• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Consorcio BUCLE Recolector
  • Contact Us
  • Send Feedback
  • Enlaces y accesos
    • Derechos de autor
    • Políticas
    • Guía de autoarchivo
    • FAQ y ayuda
    • La ULE y el Acceso Abierto
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Repositorio
    Institucional
    Abierto

    Consorcio BUCLE Recolector

    Browse

    All of BULERIACommunities and CollectionsAuthorsDirectoresTitlesSubjectsFacultad/CentroÁrea de conocimientoFecha de creación/publicaciónTitulaciónThis CollectionAuthorsDirectoresTitlesSubjectsFacultad/CentroÁrea de conocimientoFecha de creación/publicaciónTitulación

    My Account

    Login

    Statistics

    View Usage Statistics

    Otros enlaces

    View Item 
    •   BULERIA Home
    • Scientific Production
    • Untitled
    • View Item
    •   BULERIA Home
    • Scientific Production
    • Untitled
    • View Item

    Compartir

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Título
    Modeling Pinus pinaster forest structure after a large wildfire using remote sensing data at high spatial resolution
    Autor
    Fernández Guisuraga, José ManuelAutoridad Buleria
    Suárez Seoane, SusanaAutoridad Buleria
    Calvo Galván, María LeonorAutoridad BuleriaORCID
    Facultad/Centro
    Facultad de Ciencias Biologicas y Ambientales
    Área de conocimiento
    Biologia Celular
    Datos de la obra
    Forest Ecology and Management, 2019, vol. 446
    Editor
    Elsevier
    Fecha
    2019-08-15
    Abstract
    In the Mediterranean Basin, wildland fires are major drivers of forest ecosystem dynamics. In the current context of global change, these fires are becoming more severe and recurrent because of climatic conditions, land use changes and invasive species. In areas affected by mega-fires (burned area > 10,000 ha), the patterns of regeneration may be heterogeneous due to local variations in fire regime, community composition and environmental features. The goal of this study was to analyze the post-fire structure of both Pinus pinaster Aiton. seedlings population and understory community in a Mediterranean fire-prone ecosystem at short-term by means of high spatial resolution satellite imagery within the perimeter of a full stand replacing mega-fire that burned around 12,000 ha of a Pinus pinaster forest in NW Spain. We established 234 field plots of 2 × 2 meters to cover four recurrence-severity scenarios. In each plot, we sampled 15 vegetation structural variables at both pine seedlings population and understory community levels. From the WorldView-2 satellite imagery, we obtained three sets of spectral variables (reflectance, spectral indices and image textures) that were used as predictors of vegetation recovery in generalized linear models. At population level, the number and cover of pine seedlings were successfully modeled with spectral indices and textural information (normalized root mean square error of 16% and 17%, respectively). At understory community level, woody species cover was correlated with first order textures (normalized root mean square error of 9%). Other understory structure variables (height and richness of woody species, percentage of bare soil, necromass and leaves) were predicted with an error lower than 20%. The predictive capacity of the models was similar for all recurrence-severity scenarios. Our results highlight the usefulness of spectral indices and textural data at high spatial resolution in the analysis of post-fire recovery in large and heterogeneous burnt areas. Given the accuracy and predictive capacity of the models obtained in this study, high spatial resolution satellite imagery together with field data provide useful information in post-fire decision making in fire prone ecosystems.
    Materia
    Ecología. Medio ambiente
    Palabras clave
    Image texture
    Pine population
    Post-fire decision-making
    Spectral index
    Understory community
    WorldView-2
    Peer review
    SI
    URI
    http://hdl.handle.net/10612/10823
    Versión del editor
    https://www.sciencedirect.com/science/article/pii/S037811271930444X?via%3Dihub
    Collections
    • Untitled [2807]
    Show full item record
    Files in this item
    Nombre:
    Modeling Pinus pinaster forest structure FORECO_17358.pdf
    Tamaño:
    6.167 xmlui.dri2xhtml.METS-1.0.size-megabytes
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen