically active radiation (FPAR)3g derived from global inventory
modeling and mapping studies (GIMMS) normalized difference vegetation index (ND-
VI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948. https://doi.org/10.
3390/rs5020927.

15


	
	
	


