Afficher la notice abrégée

dc.contributorEscuela de Ingenierias Industrial, Informática y Aeroespaciales_ES
dc.contributor.authorBaenas, Tomás
dc.contributor.authorEscapa García, Luis Alberto 
dc.contributor.authorFerrándiz, José Manuel
dc.contributor.otherIngenieria Aeroespaciales_ES
dc.date2021-04-15
dc.date.accessioned2024-01-22T09:31:24Z
dc.date.available2024-01-22T09:31:24Z
dc.identifier.citationBaenas, T., Escapa, A., & Ferrándiz, J. M. (2021). Secular changes in length of day: Effect of the mass redistribution. In Astronomy & Astrophysics (Vol. 648, p. A89). EDP Sciences. https://doi.org/10.1051/0004-6361/202140356es_ES
dc.identifier.issn0004-6361
dc.identifier.otherhttps://www.aanda.org/articles/aa/full_html/2021/04/aa40356-21/aa40356-21.htmles_ES
dc.identifier.urihttps://hdl.handle.net/10612/17693
dc.description.abstract[EN] In this paper the secular change in the length of day due to mass redistribution effects is revisited using the Hamiltonian formalism of the Earth rotation theories. The framework is a two-layer deformable Earth model including dissipative effects at the core–mantle boundary, which are described through a coupling torque formulated by means of generalized forces. The theoretical development leads to the introduction of an effective time-averaged polar inertia moment, which allows us to quantify the level of core–mantle coupling throughout the secular evolution of the Earth. Taking advantage of the canonical procedure, we obtain a closed analytical formula for the secular deceleration of the rotation rate, numerical evaluation of which is performed using frequency-dependent Love numbers corresponding to solid and oceanic tides. With this Earth modeling, under the widespread assumption of totally coupled core and mantle layers in the long term response, a secular angular acceleration of − 1328.6′′ cy−2 is obtained, which is equivalent to an increase of 2.418 ms cy−1 in the length of day. The ocean tides and the semidiurnal band of the mass-redistribution-perturbing potential, mostly induced by the Moon, constitute the main part of this deceleration. This estimate is shown to be in very good agreement with recent observational values, and with other theoretical predictions including comparable modeling features.es_ES
dc.languageenges_ES
dc.publisherEDP Scienceses_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectIngeniería aeroespaciales_ES
dc.subject.otherCelestial mechanicses_ES
dc.subject.otherMethods: analyticales_ES
dc.subject.otherReference systemses_ES
dc.subject.otherEarthes_ES
dc.titleSecular changes in length of day: Effect of the mass redistributiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doihttps://doi.org/10.1051/0004-6361/202140356
dc.description.peerreviewedSIes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.journal.titleAstronomy & Astrophysicses_ES
dc.volume.number648es_ES
dc.issue.numberA89es_ES
dc.page.initial1es_ES
dc.page.final9es_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES
dc.description.projectThis research has been developed within the framework of the IAU/IAG Joint Working Group 3.1: Improving Theories and Models of the Earth’s Rotation (ITMER).es_ES


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution 4.0 Internacional